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Abstract. Forensic analysis, nowadays, is a crucial part of attack inves-
tigation in end-user and enterprise systems. Log collection and analysis
enable investigators to rebuild the attack chain, find the attack source
and possibly rollback the damage made to the system.

However, building the full attack chain is often time-consuming and
error-prone. The reason is that existing audit systems cannot provide
high-level semantics for low-level system events. To address this issue, we
propose SemFlow, to accurately identify semantics for system events.
Specifically, we generate signatures to link low-level system events to
a particular high-level application behavior during an offline training
phase. Then, during the labeling phase, our realtime data collector
matches the generated signatures against audit logs and labels individual
system-level events with high-level semantics.

Our evaluations show that in at set of 16 selected popular applications,
our system can effectively identify semantics of certain system-level data
while maintaining less than 4% of overhead on the CPU and memory.

Keywords: Security · System security · Semantic detection ·
Provenance graph · Living-off-the-land

1 Introduction

Large enterprises are increasingly being targeted by Advanced Persistent Threats
(APTs). One of the main goals of APTs is obtaining and exfiltrating highly con-
fidential information, e.g., APT1 [4] stole hundreds of terabytes of sensitive data
(including business plans, technology blueprints, and test results) from at least
141 organizations across a diverse set of industries. By avoiding actions that
would immediately arouse suspicion, security analysts can achieve dwell investi-
gation times that range from weeks to months. Alternatively, Living-off-the-Land
(LotL) tactics take advantage of native tools existent on a system in order to
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perform lateral movement and gain persistence of APT threats in operating sys-
tems. During Q3 2018 to Q3 2019, Symantec saw a 184% increase in blocked
Windows PowerShell scripts. 87% of such attacks executed the PowerShell script
through cmd.exe or Windows Management Infrastructure (WMI) [5].

To combat such threats, the notion of data provenance has been applied
to traditional system event audit systems and have proven invaluable in detec-
tion and investigation. Highly confidential information is usually represented as
file objects and any operations related to such file objects are recorded in sys-
tem event audit logs. Data provenance analysis systems parse individual system
events into provenance graphs that encode the history of a system’s execution
sequence. Such provenance graphs allow investigators to trace the data flow of
highly confidential file objects. By leveraging such capability, security systems
can identify attack steps and the involved objects, when the content of confiden-
tial files is read and is finally sent out to the opposition. Essentially, provenance
graphs can help identify the whole attack chain of an adversary; beginning from
the initial compromise up until their lateral movement and business damage. In
this paper, we focus on attack types which use benign software to perform some
of, or the whole attack.

Unfortunately, existing system event audit systems cannot provide
application-level semantics for file events, which leads to inaccurate results on
almost all existing data provenance based systems. For instance, WinSCP, a
popular file transfer software on Windows, might read the confidential private
key file for two different purposes: authentication, and upload. However, exist-
ing audit systems provide two totally equivalent events (i.e., two ReadFile events
referring to the same file object) for such two scenarios. Without application-
level semantics of ReadFile events in this example, a normal user logging onto
the SSH server using WinSCP by reading the key file for authentication would
be mistakenly considered as a data exfiltration attack. This would lead to the
problem that provenance-based systems would lack such kind of information due
to the semantic gap between low-level system events and high-level application
operations.

Some prior works have been able to provide high-level application semantics
for system events [13,22,28]. Although they demonstrated great potential, they
suffer from several limitations:

1) Requiring invasive instrumentation. Some use instrumentation tech-
niques [23] to intercept application-level APIs and correlate such semantics
to system events. Such systems introduce notable performance degradation
and instability, which is not applicable in enterprise environments.

2) Inaccuracy. Some works rely on heuristics (e.g., timestamp-based correla-
tion [40]) to correlate application-level logs to system events without instru-
mentation. However, such heuristics cannot work in complex scenarios (e.g.,
logs generated by multiple individual behaviors occur in parallel in the back-
ground), which leads to inaccurate results.

3) Post-processing. Existing data provenance based works [15,29] consume
system events and detect attacks in realtime, which requires the collector to
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provide the semantics of system events in realtime to enhance those works,
resulting in the need for labeling before the data is consumed. However, exist-
ing works [22] rely on complex behavior models (e.g., behavior graph model
whose vertexes are system call and edges are causal relationships between
system calls) to provide high-level semantics accurately, which makes them
non-realtime.

Problem Statement. The main problem tackled in this paper is providing
application-level semantics for file and process/thread related events under user
interactive scenarios without instrumentation accurately in realtime.

In this work, we argue that existing system event-based works can be dramat-
ically improved through identifying high-level application semantics of individual
system events. To achieve that goal, we present SemFlow, an instrumentation-
free framework that takes advantage of the native Windows audit system for
identifying high-level application semantics of systems in realtime, with no need
for post-processing of system data. Our methodology is inspired by analyzing
the program callstack which reveals its API call chain, and observing that parts
of the chain are designated to perform a specific task. The main secret that
we can provide such semantics without complex binary instrumentation, is the
return address of each frame in the application callstack, which we can refer
to as the line of code. In other words, the execution sequence that caused the
system-level event to be emitted. We argue that in most cases, the sequence of
function calls leading to emitting a specific event are unique to each behavior
and can accurately identify it.

For our approach, we will perform training on different sets of behaviors in
various applications, generate signatures and after that, define a set of user inter-
actions that can produce the same behavior; so that it can be done automatically
for the later versions of the same program.

The training does not need to be done on the user end. Hence, it can be done
on high-end servers as demanded, reducing the time of signature generation for
each behavior on a specific program binary.

To implement and evaluate our approach, we have collected about 150
datasets from different application executables performing different behaviors.
Part of which will be used to train and the rest for evaluation purposes.

Our evaluations show that we result in a very small percentage of false pos-
itives labeling individual events. In addition, since we use set matching and all
of program behavior signatures can be loaded into memory, the overhead of per-
forming such labeling is negligible, compared to collecting unlabeled events. We
also show that our method can be applied to systems already using an existing
intrusion detection system (IDS); as our system labels individual data/control
flow events and performs such labeling in realtime.

In summary, this paper makes the following contributions:

– We recognize the gaps of existing event identification systems and try to fill
by identifying high-level application semantics of events.

– We propose a novel behavior model based on callstacks to identify high-level
semantics of individual events accurately and efficiently.
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– We propose an instrumentation-free audit system, SemFlow, which provides
the semantics of popular security-related file and control-flow events in real-
time, and we evaluate SemFlow by providing cases of potential real-world
attacks.

2 Background and Motivation

In this section, we discuss the concept of forensic analysis and building the attack
chain, and the significance of labeling events as certain activities.

2.1 Motivating Example

A startup company purchased a virtual public server (VPS) to host its public
website using Apache web server. Because of budget limitations, the purchased
service only allows one communication token to the server. Thus, the whole web
team shared the same public and private key files generated by the RSA algo-
rithm (pub.rsa, pri.rsa) to communicate (via SSH) with the remote server
whose IP address is x.x.x.x. Due to the importance and secrecy of these keys,
the company forbids its usage in other scenarios. A daily routine for the team
was to log onto the server using the communication keys via WinSCP program
and update the files hosted under the root HTTP folder, www.

The company receives an alert from the VPS company about a possible data
leakage. Specifically, a few files were hosted publicly under the folder www, and
they verified that one of them was the private key pri.rsa used to communicate
with the VPS machine. By checking the server communication log, they also
confirmed that the only SSH connections were from the company machines. To
investigate how the key got leaked, the startup company started to perform
forensics on machines used by the web team.

2.2 Existing Audit Systems and Forensic Systems

Figure 1 (I) shows a typical provenance graph generated for different team mem-
bers belonging to the web team in the motivating story. Note that in this figure
(and the rest of the paper), we use diamonds to denote sockets, boxes to denote
processes, and ovals to denote files. As we can see, all members seem to be sus-
picious, because all of them have an information flow from the private key file
to the remote server. A deeper investigation shows that the reason is because
the private key will be used for authentication purposes when using WinSCP to
update files on the server.

This raises the problem that two totally different behaviors (i.e., authen-
tication and uploading private key files to the server) can generate identical
provenance graphs, which interferes with the investigation process and prevents
us from effectively and efficiently identifying the attacker machine. The root
reason is we do not know what the files are used for when the same operations
happen (i.e., read in this case, for authentication, and uploading). We refer to
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this as the semantic gap problem, meaning that low-level provenance data lack
semantic information (i.e., what the files are used for) from applications. This
is a common issue for existing provenance graph-based forensic systems, leading
to inaccurate results [12,20,26].

2.3 Our System

In this paper, we propose a provenance graph edge tagging technique SemFlow,
which solves the semantic gap problem by leveraging the (user space) callstack
information provided by Event Tracing for Windows (ETW) system to tag the
provenance graphs generated by using low-level information. SemFlow first
analyzes the callstack information of each ETW event and generates a “signa-
ture” for these events based on the callstack, which represents the high-level
semantics (e.g., uploading or authentication). When a system event is produced,
SemFlow will tag individual edges in the provenance graph based on generated
signatures, so that events with the same event type can be distinguished.

I. Traditional audit system II. Our system

WinSCP

x.x.x.x:22pri.rsa

Read Write
WinSCP

x.x.x.x:22pri.rsa

Read Write

Alice Bob

WinSCP

x.x.x.x:22pri.rsa

Write WinSCP

x.x.x.x:22pri.rsa

Write

Alice Bob

Upload

AuthenticateAuthenticate

Fig. 1. Attack scenario in Sect. 2.1 without (left) and with (right) semantic identification
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Fig. 2. Overview of SemFlow

Figure 1 (II) shows the graph generated by SemFlow for the aforementioned
example. In the figure, we use blue and red colored texts to represent high-
level semantic behaviors labeled by SemFlow for the benign scenario and the
malicious scenario, respectively. Based on the tag, administrators can easily see
the private key is uploaded using Alice’s computer.
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2.4 Threat Model

In this paper, we consider the OS kernel and auditing system (i.e., ETW) as
part of the trusted computing base (TCB). We assume that the OS kernel is
well protected by existing techniques [1,3]. Thus, the audit logs cannot be mod-
ified by attackers. Our threat model is as reasonable and practical as the models
of previous forensic works [8,9,12]. This paper targets attacks involving benign
applications, including insider attacks leveraging benign applications’ function-
alities to perform malicious behaviors and attacks injecting malware onto the
machine to hide malicious behaviors under normal behaviors to bypass the Intru-
sion Detection Systems (IDS).

Frame Binary Location

3 ntdll.dll  NtCreateThread + 0x54

(1)
ProcessId ThreadId EventName

7068 716 ThreadCreate

(2)
16 xul.dll  BackgroundFileSaver::Init + 0xe8

30 xul.dll  nsHttpChannel::ProcessResponse + 0x34
31 xul.dll  nsHttpChannel::OnStartRequest + 0x2c

38 xul.dll  MessageLoop::RunHandler + 0x28

...

...

...

...

Fig. 3. An example of a low-level event log with its callstack

3 System Design and Implementation

Figure 2 illustrates our system architecture—the workflow of our system pro-
ceeds in two phases: offline training and online labeling. The goal of the offline
training phase is to generate behavior signatures from low-level events. Specifi-
cally, we analyze why and how we leverage callstacks to represent the high-level
semantics of low-level events (Sect. 3.1), and use the ETW collector (Sect. 3.2)
to collect low-level system events and use Signature Generator to analyze the
collected information to generate behavior signatures (Sect. 3.3). In the online
labeling phase, our system utilizes the collector on each Windows host for audit
logging. When a low-level event is generated, Signature Matcher will decide to
label events based on generated behavior signatures (Sect. 3.4), which can help
investigators distinguish between benign behaviors and malicious ones.

3.1 Assumptions and Observations

In this subsection, we first provide an example of a system log along with its
callstack, and then discuss why callstack is important for semantics identifica-
tion.
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SemFlow configures a native low-level data collection tool on Windows to
collect the callstack for each low-level event, which is essential to represent high-
level semantics for low-level events.

An Example of Logs Along with Event Callstack. Figure 3 shows an
example of a low-level event collected by SemFlow. The first block (1) includes
the basic information of the event, including the process identifier (ProcessId),
thread identifier (ThreadId), and the event name (EventName) (other fields are
omitted). The second block (2) shows the above event’s callstack, which is a func-
tion callstack with top ones (e.g., Frame 31) being callers and lower ones (e.g.,
Frame 30) being callees. Each entry has three fields, a frame number, a Binary
field representing which binary file (e.g., Dynamic Linking Library on Windows)
the function is in, and the Location fields denoting the resolved symbolic names
and offset values. The data format of the Location field is Class::Function +
Offset. The Class shows the C++ class in which the Function is defined, and the
Offset represents the offset relative to the Function in which the lower function
is invoked. Taking Frame 31 as an example, OnStartRequest is defined at the
class nsHttpChannel, and the lower function ProcessResponse in Frame 30 is
invoked at the offset 0x2c relative to OnStartRequest.

Table 1. Part of firefox file download signature

Event Class File Paths (only used for verification) Signature type Callstack

1 Create Thread - init Hash values
of
callstacks

2 Write File C:\10MB.zip.part; Temp\VQkG8r+z.zip.part during

3 Rename File Temp\VQkG8r+z.zip.part init

4 Write File C:\10MB.zip:Zone.Identifier during

5 Write File AppData\...\cache2\...\cachefilename during

6 Write File AppData\...\places.sqlite-wal finalize, contextual

The Essence of CallStack. Existing provenance-based systems only leverage
event information (i.e., block 1 in Fig. 3). However, different behaviors might
generate the same event information; causing the semantic gap issue. The fun-
damental reason is that system events are too low-level and general to capture the
semantics of high-level application behaviors. Thus, looking for logs that contain
more semantics than system events is necessary. We observe that the combination
of callstack with their system event effectively reflects the implementation logic
of a high-level application behavior, which is useful to solve this problem. Take
the event in Fig. 3 as an example. The event is generated by Firefox initiating a
file download from the Internet. In frame 16, the BackgroundFileSaver::Init
function shows that this event is created to save a file in the background. Frames
30 and 31 show that the file saving operation is invoked via an HTTP channel.
Intuitively, we come up with the idea to leverage callstack to recover high-level
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semantics of low-level events. Table 1 shows part of the Firefox file download sig-
nature. First row creating the thread to download the file, second one assigning a
temporary file name, third one renaming the temporary file name after the user
assigns a file name, fourth and fifth filesystem-related and caching operations,
lastly, adding the downloaded file to the downloads library.

Based on our analysis of the programs and empirical results, we get the
conclusion that a single event along with its callstack can be used to recover
semantics for most behaviors. Based on such conclusion, we propose our semantic
labeling system for low-level events.

3.2 ETW Collector

We build SemFlow upon ETW, a lightweight auditing system on the Windows
platform, which has been widely adopted by many academic papers and industry
products. In addition to the events pointed out in Sect. 2, SemFlow configures
ETW to collect the callstack for each low-level event. Then, we iterate through
the callstack and record the addresses we observe for each frame. Hence, at the
end, we would be left with the basic event information, along with its execution
callstack (as shown in Fig. 3).

3.3 Signature Generator

The signature generator module takes traces collected from different behaviors
of different applications when triggered, and generates signatures for selected
behaviors. We use two terms to describe different types of traces extracted from
applications:

– Matching Traces: Execution traces that contain all or partial events (repre-
sented by logged events) related to the behavior.

– Non-Matching Traces: Execution traces that do not contain the operations
related to the behavior.

The signature generator acts as a training module which goal is to identify
unique events related to an operation, by removing out the events that are also
happening when the target operation is not taking place. It then generates a
unique hash for each unique event it finds in the matching traces. The final
signature related to a behavior, will be a set of hashes representing each event’s
application-level callstack; which will be passed to the Signature Matcher for
labeling.
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Algorithm 1. Signature Generation Algorithm
Input: Matching and Non-Matching Trace Sets for an Operation Within a Process, and Path to
the Process– Smatching, Snon−matching, path
Output: Signature added to ProcessSet
Initialize: BMatching ← ∅, BNonMatching ← ∅
Entrypoint: The Get-Signature Function

1: function Find-Non-Matching(Sinput)
2: for each Trace Ti ∈ Sinput do
3: for each Event Ui ∈ Ti do
4: BNonMatching.add(Ui)

5: function Find-Matching(Sinput)
6: for each Trace Ti ∈ Sinput do
7: for each Event Ui ∈ Ti do
8: BMatching.add(Ui)

9: function Get-Signature
10: Find-Non-Matching(Snon−matching)
11: Find-Matching(Smatching)
12: Signature ← BMatching.removeAll(BNonMatching)
13: ProcessSet.put(SHA256(path), Signature)

Algorithm 2. Matching Algorithm for Signatures
Input: Event Stream– e and Process Creation Events– p
Output: Event Set Labeling BEventList

Initialize: SigList ← ∅, ProcessSet ← all processes with signatures

1: function On-Process(p)
2: /* Find the executable location */
3: path ← find path(p)
4: /* Calculate the hash of executable */
5: hash ← SHA256(path)
6: if ProcessSet.contains(hash) then
7: Siglist.add(ProcessSet.get(hash))

8: function On-Event(e)
9: if SigList.contains(e.callstack) then
10: Label(e)

3.4 Signature Matcher

After building signatures for different behaviors in different applications, the
Signature Matcher matches the signatures against each callstacks in the log
stream. As for the process for matching signatures with the incoming events
from ETW, upon creating a process, we see whether the signatures for the same
binary exist in our signature database. If they do, then for upcoming events for
the process, we search in the process-specific signature to see if we can find the
same callstack hash in the event set in the signature. If we do find the event
with similar callstack, we then label the event according to the signature. Each
event in the signature is associated to a behavior which we have extracted from
training. As the events enter the signature matcher, the set matching helps us
to label (or not to label) each individual event.
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Table 2. List of intercepted operations in SemFlow

Application Operations

VLC Media Player Video Playing

FileZilla File Upload/Download

WinSCP File Upload/Download/Copy

Notepad, Sublime Text File Save

Skype File Upload/Download

WinRAR File Compression

Firefox, Chrome, Edge File Upload/Download

Cobiansoft Cobian Backup Routine Backup

Outlook File Upload

Windows Explorer File Copy/Move

Microsoft Word Type and Save

TeamViewer File Upload/Download

Adobe Reader DC PDF Open and Fill

4 Implementation

In this section, we discuss how we implement each module discussed in Sect. 3.

4.1 Signature Generator

Algorithm 1 illustrates how signatures are generated for a certain behavior. Tak-
ing the matching and non-matching traces, we start running Algorithm 1 by trig-
gering the Get-Signature function as entrypoint (line 9) to extract signatures
for an activity. It starts by finding all events related to non-matching behaviors
inside the Find-Non-Matching function (line 10), and all events related to the
behavior in the Find-Matching function (line 11). The algorithm finds events
that occur in matching traces but not the accumulated non-matching events;
and finally extracts the unique set of events related to the operation extracted
from matching traces, excluding events from the traces when the operation was
not happening.

For example, for Firefox file download signature, we run the algorithm from
a simulation of different file downloads as matching behaviors. Browsing, chang-
ing settings, and playing other functionalities are considered as non-matching
behaviors. The algorithm starts by accumulating all non-matching events (line
4), collectively putting them in BNonMatching. From three traces collected from
matching behavior as Smatching and five traces collected from non-matching
scenarios as Snon−matching, line 8 then adds matching events using the same
procedure. In the end, in line 12, we remove all the events that also happen
in non-matching scenarios, allowing us to be left with unique events related to
the certain behavior. We use the hash of the process to be able to later identify
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ETW Event Stream

Process
Hash: abcd

Process
Hash: efgh

Signature Database

Process
Hash:...

Process Create 1
Process Create 2
...

Match hash and add to
Signature List

Thread Create
File Read
...

Other Events File Download
Video Play
...

Process Creation (On-Process)

Label

Event Name Callstack Hash Label

Thread Create d0b4 File Download Init

File Write 3xjt File Download During

...

Event Name Callstack Hash Label

File Read s2p3 Video Play

File Read kksw Video Play

...

Match Callstack

(On-Event)

Fig. 4. Signature matching mechanism according to Algorithm 2

the binary (described in the next section). We will also propose a method for
verifying signatures in Sect. 5.

4.2 Signature Matcher

Algorithm 2 shows how the matching takes place. Upon starting a process, the
program finds the executable path (line 3) and generates a hash from the binary
(line 5). Then, we see if we have any training data based on the process (line 6),
then we load the signatures for that process into memory.

Upon receiving an event (line 8), the program determines if it maps to any
behavior (line 9) that we have signatures on. Then finally, the labeling takes
place, and the event can move forward in the stream (line 10). Figure 4 shows
an example of signature database and its usage in the ETW event stream, as
well as the mapping between Algorithm 2 and the diagram. Hashes from process
executables are generated after receiving each Process Start event. If it matches
any of the recorded hashes in the signatures, then the PID is recorded and the
corresponding signature is loaded into the memory. Then if events emitted by
any of the recorded processes would match any of the events in signatures, then
the event is labeled.

5 Experiments and Evaluation Results

For evaluating our approach and measuring the effectiveness on an example
collected dataset, we answer two questions:

· Q1: How effective is SemFlow in detecting benign activities and dealing with
non-related ones?

· Q2: What is the performance cost of SemFlow?

To answer these questions, we first need to generate signatures for each behavior
in each application (Table 2). Then, we compare with the ground truth which
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are trace files containing the information about when an operation was taking
place in a sample trace file. Afterwards, we compare the labeled events to finally
extract the coverage of event labeling as well as the false positives.

5.1 Experiment Setup

Collecting Matching Behavior: For selected behaviors, we first collect traces
from behaviors that we can identify (from a user point of view), and we initially
set to collect three datasets having different durations and interacting with dif-
ferent files (i.e., downloading file A then downloading file B). This ensures that
we are not dependent on the objects involved. Instead, it confirms that we can
detect the activity no matter the duration nor the involved objects might be.
These three datasets are used to extract unique callstacks that may represent
a certain activity, ensuring the uniqueness of events that are related to it. (We
later discuss in Accuracy section about this number).

Collecting Non-matching Behavior: The non-matching behavior is intended
for filtering out non-unique events that we obtained from the previous step. In
this step, we do anything but the selected activity to finally find out unique
events that we believe are related only and only for performing our selected
activities. Since non-matching traces may result from more activities, we collect
more number of traces than the previous step; namely, five traces. This is because
programs have lots of more functionalities than what we usually expect from
them (i.e., their main functionality). For example, almost any program would
have a “setting” menu that would generate events not related to our intended
activity set. Although the mentioned behaviors usually do not generate too many
events, they can help filter out the ones that would happen in different contexts,
leading to a reduction in our signature size, as well as decreasing false positives.

Test Sets: After collecting unique events for activities, we generate mixed
traces, meaning the traces that are collected from a normal user interaction
with the program, not restricted to any specific behavior. For collecting ground
truth (i.e., the parts of the trace that we are supposed to know what the user is
doing, versus the rest of the program execution), we ask the users to trigger a
button and specify the activity they will be doing from the list of our detected
activities in Table 2. Then we record the timestamp ranges where the specified
operations were done. Hence, the rest of the trace would be the part that we
have done anything but the said operations. The purpose of timestamp record-
ing is to verify that none of the events that we have identified their operation,
appear in the parts that we are not doing any of those that we have detected
in Table 2. In test sets, we try to cover more activities and more running time
than the mentioned ones in Table 3, since they were already used to generate the
non-matching traces. But the actual activity might not be high-level enough to
be put in Table 3, because some activities (such as background ones) overlap the
ones put in the mentioned table. For example, in MS Word, we collect changing
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layout to a certain size and double-column the page, while in test sets, we also
perform a change of indentation and more available actions in the layout tab.

Evaluation Methodology. Our system has been evaluated both in terms of
accuracy and performance. In this section, we discuss how the generated signa-
tures perform in a real-world system, and how we assess the overhead it suffers
in labeling events.

Accuracy: For evaluating our signatures, one general consideration is why we
chose numbers of three for matching and five for non-matching behavior to gen-
erate signatures. The reason is, based on experiment results, if we choose the
minimum of having one matching and one non-matching trace, we would have
more false positives since we cannot accurately filter unrelated events. This is
considered to be a general concept in any learning-based solution; if one has more
training data, the more accurate their results would be. Future researchers may
choose to use more or less numbers, according to their performance/accuracy
requirements.

– False Positives: Denote percentage of events that we do label, but are out-
side the timestamps of which the user claims performing a known activity
(i.e., we mislabel them).

– True Positives: This rating will indicate the percentage of events that are
solely related to an activity, which are labeled as they should be. Evaluating
related events would require ground truth about the program implementation,
which is often difficult to denote since most programs are closed-source, and
even the open-source ones are often too complicated to analyze. Hence, we
manually extract events that we are confident to be related to a particular
activity and check how many of them we were able to identify. In order for
that, we manually analyze signatures and the activity we are monitoring
and extract events in the traces that correspond to the files involved in that
activity. An example of such system knowledge would be in extracting events
from a WinSCP file transfer. A little system knowledge can show us that when
transferring files, the WinSCP program would not load the whole file at once
in memory when sending it out. Hence, we expect the ReadFile event reading
the source file to be one of the most frequent events in our traces. Then we
see if we have included the callstack signature for that event in our traces.
We can also perform a backward check by recording the objects involved in
behaviors. As an example, for the Firefox file download signature, we also
record the file paths of downloaded files, and we ensure that event callstacks
in our signatures match the filename as the same object because we expect
no other event in the trace to have the same filename and callstack in the
trace, except the ones that were associated with the file download behavior.

Performance: Signature generation uses the simple filtering technique
described in Algorithm 1, and the overhead essentially depends on the size of
the trace files being collected. For deployment of the embedded collector and
matcher, we used the normal ETW collector to perform collection of unlabeled
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events, then the comparison is done by adding the callstack parsing and event
labeling part. Our system needs to iterate through each frame in the callstack,
ranging between 10–69 frames in our datasets; then, for each frame, we find the
related library according to the address we receive. This information is extracted
from the LoadLibrary events (which are normally collected by ETW), providing
the library load address for each loaded library on the system. We then determine
if the library is under C:/Windows (except for MS-developed apps), then we find
if the detected library is a user-level library. At last, we extract a hash out of
the recorded addresses in the callstack for each event, adding it as an additional
parameter in the event, which will be later compared to the signatures (if any)
extracted from each activity.

5.2 Results

Table 3 shows the results for FPs and TPs. For some, we do have some FP since
the same event would be used in a different context as well, such as in MS word
where the complexity of the application would result in some non-deterministic
events that would randomly occur in matching traces whereas, in the final test
set, they would also appear in parts where the behavior was not taking place.

False Positives: In some cases, we have a few events that are considered to be
unique as given in the matching traces and would not appear in the non-matching
traces too. But, in test sets, we still see them occurring in the non-matching parts
of the test trace. Hence, they are considered to be false positives. Analyzing the
reason of why we have these FPs is a bit challenging since we do not have the
source code for most applications, and for the ones we do, analysis of the code
and following the code structure by a human is rather frustrating. One case for
our false positive analysis is the false positive scenarios for Microsoft word. After
analyzing the false positives, we look into the file paths of the files being read. It
turns out two of the false positives read a file related to proofing data, the other
four, read an index.dat which is also used by other Microsoft titles. There is
no official documentation about the purpose of this file, but seemingly, this file
is used to maintain file links in Microsoft applications and is read for multiple
purposes. Hence, we can get the conclusion that some complex applications,
perform different tasks in different scenarios and they decide how to perform the
task in realtime, and it might not be deterministic for the application to behave
the same in two different situations, while it is seen by the user to be performing
the same task; as in MS word, typing and saving. Table 4 also shows some of
the FP rates for having different numbers of matching and non-matching traces.
The results show the lowest FPR obtained among the possible choices of the
listed numbers of traces. As a general learning concept, the more training data,
results in the observation of more accuracy rates.
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Table 3. List of mixed operations used for testing SemFlow

Application Operations Duration (m) Event size FPR TPR

VLC Video Playing, Theme Change, Check
for Updates

50 4250 0% 100%

FileZilla File Upload & Download 20 90K 0% 100%

WinSCP File Upload/Download/Copy (local),
File Browsing, Adding Key, Changing
Storage

20 50K 0% 100%

Notepad File Save, Change Font, Print, Change
Page Setup

15 14K 0% 100%

Sublime Text File Save, Sorting, Setup Developer
Commands, Change Color Scheme

15 25K 0% 100%

Skype File Upload/Download, Upload Profile
Photo, Change Settings, Add
Contacts

25 120K 0% 100%

WinRAR File Compression, Browsing,
Test/Repair Archives, Licensing,
Check for Updates

10 230K 0% 100%

Firefox File Upload/Download, Install
Extension, Change Settings, Browse
History, Use Developer Tools

15 3M 5.6e–6% 85.67%

Chrome 7M 0.1e–3% 91.2%

MS Edge 4.5M 0.0013% 100%

Cobiansoft
Cobian
Backup

Routine Backup, Check Logs,
Enc/Decrypt, Set Permissions, Edit
Tasks

40 713K 0% 100%

Outlook File Upload, Email w/o Attachments,
Change Panes, Browse Folders

15 80K 0.1e–4% 100%

Windows
Explorer

File Copy/Move, Browse, Search, Edit
Taskbar, Create/Delete Objects,
Change Properties

15 220K 0% 100%

Microsoft
Word

Change Page Layout, Settings, Type
and Save, Open New Doc

30 190K 0.078% 100%

TeamViewer Connect, Remote Control, File
Transfer, Local Settings

20 195K 0% 100%

Adobe Reader
DC

Open and Fill Forms, Print, Change
Window Layout

10 20K 0.0015% 100%

True Positives: For true positives, as mentioned in Sect. 5.1, we identify events
that we expect to happen in a sample behavior. Results show that have included
almost all related events from a user point of view, in the signatures. The only
event that we had expected to see and we did not, was the final file rename of
the .part file to the actual file name in Firefox. Our analysis shows that Firefox
performs the file rename in a JavaScript submodule. And as we discuss in Sect. 7,
interpreted languages’ callstacks cannot be used to identify an activity as the
code path will be determined by the interpreter at runtime.

Performance Overhead: The performance overhead of collecting callstacks
in different applications, is measured by recording the percentage of the CPU
utilization, compared to when we are only recording events and not collecting
callstacks not labeling them. Our analysis show that in the most complicated
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application which generates the most events (file download in Firefox), the over-
head remains less than 3.5%; showing much lower overheads for less complicated
applications.

As for signature generation, since it does not need to be done on the user
endpoint, we just show that it is also even feasible in a common machine. We
used a desktop Intel Core i7 @3.60 GHz machine to generate signatures. The
duration essentially is connected to how many events we have in our matching
and non-matching traces, and how many traces we collect from each activity,
and it increases linearly according to our implementation of Algorithm 1. The
results in the sample of Firefox download signature show 6 min of generation
time. Whereas, in the simple case of VLC, it only takes 8 s and in the average
of MS word file manipulation, it takes 1:30 min.

5.3 Signature Verification

Upon collecting signatures from different activities, it is worthy to check if the
extracted signatures represent the behavior that they were extracted from. It
mainly remains a challenging task to perform the given task; given that most
of the analysed programs are closed-source, and the open-source ones may be
difficult to be analysed by human in order to verify the callstacks that appear in
our signatures. In order to provide a general methodology for security analysts
to verify the signatures, we provide a guideline on how we evaluate the accuracy
of the signatures. The operations we have analysed, often have multiple objects
involved within. For each application, we check whether the callstack of the
related object does appear in the signature. Such as in Table 1, we can see the
downloaded file name, the temporary file used during the operation, and the
SQLite operation which adds the downloaded file to downloads library in Firefox.

Table 4. FP rate for different number of training sets

Activity # Matching # Non-matching FPR

VLC Video Play 1 1 0.1e–4%

1 3 0%

2 3 0%

MS Word file manipulation 1 1 18.6%

1 3 4.44%

2 3 0.08%

Firefox download 1 1 1.8%

1 3 0.004%

2 3 0.1e–3%

Explorer file copy 1 1 1.8%

1 3 0.03%

2 3 0.1e–5%
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Hence, we are able to verify signatures similar to how we calculate TPs men-
tioned in Sect. 5.1, so that security analysts would be able to refine the signatures
generated from SemFlow; and revise them, according to their findings.

The need for manual involvement cannot be ignored, as at least the first time
of signature generation from a software needs supervision to see if the signature
and the involved objects in the event can actually represent the behavior and not
just irrelevant events. The expectation is that minor updates to programs will
not affect the sequence a program follows to generate the signature. Hence, after
detecting the type of the behavior and verifying if the events in the signature are
reasonable, the generation can happen automatically for future versions of the
same program by replicating the same user behavior used to generate signatures
from the original software version.

6 Case Study

In this section, we analyse a Living-off-the-Land attack, in which parts of the
attack use existing tools on the system to finally perform a malicious DLL injec-
tion onto the system [6]. Figure 5 shows the attack example with the right
graph being labeled by our system. An initial email contains a LNK file that
uses wmic.exe to download XSL files. The downloaded file contains scripts for
BitsAdmin.exe to download an encoded file. Also, the encoded file is a malicious
DLL which is finally injected onto the system using the RegSvr32 tool. As seen,
our system can label the LotL operations being performed during the attack for
lateral movement. Tools such as wmic.exe are also used for LotL purposes and
we can easily identify the operations done by such pre-installed applications by
generating signatures from specific operations.

7 Limitations

While being effective, our system has certain limitations. Our signatures rely on
program implementation, which leads to a few problems. Firstly, if the code of
a program changes, the signature also needs to be updated. We can easily over-
come this limitation by recording the activities once and performing them again
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Write
wmic.exeLNK

I. Traditional audit system
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CertUtil.exe

Write

Read
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Fig. 5. Attack scenario in Sect. 6 without (left) and with (right) semantic identification
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automatically using automation tools, collecting matching and non-matching
behaviors from updated versions of applications.

Secondly, we cannot deal with cases where interpreters are used (e.g.,
Python), because in this case, the code path is decided by the interpreter at
runtime, changing the callstack according to the interpreter’s decisions. How-
ever, since the code is visible to interpreters, it would also be visible to a system
trying to extract semantics from the code, or in Java, from the bytecode; making
efforts possible for performing static analysis, which can be a future direction
for researchers.

Another limitation is receiving accurate callstacks for network events. In
our experiments, all network-related events have the same callstack, all frames
pointing out to the kernel libraries. Hence, in addition to control flow operations,
only file-related data flow operations can be labeled, so we completely ignore
the labeling of network-related events as ETW cannot provide application-level
callstacks for these types of events.

Lastly, our current implementation does not consider the connection of traces
that represent the execution of a behavior and its dependencies. For example,
the Spotify music playing application first caches a few songs when it starts and
reads the cached songs from memory if the user decides to play them. In this
case, SemFlow fails to get to know the caching behavior because it happens in
the starting phase and is not unique for playing. And most importantly, it cannot
be triggered by the user in order to collect traces specific to that operation.

8 Related Work

Callstack. SemFlow uses callstack information in order to extract semantic
information from low-level system events. Using callstack information is used in
other contexts as well. IntroPerf [19] uses such information to rank performance
bugs using ETW. PerfGuard [18] also uses callstacks to apply performance asser-
tions on application transactions.

Detection. There have been works on provenance analysis and attack recon-
struction [12,26,29], which have proven to be accurate and efficient. However,
not using callstack information from events may mislead those works as insider
attacks tend to use similar events in benign scenarios. Our work was able to
label individual events using callstack. We believe that even without semantic
extraction, this data can be largely used to distinguish between events, resulting
in a more accurate attack graph, as our semantics labels can be integrated to
and improve those works.

Some works also focus on detecting system call sequences and marking attack
sequences [14,25]. While the system call data has been shown to be more fine-
grained, they would generate more events with less to be extracted from, com-
pared to event-level work. [31] uses system call arguments to mitigate this prob-
lem, but ETW does not provide arguments for individual system calls, yet it can
provide the arguments for system-level events instead.
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Machine-learning work tend to train data based on previous attack and
benign scenarios [16,36], but they have been shown to have many false-positives
and a huge reliance on having enormous training data for accuracy increment
[10], in addition to being hard-to-verify.

CONAN [37] is a general framework to detect APT attacks through corre-
lating multiple alerts or behaviors. Our work is complementary since we can use
callstack to generate semantic information for labels or alerts, which is an input
to CONAN.

Data Reduction. There also have been efforts to reduce the amount of data
[24,32,38], which will be stored into permanent storage for future analysis. These
works focus on maintaining provenance information between objects; so that the
security analysts would be able to analyze the attack, even with reduced number
of events. By using semantic information, in some cases, provenance information
can be ignored or aggregated to save more space; if we completely are certain that
an event cannot play any role in an attack scenario. Hence, we claim that by using
semantic information, some events and their related objects can be ignored and
the dependency information is not even needed in “harmlessly-labeled” events.
Such an example would be the semantics of “VLC Video Play”.

Provenance Tracking. Execution partitioning works such as [23,35] require
invasive training and instrumentation tools to perform provenance tracking,
while our methodology uses the same data collected on the user machine to
perform event labeling.

SemFlow generally is not an independent provenance constructor, and it
only performs event labeling for future graph extraction using existing methods.
Some use semantic detection [21,22,28] along with binary analysis for causality
inference. But, binary analysis tends to be expensive while our approach is quite
simple, and it uses the same type of data collected from the user machine to label
the realtime event flow, making the process more clear to security analysts in
each step. Some other use tainting [2,7,17,27,30], which generally is an expensive
task and hence cannot be performed in realtime. There have been works towards
optimizing it using hardware modifications [33,34] but this is impractical, espe-
cially when using built-in data collectors in mostly common user systems which
use Windows as their main operating system without any hardware modification
or kernel access.

High-Level Semantic Identification. Table 5 shows an overview of the exist-
ing semantic identification works. Works such as [13,22,28,40] are focused on
extracting higher-level representations of low-level system data in order to make
intrusion analysis easier for security experts. However, each suffers from mul-
tiple flaws. MPI [28] requires annotating high-level structures in source code.
However, requiring source code is impractical on the Windows platform as most
Windows internal and third-party applications are closed-sourced. Authors of
MCI [22] use LDX [21] to extract causality information from system calls. How-
ever, in Windows, system calls do not provide their arguments individually, and
only for some of them, we can extract the corresponding parameter by leveraging
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Table 5. Comparison of semantic identification works

Work Training overhead Accuracy Detection
overhead

Dependency on
source code

OmegaLog High (instrumentation) High Low Highly-Dependent

MPI Low High Low Highly-Dependent

MCI High (instrumentation) High Low None

UIScope Low Low Low None

SemFlow Low High Low None

system events. Also, it requires cumbersome training, and in comparison, it has
higher false positives. Besides, model matching is not done at runtime as events
arrive into the stream, and is performed after an attack is detected. It is also
worth mentioning that system calls occur many times more than system-level
events since they provide a lower-level abstraction of the system. It also faces the
same limitation of needing to regenerate models upon receiving a newer version
of the same program binary. Some works provide high-level contexts by leverag-
ing application logs. OmegaLog [13] analyzes program binaries to identify and
model application-layer logging behaviors, enabling accurate reconciliation of
application events with system-layer accesses. lprof [42] and Stitch [41] observe
that programmers will output sufficient information to logs so as to be able
to reconstruct runtime execution flows. Based on the observation, they analyze
application logs to provide semantic contexts for a single request without instru-
menting any distributed application. However, all those works highly rely on the
quality of application logs. It means that those works cannot work on applica-
tions which do not provide rich and sufficient application logs. Furthermore, lprof
and OmegaLog require binary static analysis which is not available for binary
codes built dynamically at runtime. In contrast, our system provides a general
way based on general system events to recover high-level application behaviors
without binary analysis. UIScope [40] correlates low-level system events with
high-level UI events to provide high visibility. However, UIScope can only work
on GUI applications while our system can work on both GUI and non-GUI appli-
cations. On the other hand, some works [11,29] map low-level system events to
high-level Tactics, Techniques, and Procedures (TTPs) and connect them on
generated provenance graphs to accelerate attack investigation. Those works
leverage domain knowledge to generate rules to do mapping. In contrast, our
work provides a general and accurate way to automatically identify high-level
behaviors, which can supplement those works. RATScope [39] also leverages call-
stacks to recover high-level behaviors for a specific kind of malware (i.e., Remote
Access Trojans), while our work provides a semantic labeling system for benign
applications. Furthermore, RATScope relies on complex behavior models (i.e.,
graph) which makes them non-realtime while our work can perform real-time
labeling.
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9 Conclusion

We develop SemFlow, which uses system-level data that is manually labeled by
the activity that was run, then finds events that are responsible and used in a
specific activity. Then let the ETW collector know about the label of each event
it receives in realtime. The overhead for labeling is negligible as the collector can
use set matching to perform labeling on individual events. We then implemented
a prototype of the system and showed that it can expand and improve the
robustness of existing work in detection and forensics by being able to distinguish
between events.
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