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Abstract. Sharing plenty and accurate structured Cyber Threat Intelli-
gence (CTI) will play a pivotal role in adapting to rapidly evolving cyber
attacks and malware. However, the traditional CTI generation methods
are extremely time and labor-consuming. The recent work focuses on
extracting CTI from well structured Open Source Intelligence (OSINT).
However, many challenges are still to generate CTI and Indicators of
Compromise(IoC) from non-human-written malware traces. This work
introduces a method to automatically generate concise, accurate and
understandable CTI from unstructured malware traces. For a specific
class of malware, we first construct the IoC expressions set from mal-
ware traces. Furthermore, we combine the generated IoC expressions and
other meaningful information in malware traces to organize the threat
intelligence which meets open standards such as Structured Threat Infor-
mation Expression (STIX). We evaluate our algorithm on real-world
dataset. The experimental results show that our method achieves a high
average recall rate of 89.4% on the dataset and successfully generates
STIX reports for every class of malware, which means our methodology
is practical enough to automatically generate effective IoC and CTI.
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1 Introduction

Malware (short for malicious software) has been used as a weapon by the threat
actors. Many types of malware, including computer virus, trojans, worms, ran-
somware, rootkit, and bots, are now active on the Internet, posing threats to
Internet users [30]. We can see the crazy malware number growth year by year,
referring to many security company’s annual reports. Unfortunately, it is hard
to win the security war with the rapidly growing and evolving malware using
traditional malware analysis methods.

Plenty and accurate structured Cyber Threat Intelligence (CTI) will play
a pivotal role in adapting to the rapidly evolving cyber attacks and malware
[13]. However, the traditional CTI generation method is extremely time and
labor-consuming. Various techniques have been developed for improving malware
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detection algorithms and methods, but not for reporting. Traditional CTI gener-
ation methods rely on security experts to summarize the massive, easy-to-get but
low-value basic data, such as Hash, network traces, and host information. Such an
inefficient method is impossible to deal with the rapid development and growth of
malware. Security industries or organizations may have collected a large number
of malware samples from the Internet; what they need is an effective and robust
method to automatically summarize the features of these samples and then gen-
erate usable CTI. To address this issue, we need to find a reliable technology or
system to analyze threat information and generate structured threat intelligence
automatically.

There is extensive research on machine learning based CTI generation meth-
ods, especially IoC generation methods based on artificial intelligence algorithms.
Many of these machine learning based methods use online security articles or
malware analysis results, for example, Symantec’s malware or APT reports, as
their information sources. Under the intuition that some information that can
be used to generate a structured CTI will be presented in a similar way in these
articles or malware reports, researchers try to use artificial intelligence algo-
rithms like NLP to extract this useful information. Of course, these machine
learning based methods can generate high-quality IoC, however, they only cover
well-organized malware analysis reports, which means these are not available
methods for those security industries and organizations that only have a large
number of raw malware samples. When we try to use machine learning meth-
ods like decision tree to generate IoC from malware static analysis and dynamic
analysis results, they may generate too complex signatures, and it is hard to use
in real malware detection.

This work will introduce a practical methodology to automatically generate
concise, accurate, and understandable CTI from unstructured malware traces.
Using malware samples collected from the Internet, we obtain malware traces
through sandbox analysis. Since IoC is one of the most important parts of CTI,
we first propose a method to generate IoC from malware traces. Furthermore,
we combine the generated IoC and other meaningful strings in malware traces,
such as malware class information, attacker’s IP address, and observed intrusion
action, to organize a CTI meeting certain standards.

Contributions. Our contributions are as follows:

– We develop a practical and easy-to-deploy methodology to generate struc-
tured CTI from raw malware traces automatically. We first get traces of
malware samples by sandbox analysis, then generate accurate and concise
IoC after data preprocessing. We finally integrate generated IoC and other
meaningful information in malware traces to generate well-structured CTI.

– We study the malware sandbox analysis report structure and design several
rules for removing low-value strings from it. Usually, the malware traces con-
sist of static analysis and dynamic analysis results, but not all of the strings in
the reports help generate IoC and CTI. We design rules to remove meaning-
less strings in malware traces and only select those features that can represent
characteristics well.
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– We propose an effective Greedy IoC Generation algorithm, GIG for short, to
generate concise, accurate, and understandable IoC from malware traces. For
a specific class of malware, we first add up all the possible IoC candidates and
merge similar expressions into one regular expression based IoC. After that,
we use a greedy feature selection algorithm to generate the best IoC for this
malware.

– We introduce the method to generate structured CTI following STIX stan-
dard, using information from the unstructured malware traces.

2 Background

In this section, we will first introduce the format of IoC and then introduce the
OpenIoC standard using in our IoC generation process. We then explain terms
of CTI and the Structured Threat Information Expression (STIX).

2.1 Indicators of Compromise

Indicators of compromise is a set of proofs that can be used to identify intrusion
on a host or network [19], and now has become one of the most potent threat
events detection weapons [26]. An IoC expression consists of IndicatorItem, two
kinds of condition “is” and “contains” and a corresponding value field. IoC use
operators “AND” or “OR” to combine several IoC expressions, making it possible to
describe the abnormal traces in multiple dimensions. We can identify an intrusion
if the traces or logs obtained from the network or host match the IoC condition.
OpenIoC is a simple XML based IoC describing schema advised by MANDIANT.
It is convenient for us to generate structured IoC following OpenIoC standard,
as it only requires six necessary XML tags and simple express grammar. Also
can we transform OpenIoC expression into other IoC describing standard.

Besides using hundreds of pre-defined IndicatorItem to describe behavior or
threat in detail, OpenIoC allows users to define their IndicatorItem. This also
convenience our IoC generation process, as not all the features can be classified
into suitable pre-defined IndicatorItem in the analysis of malware traces.

2.2 Cyber Threat Intelligence and STIX

Cyber Threat Intelligence (CTI) is defined as “evidence-based knowledge, includ-
ing context, mechanisms, indicators, implications, and actionable advice, about
an existing or emerging menace or hazard to assets that can be used to inform
decisions regarding the subject’s response to that menace or hazard”, according
to Gartner [20].

To convenience the sharing of CTI and let CTI can be understood by the
machine, there are many CTI describe languages like STIX [24], CybOX [4],
and MAEC [5] is created. STIX is one of the most expressive CTI describe
standards created by MITRE. Users can describe different elements in a cyber
threat, including basic network features, IoC, TTP and exploited vulnerabilities.
All these messages can be organized in a json file. STIX2.0 defines 12 types of
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Fig. 1. Overview of generating CTI from malware samples obtained from the Internet

STIX Domain Objects (SDOs) to describe different types of threat intelligence,
and 2 STIX Relationship Objects (SROs) to describe the relationship between
different SDOs. STIX is more expressive than OpenIoC, as STIX can involve
more information except threat indicators.

3 Overview

In this part we will give an overview of how we generate CTI following STIX from
malware obtained from the Internet. Figure 1 illustrates how our system works.
For one kind of malware class, we are first using sandbox analysis to obtain the
malware traces. We then perform our IoC generation algorithm after malware
traces processing, in which we select several kinds of strings and transform them
into IoC expressions. Finally, we use generated IoC expressions and other useful
information in the summary of traces to organize a STIX report. Works done in
each step will be described below.

Malware Analysis. We use a sandbox to finish our malware analysis mission.
It is worth noting that the structure and content in the sandbox reports will
not influence our system and results. Though a sandbox can not simulate all the
running conditions of malware samples, the information we can get from sandbox
reports is enough to extract malware features. For every malware sample that
belongs to the same class, we get its running traces through sandbox simulation.
The sandbox analysis result will be written in a json file.

Data Preprocessing. There are two kinds of information in the malware traces:
static analysis results and dynamic analysis results. The static analysis results
include basic file information like file name, file MD5, YARA matching results,
and strings obtained from reverse analysis; The dynamic analysis results are logs
of interaction between malware sample and host or network, for example, network
traces, process creation, file creation and delete behavior and register modify.

Not all the strings extracted from malware are useful for IoC generation.
Figure 2 shows part of the sandbox analysis result which are organized in a
json file. The string block gives the result of static string extraction, in which
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we observe that only a very small part of these string extraction outputs like
command or DLL name is meaningful and useful. Most of these extracted strings
are hard to understand and meaningless; therefore, we choose to discard these
meaningless or repeated strings in malware traces preprocessing.

” s t a t i c i n f o ” : {
” scan ” : { . . . } ,
” s t r i n g s ” : [

”+UntAsyncTask ” ,
”SetWindowPlacement ” ,
”pmCopy” ,
”TIntConst ” ,
”VarMul” ,
”WaitForSingleObject ” ,
”TSampleGrabberCBInt ” ,
”RUSSIAN CHARSET” ,
”OnContextPopup” ,
. . . ]

}
” behavior ” : {

” ba s i c b ehav i o r ” : { . . . } ,
” behav io r sequence ” : [ . . . ] ,
” o the r behav io r ” : [ . . . ]

}

Fig. 2. Part of sandbox analysis result

On the other hand, not all the analysis results have the same value. When we
try to generate concise and robust IoC and CTI, we should discard those low-
value strings in malware traces. File MD5 is undoubtedly efficient and accurate
in malware detection, but file MD5 based malware detection needs many active
samples and has a short life circle. If we use MD5 as our indicator, the attacker
can bypass this IoC detection at ease [6]. Although most open source IoC use
file MD5 as their indicator, we will not use it in our work. Similar low-value
information also includes file compilation time and file size.

IoC Generation. After data preprocessing, we obtain a shorter version of mal-
ware traces, leaving only strings that can better characterize the behaviors or
features of malware in the sandbox simulation. In order to generate structured
IoC, we first transform strings in sandbox analysis result into IoC expression. For
a single piece of malware behavior description or static characteristic informa-
tion, we select appropriate IndicatorItem according to the content and construct
a IoC expression. We will talk about the transformation rules in Sect. 4.1.

We then count all the IoC expressions in each malware trace to build a
candidate list for each malware class. For those IoC expressions which have
similar value field, we generate a regular expression to replace them. We will
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describe why and how we construct the candidate list in Sect. 4.2. In the last
phase of IoC generation, we choose the most suitable IoC expression subset from
the candidate list through a feature selection algorithm. Our target here is to
select a subset that has the best performance on the dataset. We will introduce
our algorithm and metrics in Sect. 4.3.

STIX Report Generation. Besides the information we used to generate IoC,
there are also other strings like network traffic and basic observation in the mal-
ware analysis report, which can help understand and characterize certain type of
malware. Furthermore, we can summarize malicious behavior set from malware
traces, which can help the malware detection and build a better defense system.
We organize analysis results of a malware class following STIX standard. We
select several SDOs suitable for our task, including Indicator, Observed Data,
Malware, Threat Actor, Identify, Intrusion Set and Report. We design several
SROs to describe the relationship between different SDOs and provide a visual-
ization version of the STIX report. Details about how we construct SDOs and
design the SROs will be shown in Sect. 5.

4 IoC Generation

In this section, we will describe how we generate IoC from malware traces in
detail.

4.1 Expression Transform

Transforming strings in malware traces into a standardized form will benefit
the candidate list building process. To transform static and dynamic features
in malware traces into IoC expression, we first build the conversion relation-
ship between feature strings and IndicatorItem. OpenIoC provides 27 pre-defined
IndicatorItem, each of them can be divided into more detailed indicators accord-
ing to specific behavior or feature. Table 1 gives several examples of expression-
IndicatorItem conversion.

For every string in malware traces, search the corresponding IndicatorItem
and use its content to fill the value field of IoC expression. There are also some
descriptions in malware traces that cannot be expressed with only one simple
IndicatorItem, as we showed in Table 1. In this case, we find out all the corre-
sponding IndicatorItem and use AND to connect these IoC expressions.

The predicate(is, contains or matches) should be used in the IoC expression
can be determined once we choose a specific IndicatorItem. As a result, it is not
necessary to use the predicate not in our IoC expression.

4.2 Candidate List Generation

We design a candidate list for certain malware classes to record the IoC expres-
sions and their occurrence frequency. Every IoC expression converted from the
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Table 1. Examples of expression conversion

Description in malware traces OpenIoC IndicatorItem

MD5 FileItem/File MD5

filename FileItem/File Filename

file behavior add FileItem/File Filename Created

reg behavior new RegistryItem/Registry Key Path AND
RegistryItem/Registry Value AND
RegistryItem/Registry Value Name

process created ProcessItem/Process PID AND
ProcessItem/Process

malware traces will be stored in a .csv file in the form of (logical predicate, indi-
cator type, indicator subdivision type, expression value type, expression value,
frequency) six-tuple form. The constructed candidate list can facilitate the classi-
fication and matching of IoC expressions. Besides, malware may produce variants
shortly, with means generated IoC may not maintain high efficiency. With the
help of IoC expressions candidate list, we can easily add newly obtained data in
after initialization. This design guarantees that our generated IoC can indicate
latest malware sample and its attack behavior.

It is challenging to detect and handle those highly similar IoC expressions
when building a candidate list. Since malware samples may have different ver-
sions, not all of their behaviors are entirely consistent. For instance, malware in
a specific class may all write data into other processes, but the target process
may not exactly be the same. This will result in two different IoC expressions
after our data preprocessing and expression transform, however, the two IoC
expressions are representing the same kind of behavior or malware characteris-
tic, with only very little difference in the target process name. Recent studies
have proposed several methods to solve this problem using cluster algorithm [28]
or multi-granular regular expression extraction [11]. We find that these meth-
ods, especially clustering based methods, may not distinguish different kinds of
behaviors, and eventually result in bad performance.

Similar IoC expressions seldom appear in our obtained malware traces. To
address this challenge, we divide IoC expressions in the candidate list according
to their types(for example, file behavior, register edit and so on). In every divided
subset, select the expressions with high frequency as the aggregation center, then
calculate the Levenshtein Distance between high-frequency expressions and other
expressions in the same subset. If the calculated distance between two expressions
smaller than our prescribed threshold, use a regular expression to merge them.
We use a heuristic method to decide the threshold for each class of malware,
which mainly depends on the average length of IoC expressions’ value field.

Figure 3 shows an example of how we use regular expression to merge similar
IoC expressions. As we mentioned before, we will only calculate the Levenshtein
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Fig. 3. A sample of using regular expression to merge similar IoC expressions

Distance for those IoC expressions with high frequency to reduce the computa-
tional cost. When we use a regular expression to replace the value field in IoC
expression, we use matches as the predicate. To control the complexity of IoC
expressions, we only use — to construct a regular expression.

4.3 IoC Expression Selection

Effective IoC should have properties that only identify attacker’s activities, easy
to evaluate and expensive for attackers to evade, according to MANDIANT [19].
In other words, the IoC we expected should have a high true positive rate and
low false positive rate, and the indicators and value field we designed should be
concise and easy for a machine to understand.

IoC subset selection is similar to the feature selection problem. Suppose there
are N candidate IoC expressions in the candidate list; our goal is to select a subset
which has the best performance and the highest quality on our malware traces
dataset. In this problem, the search space will be 2N− 1. We can easily evaluate
one specific IoC subset, but we may need to test all combinations to find the
best one. By using a suitable algorithm, we can obtain an approximate optimal
solution of this problem. For example, [28] builds a keyword tree base on the
frequency of IoC attributes and find out IoC from the root node to specific leave
nodes; [11] designs a submodular function to evaluate the performance of IoC,
and generates IoC through maximizing the submodular function [12].

Compared with feature selection problem in machine learning tasks, we have
a priori knowledge about the frequency of candidate IoC expressions, which
can represent the importance of this IoC expression, in other words, the higher
frequency an IoC expression has, the better the IoC including this expression
perform precision and recall. We design a heuristic IoC selection algorithm GIG
which starts the selection from the IoC expression with the highest frequency:

Function p() in the algorithm will evaluate the precision performance of cur-
rent IoC subset on the test set, n represents the current scale of generated IoC
subset C. Our algorithm first adds one of the IoC expressions with the highest
frequency into IoC subset, then continuously adds expressions that can improve
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Algorithm 1. Greedy IoC Generation
Input: Dataset D, Candidate list I, maximum expression number m, precision thresh-

old θ
Output: IoC subset C
1: function Expression Selection(D, I, m, θ)
2: add the most frequent i ∈ I to C
3: n ← 1
4: I ← I − i
5: while (p(C) <= θ || n < m) do
6: find i from I until p(C ∪ i) > p(C)
7: if successfully find i then
8: C ← C ∪ i
9: I ← I − i

10: n ← n + 1
11: end if
12: if can not find any i then
13: return C
14: end if
15: end while
16: return C
17: end function

IoC subset’s performance, until the IoC expressions in IoC subset hit the pre-
scribed maximum expression number m or the IoC subset is good enough. When
we find more than one IoC expression which brings the same precision increase in
one iteration, we randomly add one of them into our IoC. We set the maximum
expression number m to control the conciseness of the final IoC. Our experiment
shows that we can get concise and effective IoC through fixing a suitable m.

With the help of IoC writer [18], we can easily export the IoC from tabular
data to an OpenIoC format .IoC file. The selected expressions (i1, i2, ...in) will
be connected with OR, and the final IoC for a specific kind of malware will be like
(i1||i2||...||in). Figure 4 shows the IoC our algorithm generated for DarkComet
family.

(Service API matches (SeDebugPrivilige—SeLoadDriverPrivilige))
OR (Hook Hooked Modulematches C:\\WINDOWS\\TEMP\\(csrss—msdcsc).exe)
OR (Registry Key Path contains HKEY LOCAL MACHINE\\Software\\Microsoft
\\Windows NT\\CurrentVersion\\Winlogon
AND Registry Key Value name contains UserInit
AND Registry Key Valuematches C:\\WINDOWS\\TEMP\\system\\(update—csrss
—msdcsc).exe)

Fig. 4. Generated IoC for DarkComet following OpenIoC standard
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5 STIX Report Construction

When constructing a STIX report, we first fill each SDOs, and then define SROs
between SDOs to describe their relationship. This section will show the details
of how we select SDOs and SROs for STIX report generation task and discuss
how to use information in malware traces to construct SDOs and SROs.

5.1 SDOs Selection and Construction

Document [24] defines the description scope and format of all 12 types of SDOs.
As we mentioned before, to organize these scattered and unstructured malware
traces, we need to select SDOs suitable for our description scenario. Specifically,
we choose the following SDOs to construct STIX report:

– Observed Data: This SDO contains a series of monitored basic behavior or
information like file name, IP address and network traces. For specific malware
class, we directly write corresponding basic observation in all sandbox reports
into an Observed Data object after merging similar items.

– Malware: Malware object describes malware category and its common char-
acteristics. Though the Malware object itself can only describe some general
characteristics, we can link it to other SDOs we use to depict a vast landscape
of malware attacks.

– Threat Actor: This SDO can describe the information about individuals or
organizations related to threat events. We treat each malicious IP address as
an attacker in our malware description task and write an IP address list into
threat actor object. Malware likes bots [27] may try to connect back to the
control side during the sandbox simulation, we can record those malicious IP
addresses by analyzing the network traces. There is another SDO in STIX,
Identity, which can describe the information of attackers. However, the Iden-
tify object should contain information of victims at the same time, as a result,
Threat Actor is the better choice for our description task.

– Indicator: Indicator is an essential component in the malware CTI, consistent
and well structured IoC can help to automate some processes in malware
detection. STIX provides more expressive IoC describe grammar, compare
to OpenIoC. Using the API developed by OASIS [23], we can transform our
generated IoC into STIX’s Indicator format.

– Intrusion Set: Intrusion Set summarizes the malicious behavior of malware
during the sandbox simulation, such as process hijacking, registry modifi-
cation. We infer malicious behavior from the malware traces and use these
results to construct an Intrusion Set object in our CTI report.

– Report: The Report object in STIX organizes all the related SDOs together.
A list of references and descriptions to other SDOs will be written in.
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Fig. 5. Visualized STIX report of DarkComet

5.2 SROs Construction

In our malware CTI generation process, we first obtain unstructured malware
traces from sandbox analysis, then we finish work like malware signature and
indicator construction, attacker identify and malicious behavior analysis. Our
SROs established based on this scenario are as follows:

– Observed Data related-to Indicator;
– Indicator indicates malware;
– Threat Actor uses malware;
– Intrusion Set uses malware;
– Intrusion Set attributed-to Threat Actor.

The related-to, indicates, uses are connection types defined by STIX [24].
Finally we get a malware CTI heterogeneous information network consists of
SDOs and SROs with the help of a STIX visualization toolkit [22], as showed in
Fig. 5.

6 Evaluation

In this section, we will introduce a series of experiments to evaluate whether
our IoC generation algorithm can produce concise and effective IoC for specific
malware class. We will first introduce our dataset and settings. After that we
will introduce our evaluation methodology and give our experiment results.
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6.1 Evaluation Setup

We deploy a honeypot system to collect malware samples from the Internet from
May 2019 to June 2020. We use ANTIY’s [1] sandbox service to get malware
traces. We build a Windows XP 32 bit and a centos 6.5 32 bit virtual machine
as the sandbox analysis environment. The structure and content in the sandbox
reports has been described in Sect. 3 and Sect. 4. Table 2 summarizes the malware
samples used in our experiment, and shows the analysis environment we use. We
label these malware samples with the help of YARA rules.

Table 2. Malware samples used in IoC generation algorithm evaluation

Malware Size Environment

njRat 259 win XP 32 bit

DarkComet 113 win XP 32 bit

NanoCore 174 win XP 32 bit

Setag 172 centos 32 bit

Gafgyt 252 centos 32 bit

To evaluate the detection efficiency of our generated IoCs, we split these
malware samples into two parts to simulate a real-world malware detection scene.
The first part, namely the training set, consists of 80% of malware samples; we
will use them to generate IoC for each malware class. We use the rest of malware
samples as testing objects.

The analyzer machine runs only one malware sample at the same time to
avoid interference, and the running report will be written in a json file. We
build a candidate list for each malware class with our method using samples in
the training set. We then perform GIG to generate one IoC for each malware
class; Fig. 4 shows one generation result. We run all the experiments on 8 cores
Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20 GHz with 16 GB RAM.

In the first part of the evaluation, we will investigate whether IoCs generated
from the training set can detect unknown testing objects. After data preprocess-
ing, we judge whether a testing object belongs to specific malware classes using
generated IoCs. We also evaluate whether our IoCs can achieve the same classi-
fication efficiency as other methods, especially machine learning based methods.

6.2 IoC Generation Evaluation

In this experiment, we first use the training set to generate IoC for each malware
class, then we evaluate those IoC on the test set consisting of all five types
malware samples. The evaluation of IoC can be considered a binary classification
problem, and we should be concerned about the precision and recall rate of
generated IoC. An IoC with high precision and recall rates means lower false
positive and false negative in real world malware detection, which better meets
our needs.
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(a) Accuracy performance on the train-
ing set

(b) Precision performance on the test
set

(c) Recall performance on the test set

Fig. 6. The performance of generated IoC w.r.t. number of IoC expressions

Figure 6 illustrates the performance of generated IoC w.r.t. number of IoC
expressions on different dataset. Not all the malware samples will have dynamic
behavior during the sandbox simulation due to the imperfection of the sandbox
running mechanism. For traces obtained from these inactive malware samples,
since we choose to discard most of the static characteristics in the traces prepro-
cessing, there will be very few strings in it and lack of common feature, which
may lead to bad algorithm performance. For example, we find that nearly all the
Gafgyt samples in our experiment are inactive during the sandbox simulation;
as a result we get a lousy curve for it.

For other malware classes, as we generate our IoC respectively, the accuracy
performance on the training set is the same as precision performance. Our algo-
rithm continuously adds expression into IoC, we can see in Fig. 6(a) that the
more expressions we use, the higher accuracy we achieve. As we mentioned in
Sect. 4.1, we generate candidate IoC expressions from every malware trace. To
evaluate generated IoC on test set, we compare it with every sample’s IoC expres-
sions to see whether this IoC can detect target malware sample. Figure 6(b) and
6(c) show the performance of generated IoC on test set. Similar to the accuracy
performance on training set, the more expressions we use, the higher recall rate
we get. However, more expressions may not bring higher precision performance,
since the more expressions we use, the more false positive will appear. According
to our experiment result, if we add no more than 3 expressions into the IoC, we
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can get concise and effective IoC. Table 3 shows the performance of 3 item IoC
on our test set. In conclusion, our system is practical enough to generate effective
malware threat intelligence and help malware detection.

Table 3. Recall performance on test set of 3 items IoC

Malware Recall

njRat 91.31%

DarkComet 84.62%

NanoCore 88.24%

Setag 95.00%

6.3 Algorithm Comparison

(a) TextCNN confusion matrix (b) RandomForest confusion matrix

Fig. 7. Classification performance of machine learning based algorithms

Detection accuracy is one of the critical metrics for IoC. Generally, machine
learning based malware classification model can utilize implicit features to
achieve better classification performance, comparing to coarse-grained method
likes expression and regular expression based model. In this comparison, we will
investigate whether IoC generated by GIG can achieve the same classification
performance as machine learning methods, with the help of data preprocessing
and fine-grained feature selection.
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To compare our algorithm’s classification performance with machine learning
based method, we set up Random-Forst [2] and TextCNN [10] models on our
dataset as the opponents. The TextCNN used in our experiment has four kernels
of different sizes (2, 3, 4 and 5) and has 800 kernel in total. In the embedding
layer, we first train a word2vec model [21] to generate word vector from malware
traces and change every trace into a matrix. On the other hand, we treat each
expression in candidate list as a feature to build feature vector and train a
RandomForest classifier with 100 estimators. Figure 7 shows the confusion matrix
of RandomForest and TextCNN models in the classification task.

Table 4 shows the recall rate comparison between different algorithms; we
run our algorithm to generate IoC with three expressions in the comparison. The
results indicate our method performs at least not worse than general machine
learning based algorithms. Simultaneously, our method has the obvious advan-
tage of generating reliable, concise and easy for machine to understand IoC which
can help the malware detection in the real environment. On the contrary, those
machine learning based algorithms can only work like a black box classifier,
which the classification criteria behind is hard to explain.

Table 4. Recall rate comparison

Method Malware

DarkComet NanoCore Setag njRat

GIG 91.31% 88.24% 95% 84.62%

TextCNN 100% 79.41% 95% 100%

RandomForest 60.87% 47.06% 90% 100%

7 Related Work

Cyber Threat Intelligence. Traditional CTI generation methods rely on secu-
rity experts to summarize the large amount but low-value basic network traces
or system logs, which is inefficient and labor-consuming. More and more research
is focusing on automatically generating CTI, especially IoC extraction using dif-
ferent methods. Published works like [15] explore how IoC related information
is described in security articles and reports, and develop a NLP model to auto-
matically extract IoC from them; [31] designs a multi-granular attention based
IoC recognition system based on BiLSTM and CRF to extract IoC entities from
security blogs and articles. Many works try to extract IoC from Open Source
Intelligence(OSINT), though their data source may be different and may develop
different generation models based on machine learning and regular expression
[3]. These OSINTs are somehow well structured and IoC information will be
described in a particular format; as a result, it is possible to extract them through
NLP algorithms. If we want to obtain IoC as timely as possible, we may need
to extract them from unstructured malware or threat event traces, and we need
further study to automate this process.
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Besides IoC, there is still lots of information in malware or network traces that
can help depict a complete picture of threat events. Related work like [9] try to
automatically construct attack pattern messages from OSINT and organize them
into CTI expression standards. In our work, we extract threat information about
attackers and intrusion sets from malware traces and organize them following
STIX standard.

Another point in CTI research is to evaluate the actual effect of those auto-
matically generated IoC or CTI and utilize them in real world threat action
detection. [14] designs a set of evaluation metrics and measures a broad range of
Threat Intelligence(TI) and concludes that there are still many challenges and
limitations in using existing IoC and CTI.

Malware Detection. Pioneer work has made remarkable improvements in mal-
ware detection. The malware detection process can be divided into feature selec-
tion and classification/clustering [30]. In the feature selection stage, fine-grained
features are extracted to improve detection performance. For example, [17] sum-
marizes three characteristics in bots’ network traces and designs signature for
detection; [25] focuses on HTTP-based malware and defines similarity metrics to
build a network level malware clustering system. In the classification and clus-
tering stage, researchers introduce different models in recent years. For example,
[8,16] build a heterogeneous information network based on host logs, and use
graph embedding algorithm to construct eigenvector for every node, then find
out malicious log entries through clustering; [29] first derives the CFGs of mal-
ware file and use graph based algorithm to finish malware classification.

We use sandbox analysis reports as our source data to make up for the lack of
static characteristics in malware detection and IoC generation [7]. We generate
IoC and CTI from malware traces analysis, of course the generated IoC can be
used to finish the malware classification task.

8 Conclusion

This paper introduces a system to automatically generate IoC and CTI following
STIX standard from unstructured malware traces. Different from OSINT based
CTI or IoC extraction research, we design our system to generate them directly
from malware samples’ sandbox analysis reports. In the IoC generation phase,
we first define rules for the transformation between strings in malware traces
and IoC expression. After that, for a specific class of malware, we build an IoC
expressions candidate list. Finally we propose GIG to select the most effective
IoC from the candidate list. Our experiment of IoC generation achieves a 89.4%
recall rate on average. In conclusion, our system is practical enough to generate
concise and effective malware IoC and threat intelligence, which can help the
real world malware detection and security operation.
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