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Abstract. With the explosive growth of the use of tunnels, network
anomaly detection and security management are facing huge challenges,
of which the first and an important step is tunnel traffic classification.
Previous research on the classification of encrypted traffic is mainly based
on machine learning methods using statistical features and deep learning
methods using packet arrival time and packet length sequence. However,
these works mainly focus on the identification of single application traf-
fic. In a real scenario where a single user uses a tunnel, the traffic within
a time may contain multiple applications. Due to the tunnel traffic has
the same five-tuple, we can’t get the start and end times of each appli-
cation. Compared with encrypted application traffic classification, it is
more difficult to identify applications in tunnels. In this paper, firstly
we propose a TMT-RF framework to identify two mixed applications in
IPSec tunnels. Then we introduce the first use of NoiseSplit module to
split the traffic and then use a CombineBurst module for the second split.
Finally, we collected four mixed traffic data sets of three types to evaluate
our proposed method. Experimental results demonstrate that TMT-RF
not only achieves a splitting accuracy of 93% in positive-time separa-
tion applications, but also outperforms other state-of-the-art methods
on the data sets for zero-time separation applications and negative-time
separation applications.

Keywords: Traffic classification · IPSec tunnel · Machine learning

1 Introduction

With the development of the Internet, the volume of encrypted network traf-
fic is growing rapidly. Due to the encapsulation and encryption characteristics
of tunnel traffic, it occupies a large part of the encrypted traffic [18]. More
and more users use tunnel technology to protect the security of communication
[4,12]. While the tunnel technology guarantees communication security, it also
brings challenges to network management. According to Gartner’s 2020 report
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[26], 70% of malicious network services bypass firewalls and intrusion detection
systems through encryption and tunneling technology. Therefore, tunnel traf-
fic identification is important in the network security and network management
domain [1,2,5,15,16,24].

Prior studies have proposed some methods of encrypted traffic identification
which is mainly divided into methods based on machine learning [8,14,17] and
deep learning [11,28]. The machine learning method mainly extracts the follow-
ing traffic features from the encrypted traffic, such as the first n packet length
sequence with direction [17], packet length statistical characteristics [8] and sta-
tistical characteristics of packet arrival time interval [14]. Deep learning methods
such as convolutional auto-encoding and convolutional neural networks are used
for encrypted traffic classification [11].

Type 2:Zero-time separated applications

Type 3:Negative-time separated applications

The second application data packetThe first application data packet Tunnel Noise data packet

Type 1:Positive-time separated applications split point

Time

Time

Time

Fig. 1. Three types of mixed traffic in a tunnel

Mixed encrypted application traffic can be identified by flow classification
because each application traffic has a different five-tuple (source IP, destination
IP, source port, destination port, IP version). However, it is a challenging task
to identify tunnel traffic accurately and efficiently. Firstly, the application traffic
is encapsulated and encrypted in tunnels, and great improvements have been
made to the original feature details [21]. Moreover, the application traffic in a
tunnel has the same five-tuple [9], it is difficult to find the start and end time of
the application. The encrypted traffic classification methods cannot be directly
used to classify tunnel traffic. Secondly, there is a great difference in the mixture
of tunnel traffic. The outcome of the classification is influenced by the form and
overlap rate of the mixture.

Recently, researchers have proposed some methods for the classification of
mixed websites on Tor which first split the mixed flow into a single flow, and
then use the existing encrypted traffic classification model to classify the single
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flow. Splitting the mixed stream is mainly to find the split point. These methods
propose to use data packet arrival time interval [29] and packet direction [6]
characteristics, and feed these characteristics into KNN, Hidden Markov Model
to identify split points [30]. The recognition result of the split points are affected
by the mixed format and mixed rate of the applications.

In this paper, we propose a traffic classification method in a scenario where
a single user using lots of different applications in an IPSec tunnel, relaxing the
single application assumption. Figure 1 illustrates the terminology and scenario
of this paper. For the first type of traffic, we try to find the split point and
then classify the application traffic. We no longer seek to find the split point
for the second and third forms of traffic but we split the mixed flow into many
segments according to certain laws to classify the application traffic. To develop
a successful tunnel traffic classification method, we make the following novel
contributions:

– We innovatively propose a framework for identifying mixed traffic in IPSec
tunnels, which can realize the classification of mixed traffic in a single
user using many different applications scenarios. The framework specifically
includes two split modules and a classification module. This is the first study
to achieve the classification of mixed applications traffic in IPSec tunnels.

– A module to identify positive-time separated applications (Type 1). We pro-
pose a splitting algorithm based on the combination of packet length thresh-
old and classifier. The results show that the splitting accuracy reaches 93%.
Compared with processing without this module, our classification accuracy
has been improved by 30%.

– A module to identify applications with zero-time separated (Type 2) and
negative-time separated (Type 3). We propose a classification algorithm which
uses a splitting algorithm to split the network data stream into several
segments, and then predicts each segment, ignoring the impact of overlap-
ping parts on application identification. Experiments show that the module
achieves the best performance on overlapping data sets and is better than the
most advanced methods (Sectioning).

– A playback method for labeling of mixed traffic in IPSec tunnels. Using this
method, three types of mixed traffic in the tunnel are generated: positive-time
separation applications traffic, zero-time separation applications traffic, and
negative-time separation applications traffic.

The remaining of the paper are organized as follows. Section 2 reviews the
related works. Then, Sect. 3 presents the two proposed algorithm models in
detail. Section 4 describes the data collection process. Section 5 displays the
experimental result. Finally, the paper is concluded in Sect. 6.

2 Related Work

Many researchers have proposed a wealth of encrypted traffic analysis methods,
such as, based on machine learning and deep learning. Recent researchers have
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also proposed many methods for identifying mixed traffic on Tor. Next, we will
introduce these three parts in detail.

2.1 Machine-Learning-Based Methods

In 2014, based on the burst feature and Haar feature, Shi et al. [22] used Bayesian
networks to achieve 96.7% of dynamic pages and 97.8% of static pages. Faiz et al.
[14] employed a set of Flow Spatio-Temporal Features (FSTF) to six well-known
classifiers and the boosting technique consistently performed the best on all the
given datasets using the FSTF. The results show that the classification accuracy
of VoIP traffic is above 98.5%.

Meng et al.[17] selected 8 consecutive data packets after the tcp connection is
established as the feature, such as packet length, packet time interval and packet
direction, to describe network traffic using five algorithms: svm, c4.5, k-means,
bayes and EM. They achieved an accuracy of 94.5% and described three types
of traffic including http over ssh, ftp over ssh, scp and sftp using k-means. Alice
et al. [8] used svm and gmm algorithms to select the first n directional packet
length sequences of each ssh flow, and the accuracy of the two classification
methods was 71.5% for seven types of traffic. Ding et al. [7] used 20-dimensional
packet length and packet time statistical characteristics to describe network
traffic using the c4.5 algorithm, which achieved an accuracy rate of 95.3%. The
described http traffic includes http, smtp over http, and p2p over http.

2.2 Deep-Learning-Based Methods

He et al. [13] converted the payload of the data packet into a grayscale image
and then classified it through a convolutional neural network. The classifica-
tion accuracy of the five applications reached 98.5%. Vu et al. [27] developed
a novel time-series feature extraction technique. The proposed method consists
of two main steps. First, A feature engineering technique to extract significant
attributes of the encrypted network traffic behavior through analyzing the time
series of receiving packets. In the second step, a deep learning technique is devel-
oped to exploit the advantage of time series data samples in providing a strong
representation of the encrypted network applications. Guo et al. [11] prepro-
cessed the network traffic of six applications into conversation pictures, and then
used convolutional auto-encoding and convolutional neural network algorithms.
The accuracy rate of the algorithm classification based on cnn was 92.92%.

Zhou et al. [32] classified vpn and non-vpn traffic by using entropy estimation,
and then used convolutional neural networks for further classification. The input
of the convolutional neural network was packet length, packet time interval,
and packet direction. Ali et al. [20] presented an end-to-end traffic classification
method, using a multilayer perceptron and a recurrent neural network algorithm.
Lu et al. [27] proposed a method of using time series to classify encrypted traffic.
The first step was to extract time-series information, and the second step was
to use the LSTM algorithm for classification.
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2.3 Mixed Traffic Classification Methods

Gu et al. [10] first proposed a study on the classification of mixed traffic on
Tor. They proposed to use the thinking time between two web pages to iden-
tify the first-page using fine-grained features and the second page using coarse-
grained features. Wang et al. [29] presented a mixed website traffic identification
framework on Tor. The framework used the splitting decision algorithm to judge
whether the time threshold split was successful, and used the splitting finding
algorithm to further split the traffic that failed to pre-split. This method has a
poor splitting effect on overlapping traffic.

Cui et al. [6] proposed a splitting method of continuous websites based on
the hidden markov model and classification algorithm of overlapping websites
based on Sectioning. The algorithm based on the hidden markov model is too
complicated, and the state transition probability within each website needs to
be calculated every time. There are certain problems with the use of Sectioning
algorithms. One of these is that there is a bad classification result for the mixed
situation of short and long streams.

c
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Fig. 2. The TMT-RF framework

3 Methodology

In this section, Fig. 2 presents the TMT-RF framework for the tunnel traffic
classification. The upper middle part of Fig. 2 demonstrates the process in which
type 1 traffic is split through NoiseSplit module. The lower middle part of Fig. 2
shows the CombineBurst module’s traffic splitting for type 2 and type 3. The
right part of Fig. 2 demonstrates the process in which the features are acquired
through the feature extraction and classification results are acquired through
the classifier.
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The tunnel mentioned in this paper specifically refers to the IPSec tunnel.
Internet Protocol Security (IPSec) is a secure network protocol suite that authen-
ticates and encrypts the packets of data to provide secure encrypted communi-
cation between two computers over an Internet protocol network. IPSec mainly
includes Authentication Headers (AH), Encapsulating Security Payloads (ESP)
and Internet Security Association and Key Management Protocol (ISAKMP).

The traffic types (type 1, type 2, type 3) appearing in Fig. 2 are the same
as those in Fig. 1. The three types of traffic represent three scenarios for using
applications in IPSec tunnels. The type 1 traffic is generated in a scenario where
there is a period of time between the first application and the second. The type
2 traffic is generated when there is no time gap between the first application and
the second application. When there is overlap between the first application and
the second application, the type 3 traffic is generated.

3.1 NoiseSplit

There are three steps in NoiseSplit module, as shown in Fig. 2. The positive time
of the two applications is accompanied by tunnel noise which is the heartbeat
packets in IPSec tunnels. Therefore, the split of mixed traffic is based on a rule
that if multiple consecutive packets are identified as tunnel noise, mixed tunnel
traffic will be split up into two segments. Since the packet length of tunnel noise
traffic is extremely distinguishable, to make it efficient and fast, this module uses
the packet length threshold method for preliminary splitting.

Based on the split of the packet length threshold, some application packets
below the threshold may also be identified as tunnel noise, resulting in multi-
ple cuts. We use machine learning technology to identify the noise filtered out
in the first part and decide whether to split. After packet-based splitting and
classifier-based splitting produce multiple different results, split decision selects
different processing for different results. Three types of results will be generated
from packet-based splitting, including that mixed traffic is split correctly, single
application traffic is split, and multi-applications mixed traffic is not split.

Packet-Based Splitting. The first type of mixed traffic can be split by tunnel
noise. As shown in Fig. 3, it can be seen that the packet length distribution of
tunnel noise is quite different from the applied packet length distribution. The
packet length of tunnel noise is distributed in a small value range. Therefore,
the tunnel noise can be identified through the packet length feature, and then
the mixed traffic can be split. Lsplit is the packet length threshold for identifying
tunnel noise. Our choice of Lsplit seeks to maximize the chance of tunnel noise
identification accuracy. If the value of Lsplit is inappropriate, it may cause mul-
tiple splits and non-splits of the mixed flow. We hope that any source of error is
impossible. Therefore, an appropriate value must be selected. We will show how
to choose Lsplit and how it affects the accuracy of splitting in the experiment.
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Fig. 3. Packet length distribution of positive-time separation applications

Classification-Based Splitting. The split method based on the packet length
threshold may have three results. The first result is that mixed traffic is split
correctly. This result does not need to be further processed and can be directly
inputted into the classifier for classification. The second result is that single
application traffic is split. This happens when the packet length threshold is
inappropriate. There is a high probability that mixed traffic will be split into
multiple parts. The classification-based method is to reduce the occurrence of
this result. The third result is that multi-applications mixed traffic is not split.
This happens when there is overlap between two applications. The classifier-
based approach does not try to solve this problem, and the failure of the split
will be further processed in the CombineBurst Module.

The idea of splitting based on the classifier is aimed to not only further
improve the accuracy of tunnel noise identification but also greatly enhance
the accuracy of splitting through the classifier. Random forest is an ensemble
learning algorithm that is composed of decision trees [19]. It is an extended
variant of bagging. The randomness of random forest is mainly reflected in the
random training samples of each tree, and the selection of attributes is random.
Random forest is simple and efficient, with low overhead.

For the split based on the classifier, we choose the random forest classifier,
using the 54-dimensional statistical features of the packet-length sequence. The
accuracy of split is measured by the following formula.

diff(P,Q) =
{

1 Q − R ≤ P ≤ Q + R
0 else

(1)

where P is the predicted value, Q is the actual value, R is the error range.

SA =
1
N

N∑
i=1

diff(Ppredict(i), Ptrue(i)) (2)
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where Ptrue(i) is the packet sequence number of the real split point of the
i-th sample, Ppredict(i) is the packet sequence number of the predict split point
of the i-th sample, N is the total number of samples.

Splitting Decision. After the first two splits, there may be the three results
mentioned above. It is necessary to identify different results for further process-
ing. In the splitting decision, we use the knn classifier, which is an supervised
learning algorithm [23]. KNN obtains k nearest neighbors based on the distance
measurement method of formula (3). In knn classification, the output is a class
membership. An object is classified by a majority vote of its neighbors, with the
object being assigned to the class most common among its k nearest neighbors.

L(xi, xj) = (
n∑

l=1

|x(l)
i − x

(l)
j |2) 1

2 (3)

The splitting decision takes single application traffic and multi-applications
traffic as input, and uses knn for binary classification. If the input is multi-
applications mixed traffic, the prediction is true. Otherwise, the output is false.
If the output result is true, it needs to be further processed by the combineBurst
module and then be sent to the classifier. If the output result is false, it can be
directly sent to the classifier for classification.

Time

Burst

Fig. 4. Visualisation of burst.

3.2 CombineBurst

The NoiseSplit module can split the first type of mixed traffic well, but it cannot
split the second and third types of mixed traffic. The combineBurst module
is used to solve these types of traffic. There is overlap in the third type of
mixed traffic. The overlap rate is the ratio of the total number of packets in the
overlapping part to the total number of packets in the entire data stream, which
is expressed as follows.

OR(T ) =
Toverlap

T
(4)

where Toverlap is the overlapping part of the traffic, and T is the entire traffic. The
overlapping part does not help the identification of applications. The previous
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idea is to spend time finding the split point, and then inputs the classifier to
classify. The combineBurst module no longer spends most of the time searching
for split points, but splits overlapping traffic into lots of segments and makes
predictions for each segment.

A burst is the group of all network packets occurring together that satisfi-
esthe condition that the most recent packets with the same direction, the burst
direction, of the previous packet [25,31]. Data packets from the client to the
server are marked with a positive sign. Data packets from the server to the
client are marked with a negative sign. This is visually depicted in the traffic
burstification section of Fig. 4, where we can see the burst is separated by the
packet direction.

Burst Splitting. The granularity of the data packet is too fine, while the
granularity of the data stream is too coarse. The data stream can be split up into
bursts according to specific tasks. A burst is composed of several consecutive data
packets in the same direction. Overlapping traffic is split up into several parts
according to burst. The length of overlapping streams of different applications
is different, and the number of bursts generated may also be different. A burst
may contain one, two, or multiple data packets.

Pcap

Application Traffic Collection

Tunnel  Playback

Server:S1Client:C1 Internet

Tunnel

Host A
192.168.120.186

Host B
144.202.21.26

Client to Server
Server to Client

Fig. 5. Play back application data in a tunnel

Burst Combine. After overlapping traffic is split according to bursts, multiple
bursts will be generated. If we simply split according to burst and then identify,
there are the following two problems:

– Limited representation ability. The data packets contained in the burst are
too few, and the ability to describe the application is limited.
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– Increased delay time. If we split according to burst, a lot of data will be
generated. Each burst needs to be classified, which will increase the delay
time of the classifier.

To solve the above two problems caused by burst splitting, we propose to
combine several continuous bursts into a segment to split. If a segment contains
too many bursts, it will reduce the delay time. Meanwhile, the segment may
contain more than two application data packets, it also will cause a drop in split
accuracy. If a segment contains too few bursts, it will not reduce the delay time
and increase the burden of the classifier. Therefore, we hope to choose a suitable
value Ncombine that satisfies the following conditions as much as possible:

– Each segment should contain as few applications as possible. Ideally, each
segment contains only a single application.

– Each segment should be as long as possible to contain as much information
as possible for the corresponding application, while reducing the burden of
the classifier.

It is easy to see that the above two conditions are contradictory: the shorter
the segment, the less information it contains. The longer the segment, the easier
it is to include multiple applications. We will show how to choose Ncombine and
how it affects the accuracy of classification in the experiment.

3.3 Feature Extraction and Classifier

Feature Extraction. Feature extraction involves extracting 54 statistical fea-
tures from each segment (using the features in Appscanner). For each segment,
three series of packets are considered, including incoming packets only, outgo-
ing packets only, and two-way traffic. Two-way traffic consists of incoming and
outgoing packets. For each series (3 in total), we calculate the following values,
including minimum, maximum, average, median absolute deviation, standard
deviation, variance, skewness, kurtosis, percentile (from 10% to 90%), and the
number of elements in the series (18 in total) [25].

Classifier. We use the Random Forest model as the classifier. The specific
introduction of the random forest model is in the classifier-based module. The
difference between the random forest model and the previous one is: the random
forest model based on the classifier module is mainly used to identify whether
it is tunnel noise through binary classifications, and the random forest model of
this module is mainly multi-classification to identify the applications.

Majority Vote. KNN obtains the classification result through majority vot-
ing of k nearest neighbors. Majority voting is also used in our framework. The
classifier will output the results for multiple segments of a stream, and through
majority voting, to determine which applications constitute the data stream.
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4 Data Collection

In this section, we introduce the data collection framework, mainly including
application traffic collection and tunnel playback. Next, we will introduce each
part in detail.

4.1 Application Traffic Collection

Since mobile traffic involves user private data, public mobile traffic data sets are
currently not available. Therefore, existing work uses self-collected data sets to
validate the proposed method. Firstly, we use black domain software to turn off
irrelevant applications in the background (Black domain is a free super practical
optimization tool for android rogue apps. It does not require root permission to
perfectly prevent app from starting, running in the background, and waking up
in the background).

Then the adb-monkey [3] is used to randomly click on the app, using tcp-
dump to capture application traffic. We collected traffic of 30 applications in
seven types. These seven types are mainly instant messaging applications, file
transfer applications, email client applications, email web applications, media
applications, social applications, and VoIP applications. These data will be used
in tunnel playback module.

4.2 Tunnel Playback

Existing tunnel traffic collection methods have some shortcomings and poor
scalability. Firstly, the existing tunnel traffic collection methods are difficult to
solve the labeling problem of tunnel mixed traffic. Secondly, the traffic in the
tunnel has the same five-tuple, so it is difficult to filter out the background
traffic. There is a lot of background traffic in the application traffic, which will
make it difficult for the application to get the accurate ground truth. Besides,
when collecting mobile applications traffic, it is necessary to obtain the root
permission of the mobile device, resulting in poor scalability.

To overcome the above shortcomings, we propose a method to generate tunnel
traffic using tunnel playback. Tunnel playback is to simulate the client and server
of the application at both ends of the host that establishes the tunnel to send
packets. Figure 5 details the process of tunnel playback. During playback, the
wait-stop mechanism and the timeout retransmission mechanism are used to
ensure orderly packet sending and reduce packet loss.

The tunnel playback process is as follows. Firstly, a tunnel is established
between host A and host B. Host A simulates the client of the application, and
host B simulates the server of the application. Then, host A reads the data pack-
ets in the c2s (client to server) direction of the pcap file in order and sends them
to host B through the tunnel. Next, host B reads the pcap file in order, and when
it receives the previous data packet in the c2s direction, it sends data packets in
the s2c (server to client) direction to host A. The two hosts read and send packets
in sequence. Finally, the packets in pcap are completely sent to the tunnel. During
tunnel playback, we use tcpdump to capture tunnel traffic on the host A.
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The generation of tunnel mixed traffic depends on the application traffic
collected by the application traffic collection module. In the experiment, we col-
lected single-application label traffic and multi-applications label traffic in IPSec
tunnels. For single-label applications, we collected 7 types of tunnel traffic for
30 applications through tunnel playback, and each class contains 100 instances.
For the Multi-applications label dataset, we collected four three types of tun-
nel traffic. Through pcap splitting, random (different applications traffic) and
orderly (same applications traffic) mixing, pcap merging, tunnel playback and
other operations, three types of mixed traffic in the tunnel are generated. We
generated three types of mixed traffic using 30 applications traffic collected by
the application traffic collection module.

– Positive-time separation applications traffic. From 30 applications, we
arbitrarily select two applications to mix, and collect mixed traffic containing
60 classes, each class includes 100 instances.

– Zero-time separation applications traffic. This data set contains 60
classes, and each class contains 100 instances.

– Negative-time separation applications traffic. The application traffic
with negative time separation includes two types of data sets, 5% and 10%.
Each type of data set includes 60 classes, and each class includes 100 instances.

5 Experimental Evaluation

In this section, we first introduce the experiment setup. Then, we analyzed the
impact of three factors (data packet length threshold, measurement range and
number of burst combinations) on the classification results. Finally we analyzed
the classification results of traffic in three scenarios, and the result of the com-
parison experiment.

5.1 Experiment Setup

Comparison Methods. Some of the most advanced methods as a comparison
method are summarized as follows.

– Sectioning (Packet-based) [6] uses data packets to split the mixed stream
evenly into several sections, predicts each section, and gets the classification
result.

– Sectioning (Time-based) uses time information to split the mixed stream
evenly into several sections, and each section is predicted to obtain the clas-
sification result.

The classifier used by the sectioning algorithm is knn. In the comparative
experiment, we find that random forest is better than knn for classification, so
we choose random forest.
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Setting of NoiseSplit Module. The selection of Lsplit will be introduced in
the experiments. The noise classifier takes 54-dimensional statistical features of
the packet-length sequence as input, and the classifier uses the random forest
model. Splitting decision uses the knn model.

Setting of CombineBurst Module. The selection of Ncombine will be intro-
duced in the experiments. The classifier takes 54-dimensional statistical features
of the packet-length sequence as input, and the classifier uses a random forest
model.

Cross-Validation. Our first step is to split each application instance into the
training and test sets under 10-fold cross-validation. 10% of the instances are in
the test set and the rest are in the training set. We replay the mixed 90% of
the collected application instances into the tunnel to generate training sets, and
replay the mixed 10% of the traffic into the tunnel to generate test sets.

Assessment Criteria. We analyze the accuracy of the split point. Formula 2
specifically introduces the measurement index of the result of finding the split
point-splitting accuracy. For the classification of applications, we use the follow-
ing metrics to measure.

– Precision: Precision is calculated using Eq. (5).

Precision =
TP

TP + FP
(5)

– Recall: Recall is calculated according to Eq. (6).

Recall =
TP

TP + FN
(6)

– F1-score: F1 is calculated according to Eq. (7), and it’s the harmonic mean
of precision and recall.

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
(7)

– Accuracy: Accuracy is calculated according to Eq. (8).

Accuracy =
TP + TN

TP + FP + TN + FN
(8)

where TP refers to the number of true positives, FP refers to the number of
false positives, FN refers to the number of false negatives, and TN refers to
the number of true negatives.
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Fig. 6. The accuracy of the split
varies with the packet length threshold
(Lsplit)

Fig. 7. Prediction accuracy of split
with varying measure range (R)

5.2 Impact of Packet Length Threshold

In order to analyze the impact of packet length threshold on splitting accuracy,
we conducted experiments to split mixed traffic by packet length threshold. In
the experiment, Lsplit takes a value from 5 to 500.

Figure 6 shows the accuracy that results from correctly splitting mixed flow,
when using different packet length thresholds. When the packet length threshold
is 100 or 145, the classification result immediately changes greatly. If the packet
length is in the range of 100–145, the accuracy is greater than 50%. When the
packet length is 125, the splitting accuracy reaches the highest value, which is
93%. The results show that when the packet length threshold is between 100
and 145, it helps to improve the accuracy of the split.

It can be seen that the packet length threshold has a great influence on the
accuracy of the split. As the packet length threshold increases, the accuracy of
splitting first increases and then presents a downward trend. If Lsplit is selected
too small, it will be lower than the noise packet length, and it is difficult to
identify tunnel noise, which reduces the accuracy of the split. When Lsplit is
selected too large, the packet length higher than the tunnel noise will filter out
some applications traffic and reduce the accuracy of the split.

5.3 Impact of Measure Range

To analyze the changes of splitting accuracy under different measurement ranges,
we conducted an experiment, and the results of the experiment are shown in
Fig. 7.

The R in formula (1) means the R packets within the error range of the split
point are all correct split points. As shown in Fig. 7, the prediction accuracy
of split has varying measure ranges. With the increase of R from 0 to 10, the
splitting accuracy of the mixed stream has been increased from 71% to 93%.
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Fig. 8. Prediction accuracy of the first
app with varying number of combine
burst (Ncombine) and overlap %

Fig. 9. Prediction accuracy of the sec-
ond app with varying number of com-
bine burst (Ncombine) and overlap %

When the value of R reaches 5, the accuracy of classification no longer increases.
The result shows that the split deviation of the split point is maintained within
5 packets before and after.

Figure 7 shows that with the increase of R, the accuracy of recognition just
started to increase and then stabilized. When the R setting is small, the accuracy
will be very low. Therefore, the R setting should be as large as possible within
the error tolerance range in the experiment.

Fig. 10. Prediction accuracy of first
app with varying possibility threshold

Fig. 11. Prediction accuracy of second
app with varying possibility threshold

5.4 Impact of the Number of Burst Combinations

We conducted an experiment to explore the effect of the number of combined
bursts on the classification results. The experimental results are shown in Figs. 8
and 9. In the results, P represents the classification result processed by the TMT-
RF framework, and NP represents the classification result not processed by the
TMT-RF framework.

Figures 8 and 9 show the precision of the first and the second application
classification respectively. Under different overlap rates, the classification results
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of the applications vary greatly. Figures 8 and 9 present that the classification
precision of mixed traffic has increased by 50% after processing by the Com-
bineBurst module. As the combined burst value is different, the precision of
the classification also changes. Experiments show that if the number of bursts
combined is 10 or 15, it will help improve the classification results.

The experimental results show that the overall trend of rising first and then
falling. Too small Ncombine selection may result in too little applications infor-
mation included, which makes it difficult to identify effectively, and reduces the
precision of identification. Too large selection of Ncombine may result in the inclu-
sion of multiple applications information and reduce the precision of recognition.

5.5 Applications Classification of Positive-Time Separation

Through the above analysis of the impact of the packet length threshold and
measurement range on the splitting accuracy, in the experiment, we set Lsplit as
125 and R as 6. As shown in Figs. 10 and 11, after processing by the TMT-RF
framework, the recognition result of the first application in the mixed traffic is
very close to the recognition result of a single application.

Compared with those not processed by the TMT-RF framework, the clas-
sification result is increased by 30%. Compared with the second application,
the first application is closer to the classification result of a single application.
Overall, it can be seen that the mixed flow has a greater impact on the second
application than the first. It indicates that the first few packets have a greater
impact on the accuracy of tunnel traffic identification.

Table 1. The precision of the applications under different overlap rates

R(%) 0 overlp 5 overlap 10 overlap

P(%) 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80

First 0.87 0.87 0.85 0.87 0.84 0.83 0.75 0.61 0.83 0.71 0.78 0.78 0.70 0.76 0.71

Second 0.84 0.84 0.84 0.74 0.71 0.76 0.76 0.65 0.58 0.56 0.69 0.69 0.67 0.62 0.57

Table 2. Experimental result on precision, recall and F1 (The Best result are in bold)

Algorithm 0% overlap 5% overlap 10% overlap

First APP Second APP First APP Second APP First APP Second APP

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

CombineBurst 0.87 0.71 0.76 0.74 0.45 0.56 0.83 0.69 0.73 0.58 0.40 0.47 0.76 0.69 0.72 0.62 0.17 0.27

Sectioning(Packet-based) 0.83 0.18 0.22 0.45 0.33 0.34 0.61 0.11 0.13 0.58 0.29 0.38 0.59 0.09 0.11 0.52 0.17 0.22

Sectioning(Time-based) 0.78 0.45 0.51 0.64 0.25 0.26 0.76 0.26 0.28 0.47 0.29 0.27 0.72 0.26 0.30 0.32 0.23 0.21
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5.6 Applications Classification of Zero-Time Separation

By analyzing the impact of the number of burst Combinations on applica-
tion classification, we set Ncombine to 10. In this scenario, there is no overlap
between the two applications, and all three methods have achieved good results.
In Table 1, R represents the overlap rate of application traffic, and P represents
the probability threshold. Table 1 shows that the classification results of our
method do not change much, under different output probability thresholds. The
classification result of the first application is better than the classification result
of the second application

Table 2 shows that the CombineBurst method shows a very good performance
than other methods on this data set. The CombineBurst gets 87% precision and
76% f1 value. Overall, combineBurst has achieved good performance, because it
uses information between data streams in the same direction. The results demon-
strate that CombineBurst method is very helpful to improve the identification
precision of tunnel traffic.

5.7 Applications Classification of Negative-Time Separation

We set Ncombine to 10 as shown above. As shown in Table 1, there are classi-
fication results with different overlap rates in this scenario. Table 1 shows that
overlap rate has a great impact on application identification, the higher the over-
lap rate, the greater the impact. Table 1 also shows that the output threshold
also have a certain impact on the accuracy of recognition.

As shown in Table 2, as the overlap rate increases, the gap between the Com-
bineBurst method and other methods gradually increases. Compared with the
most advanced methods, CombineBurst shows the best performance at different
overlap rates. The precision of the combineBurst method is slightly greater than
the other two methods, and the recall rate and f1 value are much larger than
these two comparison methods, mainly due to the combinationBurst method
using the direction information between packets. With the increase of the over-
lap rate, the combineBurst method has the least decrease in precision, recall,
and f1 value, showing strong robustness in the comparison method.

6 Conclusion

In this paper, we propose a classification framework for mixed traffic in a sin-
gle user usage scenario in IPSec tunnels. In this scenario, each flow is classified
according to the application visited by the user in the flow. To achieve the iden-
tification of three types of traffic in IPSec tunnels, we propose the NoiseSplit
module to segment and classify the first type of traffic, and the CombineBurst
module handles the second and third types of traffic. We collected four mixed
traffic data sets of three types to evaluate our proposed method. Experimen-
tal results show that TMT-RF not only achieves the best performance of 93%
on the data set for positive-time separation applications, but also outperforms



TMT-RF: Tunnel Mixed Traffic Classification Based on Random Forest 435

other state-of-the-art methods on the data sets for zero-time separation applica-
tions and negative-time separation applications. Future research needs to further
explore the classification of applications used in multi-person scenarios in IPSec
tunnels.
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