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Abstract. The novel coronavirus COVID-19 spreads easily through per-
sonal contact, requiring the use of contact tracing to track the spread
of the disease. Many existing approaches either trust a public health
authority with private data, or publish patients’ data, leading to privacy
breaches. Private Set Intersection based on Homomorphic Encryption is
a promising solution, but it is limited because the management of keys is
challenging and further filtering of contacts is not included. We present
a protocol for secure and private conditional contact tracing, allowing
the tracking of users’ contacts subject to extra conditions. We construct
and apply our new primitive of Conditional Private Set Intersection and
combine it with a Trusted Execution Environment (TEE) to construct
a protocol with provable security and a high degree of functionality.
Our approach moves the memory- and computation-intensive portions
of contact tracing out of the TEE to a cloud server. We also present how
multi-hop contact tracing can be done with minimal user communication.
Our proof-of-concept implementation with Microsoft SEAL allows users
to perform their computation in less than 9 min, and the cloud’s per-user
computation can be as little as 11 min for a population of 50,000 users
with 500 infected (assuming 40 contacts/user) in a day. With other HE
libraries/schemes that allows customized parameter sets, our protocol
will show much higher scalability.

Keywords: Contact tracing · Lattice-based cryptography · Private set
intersection · Trusted execution environment

1 Introduction

The disease COVID-19 is highly contagious and spreads easily through personal
contact. Contact tracing is used to determine a person’s past personal contacts
to aid in tracking the spread of the disease, in particular to find which indi-
viduals are sources of or are at risk for infection. Human-based contact tracing
by public health authorities is inherently invasive to one’s privacy and indi-
viduals may be reluctant to participate. Users’ smartphones can automatically
trace their movements and contacts, which can be useful for accurate contact
tracing, but disclosing such information poses a significant threat to individual
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privacy. Such concerns can discourage participation in contact tracing, and to
incentivize participation in contact tracing, it is desirable to construct a contact
tracing protocol that guarantees a high degree of individual privacy.

Various privacy-sensitive smartphone-based contact tracing protocols have
weaknesses in privacy and accuracy [3,4,24,26,33,41]. Further, these protocols
are generally rigid, and not easily extensible to calculations beyond basic tracing
of contacts. There are many different additional conditions that a Public Health
Authority (PHA) might wish to apply to the contact tracing (i.e., conditional
contact tracing). For example, a PHA may only wish to deem users who have
had exposure of 10 min as at risk for elderly people while the threshold could
be higher for younger people (e.g., 15 min per CDC guidelines [16]). Many other
conditions may be needed similarly (e.g., degree of infectiousness, vaccinated or
not). Other cryptographic approaches require significant amounts of repeated
network communication and/or computation to achieve this [34,37]. Crypto-
graphic protocols such as Private Set Intersection (PSI) can be useful in such
problems, but key management makes it challenging to apply it in scenarios with
multiple users. Trusted Execution Environments (TEEs) support isolated and
secure program execution, but they face difficulties with scalability, parallelism,
and latency from memory access at scale [25,38], which leads us to the strategy
of combining TEEs and cryptography for scalability.

To address such limitations, we let users provide encrypted lists of contacts
and enable more sophisticated contact tracing that meets the needs of privacy
and versatility. We combine TEE and homomorphic cryptography to create a
protocol that allows a PHA to obliviously perform contact tracing without harm-
ing individual privacy. We also extend existing PSI based on HE to devise our
novel Conditional Private Set Intersection (CPSI) protocol which can enforce
additional conditions for PSI , and combine it with TEE to construct protocols
for secure contact tracing with minimal privacy loss and conditional contact trac-
ing. We use cryptographic approaches to maintain semantic security of messages
to completely protect users’ data with provable security, and combine this with
the use of the TEE to solve issues such as key management that would other-
wise make a straightforward application of HE difficult with multiple users. By
performing homomorphic computation outside the TEE, we allow for parallel
computation and avoid the overhead incurred by the TEE [38].

Our contact tracing protocol improves upon previous work by guaranteeing
provable security and privacy for all users including the infected ones, which
is not possible in existing decentralized approaches based on smartphones [2].
The computation and network communication are minimized for all users and
parties, and more functionality in filtering out contacts is enabled without vio-
lating individual privacy. We selectively use a TEE to avoid excessive overhead
caused by large-scale data processing within a capacity-limited TEE. Finally, we
present further extensions useful for COVID contact tracing such as multi-hop
tracing, while minimizing extra network communication from this. This paper
has following contributions:
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– A new notion of CPSI is presented, which returns only the intersection of ele-
ments that satisfies certain conditions, and it is constructed based on HE. We
also present two novel optimization techniques for CPSI to (1) prevent false
positive cases and (2) address the trade-off between efficiency of condition
calculation and admissible set sizes.

– A protocol combining CPSI and TEE to conditionally trace personal contacts
with provable data security is presented, with variants that differ in which
party receives the final result. Further, an extension of the contact tracing
protocol allowing timestamp-based multi-hop tracing with backward/forward
tracking is presented, with no additional communication needed for unex-
posed users even with multi-hop tracing.

– An open-source proof-of-concept implementation for continued research and
reproducibility is provided via anonymized source code repository (URL avail-
able in Sect. 6).

– We use real-world bluetooth datasets to perform experiment, and show that
our protocol’s preprocessing and decryption times are negligible and that
both user-side and cloud-side computation are acceptable.

2 Related Work in Contact Tracing

The Google/Apple Exposure Notification (GAEN) from Google and Apple [24]
uses daily Temporary Exposure Keys (TEKs) to generate 15-minute rolling
Pseudo-IDs. These IDs are broadcast via Bluetooth and are collected by users
who come into contact with one another. In the event of an infection, the infected
user’s TEKs are made public and used to retrieve all past Pseudo-IDs that they
have broadcast. This protocol has the large weakness of not lending privacy
to infected users: once an infected users’ TEKs have been released, their move-
ments can be retroactively tracked through the Pseudo-IDs. Practical attacks on
this protocol have been demonstrated in [3] which showed that the weaknesses
in GAEN are protocol-level, not implementation-level. The weakness in GAEN
is that a user ID is publicly broadcast on a list of infected users, which can
allow retroactive tracing of an infected user by passive collection of Bluetooth
beacons and cross-referencing with the released TEKs. In our work, we repair
this vulnerability by not publicly revealing users’ ID strings. We also note that
GAEN is not capable of easily allowing computation on users’ data with private
parameters, while our protocol allows such computation.

The BlueTrace protocol (Singapore) [4] is heavily dependent on human inter-
vention; it is not designed to be solely automated. In BlueTrace, Pseudo-IDs and
searches on that data are all performed in plaintext, leading to the weakness of
a Public Health Authority (PHA) being able to easily track users through their
persistent IDs [10,41]. A similar issue is present with the EPIC protocol [1].

Protocols such as Covid Watch [26], Hamagen (Israel) [29], and TrackCOVID
[45] have users perform the computation for contact tracing. We aim to not follow
this path, but instead aim to remove as much of a computational burden from
users as possible, shifting computation to cloud computing and greatly reducing
the amount of data that users must download.
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The SafePaths (MIT) [32,33] project, along with Hamagen [29], uses GPS-
based tracing instead of Bluetooth tracking, which may be less precise at detect-
ing contacts. SafePaths uses the cryptographic protocol of PSI, but has other
weaknesses in security and privacy. Namely, infected users lose any privacy under
SafePaths because they must release their past location traces to allow contact
searching by other users. A contact tracing method based on Secure Multi-
party Computation (MPC) [34] that uses imprecise location-based tracking may
improve its precision by using bluetooth signals, but such solutions face seri-
ous scalability issues [41] and do not provide any privacy to infected users. The
PPContactTracing protocol [37] takes a similar approach to SafePaths in com-
bining PSI and locality-sensitive hashing. The Epione [42] system also uses a PSI
construction, though their Diffie-Hellman-based construction lacks the quantum
security and extensibility to other computations that modern FHE-based com-
putation provides.

The TraceSecure protocol [5] provides a high level of security for users, even
preventing any central authority from learning if users are exposed. However,
TraceSecure requires frequent communications throughout the day between users
and a central server, uses wasteful flooding to mask meaningful messages inform-
ing users of exposure, and its design (based on additive HE) is not easily exten-
sible to further functionality.

3 Preliminaries

Mathematical Notation: The set Zt is the set of integers modulo t. We use
R to denote the quotient ring of Z[X]/Φ(X), where Φ(X) is a properly chosen
cyclotomic polynomial of degree N , a power of two. We define Rt = Zt[X]/Φ(X),
the subring of R with all coefficients in Zt. The bitsize of a number t is bit(t) =
�log2(t)� + 1. A number a ∈ Zt is a quadratic residue (QR) if there is a b ∈ Zt

such that b2 ≡ a (mod t) and a non-quadratic residue (non-QR) otherwise.

Trusted Execution Environment: TEEs [12] can provide trusted computing
on a platform where other applications or even the host operating systems are
untrusted. Secured memory contents are encrypted and not visible to untrusted
processes and execution cannot be tampered with externally. TEEs can also
perform remote attestation to prove to other parties that they are running a
certain program, so that users will know that TEEs are performing the correct
computation on users’ data. TEEs do have pitfalls including expensive paging,
and limitations with memory space and parallel computing [38], making a purely
TEE-based approach undesirable.

Fully/Somewhat Homomorphic Encryption: HE schemes allow for com-
putation to be done on encrypted operands. Modern HE schemes derive their
post-quantum security from the Ring-Learning With Errors (RLWE) problem,
and deal with operands in polynomial rings [6,8,15]. Schemes that allow for
arbitrarily-sized arithmetic circuits to be computed are called Fully Homomor-
phic Encryption (FHE) schemes. In practice, most modern FHE schemes are
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implemented as Somewhat Homomorphic Encryption (SHE) schemes to avoid
the complex and intensive operation of bootstrapping. Arithmetic circuits in
SHE are limited by pre-determined multiplicative depths. This work and related
PSI work [8,9] use the B/FV scheme [15] that is parameterized by (N, q, t),
where Rt is the plaintext space and Rq is the ciphertext space.

Private Set Intersection (PSI): PSI protocols allow two users to securely
compute the intersection of their sets of elements, without revealing any infor-
mation to eavesdroppers, or any elements not in the intersection to the other
party. State-of-the-art PSI protocols have been constructed using HE [8,9]. These
constructions are well-suited for a scenario where one user (the sender) is much
more powerful than the other user (the receiver). This makes PSI particularly
useful for our use case of contact tracing, where the PHA uses cloud servers and
users use COTS phones/computers for contact tracing. Other PSI schemes also
exist, but they are not suitable for our scenario. The protocols of De Cristofaro
et al. [14] and Ion et al. [20] are insecure against quantum-capable adversaries.
The PSI schemes based on MPC [11,30] have poor scalability due to multiple
rounds of communication required. Our work is the first to formulate and con-
struct CPSI for the needs of real-world applications.

Bluetooth Message Exchange: Bluetooth Low Energy (BLE) is a technol-
ogy used for constructing short-range wireless mobile ad-hoc networks. BLE
was specifically designed to facilitate low-cost and power-efficient implemen-
tations. BLE has been used to detect contact events by most contact-tracing
apps [2,28,46] with which smartphones periodically broadcast Bluetooth beacon
advertisements. When a smartphone in close proximity detects such advertise-
ments, the underlying operating system notifies the observing application. Fur-
thermore, the app can leverage the Received Signal Strength Indicator (RSSI)
to gauge the distance between the two phones [22]. In a typical approach
for Bluetooth-based contact tracing, Pseudo-IDs are woven into the Bluetooth
advertisement which in turn is leveraged for contact tracing. In this work, we do
not consider weaknesses of or attacks against Bluetooth [23,44], as it is not in
the scope of the problem we consider.

4 Conditional Private Set Intersection

In this section, we introduce our new cryptographic primitive of CPSI, and
show an FHE-based construction of CPSI. In Sect. 5, we deconstruct our CPSI
protocol and distribute it among different parties to protect the privacy of both
infected and at-risk users during contact tracing.

4.1 Definitions

Ideal Functionality: PSI between parties with sets X and Y computes the
intersection X ∩Y [8]. We may wish to subject the result to a further condition,
calculating X ∩P Y = {z ∈ X ∩Y |P} for some predicate P where the parameters
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Inputs: The sender and receiver input their secret finite sets X and Y , respec-
tively. The receiver also inputs a secret set Y ′ of metadata associated with ele-
ments of Y . The cardinality of X and Y , as well as the sizes in bits of the elements
of X, Y and Y ′, respectively, are publicly known. A predicate P operating on el-
ements of Y ′ is computable by the sender, though its parameters may be kept
secret from the sender.
Output: The receiver learns X ∩P Y = {z ∈ X ∩ Y |P (z′)}, where z′ ∈ Y ′ is the
metadata element corresponding to z. The sender does not learn anything. No
additional information is learned by either party or any eavesdropper.

Fig. 1. Ideal functionality δ of CPSI.

of P may be kept private from both parties. Formally, we define a CPSI protocol
as follows: consider a sender and receiver with respective sets X, Y , where the
number of the elements in each set is known, and the domain size (in bits) of the
elements is known. The predicate P is known to the sender. A CPSI protocol
returns the result X ∩P Y to the receiver, and nothing to the sender. Neither
party learns anything about the other party’s held elements not in X ∩P Y .
The predicate P may be a predicate on the encrypted elements of X or Y , on
attached metadata (encrypted or plain), or something else. We require in the
formal definition of CPSI, given in Fig. 1, that P operate on metadata strictly
correlated to the elements of the parties and kept private, though these require-
ments may be relaxed in some applications. It is common in many applications
(e.g., machine learning) to wish to allow computation with hidden parameters,
which is possible when P is computed homomorphically or otherwise privately.
In practice, P might also be a function of a parameter s of the sender, i.e.,
P = Ps. Constructions where P is a function of multiple-valued data from both
the sender and receiver are possible, but would require O(|X| · |Y |) separate
calculations, so we do not consider those in this work.

Adversary Model: In this scenario, we consider the parties to be honest-but-
curious, i.e., they will follow the protocol accurately. Communication between
the parties is through authenticated and non-malleable channels. An adversary
may be an eavesdropper, or either party.

Security Model: A CPSI protocol is secure if the execution of the protocol is
computationally indistinguishable from the execution of the ideal functionality
of CPSI given in Fig. 1. This is formalized in Definition 1.

Definition 1. A CPSI protocol Γ securely computes the ideal CPSI function-
ality δ if for every probabilistic polynomial-time (PPT) adversary A against Γ ,
there exists a PPT adversary S (the “simulator”) against δ such that for every
possible combination of input sets X, Y , Y ′ (with |Y | = |Y ′|) with sizes polyno-
mial in the security parameter λ, the views of Sδ(λ,X, Y, Y ′) and AΓ (λ,X, Y, Y ′)
are computationally indistinguishable w.r.t. the security parameter λ. The view
generated by S from the execution of δ is Sδ(λ,X, Y, Y ′), and similarly the view
generated by A from the execution of Γ is AΓ (λ,X, Y, Y ′).
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4.2 Novel CPSI Construction Without False Positives

Our novel CPSI is shown in Fig. 2. Let the FHE plaintext modulus t be a prime
number, so there are t−1

2 elements of Zt that are not quadratic residues modulo
t. In Chen et al.’s FHE-based PSI protocol [8], a decrypted result of the protocol
is zero if and only if the corresponding element is in the set intersection, and is a
random nonzero number otherwise. We construct our CPSI protocol to maintain
that property by adding a nonzero predicate value to the PSI circuit result to
force a result of zero to be nonzero when the condition is not met.

Unfortunately, this näıve approach may result in a false positive when a
result is zero by coincidence even though the corresponding element is not in the
intersection. We prevent this with a novel technique: we force the sum of the PSI
and predicate values to be zero if and only if an element is in the intersection and
the predicate is fulfilled. This is achieved by squaring the PSI result to force it
to be a QR, and having the nonzero predicate value added be a non-QR, so that
the sum of those values can never be zero modulo t unless both values are zero.
More specifically, we let t − k with k ∈ [1, t) be a non-QR modulo t. We then
require that the predicate P (·) be zero when the element being tested should
be included in the PSI result (so that the computation is unaffected), and that
P (·) = k when the element should be excluded from the intersection. Because
no element of Zt squared results in t − k (mod t), P (c′

i) + (
∏

x∈X(ci − x))2 will
only be zero modulo t exactly when both P and

∏
x∈X(ci − x) are zero modulo

t. Because t − k is a non-QR, adding k to any squared element of Zt will never
result in zero modulo t, preventing false positives caused by adding in a predicate
value.

Input: The sender’s setX, the receiver’s set Y and the metadata set Y ′ associated
with X, and the sender’s predicate P operating on Y ′ are private inputs. The
cardinalities of X, Y , and Y ′are public inputs.
Output: The receiver learns X ∩P Y = {z ∈ X ∩ Y |P}.
1. Setup: The sender and receiver agree on appropriate parameters for a FHE

scheme. The receiver generates a public-private key pair (pk, sk), and retains
the secret key privately.

2. Set Encryption: The receiver encrypts its elements as ci = FHE.Encpk(yi)
for yi ∈ Y , c′

i = FHE.Encpk(y′
i) for y

′
i ∈ Y ′, and sends the ciphertexts ci, c′

i

to the sender.
3. Computing the Intersection: For each ci, the sender samples a random

nonzero plaintext element r, and homomorphically computes

di = r · (P (c′
i) + (

∏

x∈X

(ci − x))2) (1)

The values di are returned to the receiver.
4. Intersection Decryption: The receiver outputs the conditioned intersection

X ∩P Y = {yi|FHE.Decsk(di) = 0}

Fig. 2. Conditional private set intersection (CPSI) protocol Γ .
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When computing the predicate P over metadata that should be kept private
(e.g. times or durations of contact), we can homomorphically encrypt the meta-
data, and use the homomorphic polynomial interpolation function calculation
[40] described in Sect. 5.2 to compute the predicate. Correctness is easy to see:
if the predicate is zero, then the result is the same as the ordinary PSI circuit. If
the predicate is nonzero, then adding it to a zero-valued PSI result results in k,
which is nonzero. If the PSI result is nonzero, then adding a nonzero predicate to
it will never result in a value that is zero modulo t, as shown above. This CPSI
construction allows the filtering of elements based on arbitrary predicates, with
no additional work required for decryption. Like related work in PSI, this basic
protocol may have a high multiplicative depth (linear in |X|), which should be
mitigated through the optimizations presented in Sect. 4.4.

4.3 Proof of Security

Theorem 1. The CPSI protocol Γ ((Fig. 2) is secure under Definition 1.

Proof. The views of the sender, receiver, and an external eavesdropper in the real
and ideal protocols are computationally indistinguishable, so that a simulator
operating in the ideal world can generate a view indistinguishable from that of
the view a party or eavesdropper would see in the real world [21].

Sender: In both the real and ideal views, the sender sees the sets X and X ′, and
knows |Y | (and |Y |′). In the real view, the sender also sees the ciphertexts ci, c

′
i. A

simulator S simulating the execution to an adversary A acting as a sender in the
ideal case can easily provide HE ciphertexts. Due to the semantic security of the
underlying HE scheme [15], these views are computationally indistinguishable
w.r.t. the security parameter λ.

Receiver: In both the real and ideal views, the receiver sees the sets Y and Y ′,
and learns X ∩P Y . In the real view, the receiver also sees the decrypted results
di, which are zero if yi ∈ X ∩P Y and a random nonzero element otherwise. A
simulator S in the ideal model can generate an identical view to that of the real
model for the adversary A acting as a receiver by constructing the set D = {d̃i},
where d̃i encrypts zero if yi ∈ X ∩P Y and a random nonzero value otherwise.
Thus the receiver’s view of a real execution is indistinguishable from a view that
a simulator can generate in the ideal execution.

Eavesdropper: In the ideal and real views, an eavesdropping adversary A knows
|X|, |Y |, |X ′|, |Y ′|, and the bit-sizes of their elements. In the real view they
additionally see the ciphertexts ci, c′

i, di. Similarly to the case of the sender,
semantically secure ciphertexts add nothing to the view generated, as the sizes
of X, Y , Y ′ are already known. Indeed, a simulator S can easily generate cipher-
texts ci, c

′
i, di, thus simulating the real view to S. ��

4.4 Compatibility with Standard Optimizations

Standard optimizations in FHE and FHE-based PSI can be applied to our pro-
tocol with little modification needed as we discuss below. Our contact tracing



360 J. Takeshita et al.

implementation presented in Sect. 6 uses the most important optimizations of
windowing, batching, and partitioning.

Windowing: With windowing, by precomputing powers and polynomial coef-
ficients the original PSI protocol can be reduced to have a depth as low as one
through precomputation of some terms and some additional communication [8].
Our CPSI protocol requires only one additional homomorphic multiplication and
one homomorphic addition, after the original PSI circuit and predicate have been
calculated. The circuit depth incurred is only two more than the original PSI
protocol, though calculation of P may incur additional depth and computation.

Batching: A well-known optimization in lattice-based cryptography is batching,
which encodes vectors of up to N elements of Zt into a single plaintext element
of Rt [18]. Homomorphic operations on data encoded in this manner can be
carried out with parallelism (i.e., batching). As previously shown in previous
PSI work [8], batching can be applied to reduce the network communication
and computation by a factor of N . The only modification to the original PSI
protocol is to sample random elements to be a batched vector instead of singleton
elements. Our CPSI protocol can use the batching in the same way.

Hashing and Partitioning: The computation and depth of the protocol
depend on the size of the sender’s set. Hashing and partitioning are applied
in previous PSI work to divide the sender’s set into smaller, more manageable
subsets [8,31]. With partitioning, the sender’s set is simply partitioned into α
subsets of approximately equal size, which reduces network communication and
computation by a factor of α. Hashing similarly divides elements into hash buck-
ets, and the parties only need to compare elements in the same bucket. Both can
be applied to our CPSI protocol.

Modulus Switching: This technique reduces a ciphertext in Rq to one in Rq′ ,
with q′ < q, such that the switched-down ciphertext decrypts to the same value
[6]. This can be performed in our CPSI protocol after the sender’s computation
to reduce the size of the response to the receiver by log(q)

log(q′) , which is observed
empirically by [8] to be a reduction of up to 20%.

4.5 Novel Optimization with Dual Plaintext Space

When a predicate P is homomorphically calculated on the receiver’s private
metadata, the two goals of our protocol come into conflict. To make the homo-
morphic calculation of P via polynomial interpolation as efficient as possible,
the plaintext space of our HE scheme should be held as small as possible [40].
On the other hand, to express many distinct set elements, it is desirable to have
larger plaintext spaces.

With batching, both these goals are possible. Let c be an integer factor, and
suppose that we have a plaintext space of Zt. Recall that the batching allows
encoding up to N values into a single ciphertext. We can then encode elements
from Ztc to Z

c
t by placing each base-t “digit” of the element into a separate
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slot. The corresponding metadata value in Zt can then be duplicated across all
c corresponding slots in the metadata plaintext polynomial. By doing so, we can
deal with the randomly generated IDs in the space Ztc with the smaller actual
message space Zt. This allows a CPSI protocol to be run with a large set of
possible elements and a smaller predicate metadata domain, while maintaining
a smaller and more efficient plaintext space for interpolation.

Using this strategy requires the receiver to check that all c slots that a value
is decomposed into before concluding that an element is in the intersection, as
two values are equal if and only if their t-digit decompositions are equal. This
method of representing and packing elements thus does not affect correctness
of CPSI. Using this dual plaintext space is most useful when a large plaintext
space is desired to handle many distinct set elements (e.g., Pseudo-IDs) but the
space of the metadata can be smaller.

5 Protocol for Conditional Contact Tracing

In this section, we present a CPSI-based contact tracing system that can fil-
ter contacts to be recorded only when some additional predicate is satisfied.
Our system has a high degree of functionality and privacy guarantees, with the
tradeoff of more complexity and computation. The core idea behind our protocol
is computing a CPSI of users’ encountered and broadcast Pseudo-IDs, so that a
nonempty intersection indicates exposure. We take the strategy of using the TEE
to handle some trusted computation such as key distribution, preprocessing, and
result distillation, while still outsourcing the heavy homomorphic computations
to a cloud server. By encrypting all data sent to the cloud, we fix the weakness in
the GAEN [2] which discloses unencrypted Pseudo-IDs of infected users. While
it is possible to use a TEE for all private outsourced computation, doing so may
severely limit the ability to scale and compute concurrently over large workloads,
due to both a bottleneck at the TEE’s memory transfer and vulnerabilities in
TEE multithreading [25]. Further, large workloads may incur extremely high
overhead due to the TEE’s overhead in paging and memory encryption [38]. For
these reasons, we aim to use the TEE as little as possible, and shift as much
work as possible to scalable and parallel cloud computation. Communications are
assumed to be authenticated and nonmalleable, with authorized access controls.

Our protocol has two variations, determining which of the user and pub-
lic health authority gets the final results. Some countries with more libertine
policies may prefer the former approach, while countries with more centralized
governmental authority may prefer the latter.

5.1 Scenario of Conditional Contact Tracing

System Model: Our formulation considers three types of parties: (1) Ordinary
users, who participate through a smartphone application. The users’ smart-
phones can receive and record information from nearby users’ smartphones via
Bluetooth. During nights, a user’s smartphone can sync while charging with
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their laptop or desktop computer, which is then able to perform operations
such as encryption on the phone’s behalf, making the overhead of homomorphic
encryption less of an issue for users. We aim to minimize the amount of data
that users must download to participate, and only send a constant and small
amount of data to users. (2) The computation server C (possibly untrusted),
which performs the computation of CPSI, acting in the modified role of sender
in a CPSI protocol (C does not have access to plaintext data, but carries out the
computation of the sender). (3) The PHA’s key management server (PHAM ),
who distributes keys and manages interaction between the parties. This entity
has access to a TEE. We assume the PHA knows the IDs of the participating
users but nothing else. They receive the final result identifying exposed users,
and will choose if and how to inform those users. Any party can perform remote
attestation to verify the integrity of the code running inside the TEE.

Condition to be Used: As described in Sect. 1, there are many possible addi-
tional conditions that the PHA might wish to apply to contact tracing. In our
proof-of-concept system, we use thresholding with a private bound as the con-
dition in the predicate P (e.g., if x ≥ h, P = 0; P = k otherwise), as such
conditions are likely useful in real-world contact tracing (e.g., age, degree of
infectiousness, number of contacts) and other applications.

Adversary Model: Adversaries in this scenario may be any of the three par-
ties above, an external eavesdropping adversary, or any collusion thereof. We
assume communications between users and both the TEE and cloud server are
authenticated and nonmalleable. We assume that participants in this protocol
are honest-but-curious, meaning that they may carry out arbitrary computa-
tion to try to learn other users’ private data, but will otherwise participate
honestly in the protocol. As noted in other work in secure computation, honest-
but-curious parties are a reasonable assumption, as even participation in this
protocol requires some level of trust between participants [43].

* Users periodically broadcast randomly-rotating Pseudo-IDs.
Inputs: Infected users input their previously broadcast Pseudo-IDs from the past
14 days (or other interval). Uninfected users input their previously encountered
Pseudo-IDs from the past 14 days (or other interval), along with any correspond-
ing metadata used to filter contacts conditionally. A PHA does not give any input.
Output: The PHA learns which users have both been in contact with infected
users and satisfy the conditions.

Fig. 3. Ideal functionality of conditional contact tracing.

Ideal Functionality and Informal Security Model: Our ideal functionality,
shown in Fig. 3, is for users to input their data, and for each uninfected user to
learn only if they are exposed. Informally, security of a protocol is maintained
if the view of an adversary or collusion of adversaries is indistinguishable from
the view of an execution of the ideal protocol.



Provably Secure Contact Tracing with Conditional Private Set Intersection 363

5.2 Strategy in Constructing Our Protocol

A user can be said to be at risk if the set of people they have encountered
intersects the set of infected persons, and the PHA can set conditions for further
filtering. However, naively using the CPSI protocol has security and privacy
issues. In particular, the sender would need to know the entire unencrypted set
of infected persons, and the receiver could learn when and from whom they
were exposed by noting which elements in the intersection are held in common.
We thus apply the ability of HE to separate knowledge and computation, and
deconstruct the role of sender in a CPSI protocol into that of a sender and
computer. In this formulation, the sender is a party much like the receiver,
who sends their encrypted data, and the computer is tasked with the actual
CPSI computation. Due to the need for preprocessing of the sender’s data (for
windowing and partitioning), the sender is further split into data holders and
a party who collects the aggregate data and performs the preprocessing. The
role of the receiver is also split - one party will receive and decrypt the CPSI
result from the computing party, and will send a final distilled result indicating
exposure or non-exposure to users. CPSI is used to allow for further filtering,
though if no additional condition on the intersection is required then regular
PSI can be used. Though CPSI requires that the sizes of users’ sets be publicly
known, for contact tracing we want to conceal the number of contacts a user
has had; batching masks this information. The number of batching slots can be
increased as needed (at the cost of extra computation), allowing such masking.

Conditional statements such as “if x ≥ h, P = 0; P = k otherwise” are not
directly supported in FHE schemes. Therefore, we use Lagrange Interpolation
to formulate a polynomial function that allows for homomorphic thresholding,
i.e., comparison and equality over ciphertexts, at the cost of extra multiplica-
tive depth [40]. For any function f : Zt → Zt with prime t (or a prime power),
there is a polynomial expression of f , defined as F : Zt → Zt and constructed
as F (x) =

∑
xi∈Zt

f(x) · (
∏

xa∈Zt,xa �=xi

x−xa

xi−xa
), which is well-defined if all of

the denominators and t are coprime (i.e., the denominators are multiplicatively
invertible). The degree of this polynomial is at most t − 1, and its multiplica-
tive depth is logarithmic in t. Precomputing powers of an argument x makes
computing this function a simple, single-depth dot product.

Integrating CPSI into our protocol to allow for conditional contact tracing
does not require any additional computation on the TEE’s part during decryp-
tion; nor is there any difference to the TEE’s preprocessing computations. Users
do have the extra overhead of additional preprocessing (computing and encrypt-
ing powers of their metadata), and the cloud server now has to homomorphically
compute the predicate P . However, this tradeoff allows the inclusion of private
conditional contact tracing by the PHA and its TEE.
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Conditional Contact Tracing

Parties: The parties here are users U , the PHA PHAM with a TEE, and a cloud computation
server C.
Setup: PHAM uses its TEE to generate a public/private key pair for use in FHE. The TEE
retains the private (decryption) key. PHAM distributes the public (encryption) key and any
other public parameters. Additionally, the PHA may pass a set of parameters for predicate
calculation pr (e.g., a threshold value) to C, either as a cleartext or a homomorphic ciphertext.
ID Collection: Throughout the day (or another specified interval), users collect randomly-
chosen Pseudo-IDs broadcast through Bluetooth. These Pseudo-IDs are changed every 15 min-
utes to protect privacy. (Alternately, they can be changed for every contact, as in [5].)
Encryption and Upload: Each user U formulates a set Y of Pseudo-IDs encountered since
its last upload and more recent than 14 days (or another interval), along with any associated
metadata (Y ′). The Pseudo-IDs and metadata are homomorphically encrypted, and uploaded
to C. If a user is confirmed to be infected with COVID-19, then their broadcast Pseudo-IDs
are uploaded to the TEE of PHAM for preprocessing, and thereafter forwarded to C as the
homomorphically encrypted set X. The set X can be partitioned by daily or two-day intervals,
to reduce the required size of the plaintext space.
Compute Intersection of Contacts:
1. The cloud server C has a set of ciphertexts S of Pseudo-IDs from infected users. The

cloud server can also (homomorphically) compute Ppr(·).
2. For each user U with a set Y sent to C as ciphertexts ci and associated metadata Y ′

sent as ciphertexts c′
i, C will homomorphically compute the PSI circuit of Y and X as

d′
i =

∏
x∈X(yi − x) for yi ∈ Y .

3. The predicate value is calculated as pi = Ppr(c′
i) ∈ {k, 0}, where t − k is not a QR

mod t. The calculation of pi can be homomorphically calculated through polynomial
interpolation [40].

4. The CPSI result is di = ri · (pi + (d′
i)

2), for a random nonzero value ri. (Alternately, if
no condition is used, then di = ri · d′

i.) This encrypted result is forwarded to the TEE of
PHAM .

5. The TEE will decrypt the result, and determine whether the user is at risk of infection.
If the conditioned intersection is nonempty, then there was some contact between a user
and an infected individual which puts that user at risk of infection. The TEE can then
forward each users’ result to the user (first variant) or the PHA (second variant).

Fig. 4. A CPSI-based protocol for conditional contact tracing.

5.3 Protocol Description

Our protocol is detailed in Fig. 4. The key management server PHAM uses its
TEE to derive public-private key pairs for HE, along with any other parameters
used in the CPSI protocol. Public (encryption) keys are distributed to users, and
the secret (decryption) key is held by the TEE of PHAM and not distributed.

Table 1. Network communication/computation overhead for TEE

Operation Plain intersection in TEE Our protocol Our protocol

(Colocated TEE) (No Colocation)

Input received O(Nx · Npid + Ny · Nc) O(Nx · Npid) O(Nx · Npid)

Processing O(Nx · Npid · Ny · Nc) O(Nx · Npid + Ny · Nc) O(Nx · Npid + Ny · Nc)

Output sent O(Ny) O(Ny) O(Ny + Nx · Npid)
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Throughout the day, each users’ phone will broadcast randomly changing
Pseudo-ID strings to other nearby phones. At the end of each day (or other
interval), users will have an list of IDs of contacts. Users who are infected with
COVID-19 will (not necessarily homomorphically) encrypt their list, and upload
their encrypted Pseudo-IDs to PHAM , whose TEE will preprocess those values
(partition and precompute windowing coefficients) and send the homomorphi-
cally encrypted results to C as the set S (with partitioning and other prepro-
cessing performed).

Each uninfected user U will then send their encrypted set Y of encountered
Pseudo-IDs with accompanying encrypted metadata Y ′ to C. Then for each user
U , C will run the computation of CPSI on Y , Y ′, and S, and send the result to
PHAM . The TEE of PHAM will then be able to decrypt the result, and return
only an indication of exposure or nonexposure for each user. The result may
be returned to either users (the first variant) or the PHA (the second variant)
- this can be easily configured, and users can verify the security of decryption
through remote attestation of the TEE. In practice, the precomputation and
encryption of uninfected users can be done overnight via a synced laptop or
desktop computer, and this computation is “offline”, so the time and energy of
encryption is not an issue.

5.4 Performance and Optimizations

This scheme aims to shift the greatest burdens of PSI computation away from
users or a TEE and onto cloud servers with scalable resources. A system simply
using the TEE to compute contacts would be heavily burdened by the amount
of communication, computation, and memory used. Let Nx be the number of
infected users with Npid IDs each, and Ny be the number of uninfected users
with up to Nc collected Pseudo-IDs each. Then the TEE needs to receive and
operate upon Nx ·Npid +Ny ·Nc operands. In our protocol, the TEE only needs
to take in Nx ·Npid operands and forward O(Nx ·Npid) preprocessed ciphertexts,
then decrypt and forward Ny results. This represents a significant savings in
communication, memory, and computation for the TEE. When the TEE, PHA,
and cloud are colocated (in the same machine), the network savings are even
greater. This is shown in Table 1. The runtime of comparison in the TEE can be
reduced to loglinear with a binary search tree or even linear with a hash table,
but this will incur a higher memory overhead. Seeing as the TEE is memory-
limited, these strategies may not be advisable.

Most of the optimizations from Sect. 4.4 can be applied directly to our CPSI-
based protocol. Batching, hashing, and modulus switching can be applied “out-
of-the-box” to reduce computation and communication. Windowing and parti-
tioning can also be applied to decrease the depth of the homomorphic compu-
tations. However, the preprocessing for these optimizations requires knowledge
of the entire set of the infected users’ broadcast Pseudo-IDs, which is why they
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are sent to the TEE for preprocessing. The data of infected and uninfected users
can be partitioned by sorting IDs based on the 1-day or 2-day interval in which
they are broadcast, making it easier to update and deprecate datasets. The dual
plaintext space of Sect. 4.5 can also be applied to allow for a larger pool of ran-
dom Pseudo-IDs to reduce the probability of collisions, while keeping predicate
calculation runtimes tolerable. In general, a high degree of parallelism is appli-
cable to our scheme. The cloud server can calculate each users’ PSI in parallel,
and that computation can be further parallelized across the partitions of the set
of infected IDs.

5.5 Security

We informally discuss the security of our protocol, as the security comes from the
security of CPSI proved in Theorem 1. This protocol is essentially deconstructing
the CPSI protocol of Sect. 4.2 to aggregate all infected users’ data in a secure
environment for preprocessing as a single set, and to allow the decrypted result
to be privately distilled to a binary result. There may be some privacy leakage in
practice: for example, a person only in contact with one other person who receives
an indication of exposure can conclude that their contact poses a health risk to
them. However, such leakage is unavoidable, as it also occurs in an execution of
the ideal protocol of Fig. 3.

The amount of ciphertexts sent may give upper and lower bounds to how
many personal contacts a user has had, which may breach privacy. However,
it is a generally reasonable assumption that a user will have much fewer than
N contacts in a day, so that they only need to send one ciphertext. With this
assumption, the exact number of a user’s contacts is not leaked in this protocol,
and privacy is maintained. For high-density populations, N can be increased as
needed. If batching is not used, then padding sets of Pseudo-IDs with encryptions
of a dummy element guaranteed to never be chosen as a Pseudo-ID can protect
the number of a user’s observed contacts.

Uninfected users only see Pseudo-IDs of other users, which rotate every
15 min or upon a contact, so that a user’s movement cannot be easily tracked
for longer intervals. They do not see anything else throughout the protocol.
The cloud server never sees any unencrypted user data. The cloud server sees
encrypted Pseudo-IDs from uninfected users, but due to batching, only a sin-
gle ciphertext is sent to the cloud. Uninfected users learn that they came into
contact with an infected user, but are not provided any other information. In
extreme cases (e.g. a user only seeing one other person), the user may be able
to learn if other people are infected. However, this is an unavoidable leakage as
aforementioned. The PHA (sans TEE) learns which users have come into contact
with infected people only, as the TEE only returns the final result for each user
to the PHA. It is assumed that the PHA knows which users are infected.



Provably Secure Contact Tracing with Conditional Private Set Intersection 367

Table 2. Performance on Real-world dataset

Operations by different entities Time (seconds)

User Pseudo-ID Preprocessing & Encryption (for each user on average) 0.03

User Metadata Preprocessing & Encryption (for each user on average) 519.57

User Time for each contact tracing (for each user on average) 519.60

One-time Infected Pseudo-ID Preprocessing & Encryption for 27 Pseudo-IDs 0.19

Cloud Predicate (per user on average) 352.01

Cloud CPSI Circuit (per user on average) 0.45

Cloud Time for each contact tracing (per user on average) 352.46

Decryption total (for 20 users) 0.78

Total TEE time for each contact tracing (for 20 users) 0.97

6 Evaluation with Real-World and Synthetic Datasets

Our proof-of-concept implementation consists of four core programs perform-
ing the functionalities described in Sect. 5. These programs are written in stan-
dard C++ (no actual TEE was used for the proof-of-concept implementation),
with the sole external dependency of Microsoft SEAL [36]. Our code is available
at https://gitlab.com/jtakeshi/contact-tracing. We chose to use B/FV [15] and
SEAL [36] due to their successful use in previous related work [8,9]. We included
the optimizations of batching, windowing, and partitioning.

Our tests were run on a computer with an Intel Xeon 20-core CPU operating
at 3.7 GHz with Intel SGX support, 128 GB of RAM, and Ubuntu 18.04. We
used parameters of t = 114, 689, bit(t) = 17, N = 8, 192. We chose a partition
size of 5 for the infected users’ Pseudo-IDs. These parameters are the smallest
that can be chosen in Microsoft SEAL to allow all the computations needed for
CPSI.

The real-world dataset we use is an anonymized set of collected users’ beacon
contacts from real-world users. It is obtained via request from Project Tesserae
[17], a multi-university research involving the collection, instrumentation and
analysis of data from hundreds of smartphones and wearables over several years
of continuous data streaming. The dataset includes one-month interactions of 20
users in an office building in 2018. The 20 users averaged about 228 contacts,
allowing the use of only a single batched plaintext for all of a user’s inputs.
There were 27 Bluetooth beacons interpreted as infected Pseudo-IDs broadcast,
so with a partition size of 5, 6 partitions were used for infected users’ data. The
CPSI metadata used was signal strength.

We first tested the performance of our implementation on the real-world
dataset (Table 2). Reported figures are an average across all 20 users’ computa-
tions for the user and cloud computations. Our results show that our protocol
is effective and reasonably efficient for a small pool of users. The most intensive
steps were the users’ and cloud’s work in predicate preprocessing and calculation,
which is expected as the runtime of interpolation is linear in t = 114, 689. When
not using a condition, both cloud and user computations can be performed in

https://gitlab.com/jtakeshi/contact-tracing


368 J. Takeshita et al.

less than a second; health authorities with less powerful servers and more con-
stituents may thus wish to consider this alternative. These results show a bench-
mark for execution time on a (small) real-world dataset, and give an estimate of
calculation of predicate runtimes.

To test our scheme’s scalability, we generated synthetic data with increasing
amounts of infected users’ Pseudo-IDs broadcast, using 200, 1000, 2000, and
20,000 Pseudo-IDs. Each user in this dataset observes N = 8192 Pseudo-IDs
including the non-infected users’, and 10 users’ data was generated, so numbers
reported are the average across 10 trials. The real-world dataset already shows
the per-user predicate calculation time and user preprocessing time (which are
independent of the number of users, infected or unexposed), so our main goal
in this experiment is to see how the number of infected users affects the per-
user performance of the cloud server. TEE preprocessing and decryption scaled
well (as expected); Fig. 5(b) shows these operations taking less than 118 s and
2.1 s/user, respectively, with 20,000 infected users’ Pseudo-IDs used. As shown
in Fig. 5(a), the cloud’s computation also increases linearly (as expected) with
the number of infected users’ Pseudo-IDs used. The cloud CPSI computations
take 616.24 s/user, with 20,000 infected users’ Pseudo-IDs used.

(a) Runtime of Cloud Operations (b) Runtime of TEE Operations

Fig. 5. Experimental results

We judged our efficiency in three areas. First, it is desirable that the computa-
tional load on the TEE-based computations be small; this goal is easily fulfilled,
as shown with both real-world and synthetic datasets. Second, we want users’
computation to be doable during overnight charging of devices; our results show
that a user’s computation can be performed in approximately 10 min or less (con-
siderably less without metadata processing), easily achieving this goal. Third,
we want the cloud to be able to perform its computation efficiently. Suppose that
the Pseudo-IDs are rotated upon a new contact, as in [5]. Empirical observation
at our university shows that an average of 20 contacts are revealed in contact
tracing, so it is reasonable to assume that 20,000 infected users’ Pseudo-IDs
being broadcast represents 500 infected users (40 contacts per user). Assuming



Provably Secure Contact Tracing with Conditional Private Set Intersection 369

that 1% of the population are infected users, this gives us a total population of
about 50,000. With these conditions, a user’s CPSI calculation can be performed
by the cloud in about 10 min. Then the entire population’s contact tracing can
be computed in 12 h with 24 24-core machines (or 12 48-core machines), though
this is a slightly optimistic estimate.

We conclude that our CPSI-based protocol can compute overnight contact
tracing for a population of thousands of people (e.g., a neighborhood, college,
or small city). This scale is useful for contact tracing on small populations, e.g.,
college communities [7,27], small cities. Our implementation has such a limited
scalability due to the rigidity of the B/FV scheme [15] and Microsoft SEAL [36]
that we used for ease of prototype system development. In SEAL’s B/FV param-
eter selection, users are forced to use a large plaintext space, which made pred-
icate precomputation/calculation slow. This does not indicate the design of our
protocol has low scalability. Other schemes and libraries (e.g. BGV [6] and PAL-
ISADE [13]) allow the use of smaller plaintext spaces. If such schemes/libraries
are combined with our novel dual plaintext space technique (see Sect. 4.5), our
CPSI can be much more efficient and thus scalable. Also note that our implemen-
tation is only a proof-of-concept; a fully optimized implementation will be much
more efficient. Real-life use of this protocol can achieve much greater scalability
by utilizing strategies such as parallelization, cloud computing, and hardware
acceleration to improve homomorphic computation [35,39]. Due to the lack of
other works’ experimental runtime data and the relatively high degree of secu-
rity and functionality of our scheme, a direct experimental comparison to other
work cannot be made.

7 Extensions for More Sophisticated Applications

7.1 Duration-Based Conditioning

Recent CDC guidelines state that people are at risk if they are in contact with
infected people for over 15 min in any 24-h windows [16]. Conditions like this
can be accounted for by using CPSI.

The homomorphically encrypted intermediate values d′
i can be saved and

reduced to a Boolean value as bd′
i
= 0 when di = 0 and bd′

i
= 1 otherwise, using

the interpolation discussed in Sect. 5.2 [40]. The duration of each contact can
be recorded by a user’s phone as duri. We can then homomorphically compute
S =

∑
i bd′

i
· duri, an encryption of the total duration of a person’s exposure.

With batching, computing this may require the use of ciphertext rotation [19].
The cloud server can then use the threshold predicate p = ppr(S) to test if
S ≥ 15 in CPSI. The calculation of S requires a multiplicative depth of 2 with
windowing, and the calculation of p may require a depth of up to log2(t). The
other parts of CPSI can be calculated with a depth as small as 3, with the final
multiplication taking place after the predicate’s inclusion, so the first two levels
of depth are not dominating terms in the total depth for reasonable t larger than
4. Thus the total required depth is log2(t) + 1.
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7.2 Multi-hop Tracing

Consider the scenario of multi-hop contact tracing: if an infected person Charlie
was found to have a contact with a person Bob, then it is desirable to detect
contacts of Bob before and after that contact to find multi-hop contacts. In
existing approaches, entirely rerunning new iterations of the protocol is required
for multi-hop tracing. We aim to support the multi-hop tracing, in not forcing
uninfected users to participate in multiple rounds of the protocol until and unless
they are identified as a contact, while identifying the contacts from backward
and forward tracing separately. We can accomplish this by modifying the second
variant of our protocol, so that additional rounds of contact tracing can be
performed without needing additional participation from unexposed users.

Conditional Contact Tracing with Multi-Hops

Let Nh ≥ 2 be the number of hops from confirmed infected users that we wish to trace. Then
the number of additional rounds Nr is Nh − 1.
Parties, Setup, ID Collection, Initial Encryption and Upload: These phases are as
originally formulated in Figure 4, with the modification of timestamps being encrypted (not
necessarily homomorphically) and attached to all Pseudo-IDs.
Initial Intersection: C performs the CPSI computation as in Figure 2, and returns the result
with corresponding encrypted timestamp to the TEE of PHAM . The result and timestamp
are decrypted internally, and infected users as well as the time of contacts are revealed to the
TEE.
Multi-Hop Tracing: For i = 1 to Nr:
1. The TEE collects broadcast Pseudo-IDs from each previously identified user for prepro-

cessing. The IDs are grouped into sets PREi and POSTi, based on whether the ID was
broadcast before or after the contact of the identified user. (In case of multiple contacts,
Pseudo-IDs can be included in both sets.) The TEE then homomorphically encrypts these
sets, and sends them to C.

2. For each user U , C will homomorphically compute the CPSI of U ’s contacts with both
PREi and POSTi, and forward the results to the TEE of PHAM .

3. The TEE will decrypt the results. From this, the TEE learns who has been in contact
with an indicrect contact of a COVID-positive individual, and whether that contact oc-
curred before or after the contact with an infected person. The contacts from PREi and
POSTi will be used as the individuals whose broadcast Pseudo-IDs comprise PREi+1 and
POSTi+1, and those individuals can be notified to upload their broadcast Pseudo-IDs.

Final Results: After completing all Nr rounds, the TEE of PHAM returns the result of
exposure for all participants not notified in a previous round.

Fig. 6. A CPSI-based protocol for multi-hop contact tracing.

The TEE is already utilized for preprocessing. With minimal extra overhead,
it can be used to selectively choose which data is used for different CPSI com-
putations. Consider the earlier example, where Bob would be identified as a
close contact of the infected Charlie. When Bob sends his data to the TEE for
preprocessing, he can also upload timestamps as metadata. Suppose Bob and
Charlie met at tsb,c. Then the TEE can sort Bob’s broadcast Pseudo-IDs into a
set PRE2 or POST2, depending on if they happened before or after tsb,c. (PREi

is the set of contacts i hops away from the initial set.) After the sets PRE2 and
POST2 have been aggregated from all users who were in contact with those
individuals confirmed to be infected, they are preprocessed, homomorphically
encrypted, and sent (separately) to C. Then C can rerun the CPSI computation
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against these two sets, and return the results to the TEE. This shows the TEE
who was in contact with Bob (and others like him who contacted an infected
individual) before and after they contacted an infected individual. By having
uninfected users also attach timestamps, the TEE will additionally learn when
that secondary contact happened. The above process can then be repeated to
form sets PRE3, POST3, PRE4, POST4, etc. In practice, only a few rounds
would be necessary. The above process is detailed in Fig. 6. Unlike some existing
approaches [24], our multi-hop tracing does not require uninfected and uncon-
tacted users to perform any additional computation or communication.

8 Conclusion

We present a secure protocol for COVID contact tracing based on the use of
our novel CPSI protocol and TEE. Our contact tracing protocol is extended
beyond basic conditioned contact tracing to filtering by duration with CPSI,
and is also expanded to forward/backward multi-hop tracing. With our imple-
mentation, a users’ required computations can be completed in as little as 9 min,
and the cloud’s per-user computation can be as little as 11 min for 20,000 total
Pseudo-IDs broadcast by all infected users, with negligible overhead for TEE
preprocessing and decryption.
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