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Abstract. In modern times, data collected from multi-user distributed
applications must be analyzed on a massive scale to support critical
business objectives. While analytics often requires the use of personal
data, it may compromise user privacy expectations if this analysis is
conducted over plaintext data. Private Stream Aggregation (PSA) allows
for the aggregation of time-series data, while still providing strong pri-
vacy guarantees, and is significantly more efficient over a network than
related techniques (e.g. homomorphic encryption, secure multiparty com-
putation, etc.) due to its asynchronous and efficient protocols. However,
PSA protocols face limitations and can only compute basic functions,
such as sum, average, etc.. We present Cryptonomial, a framework for
converting any PSA scheme amenable to a complex canonical embed-
ding into a secure computation protocol that can compute any function
over time-series data that can be written as a multivariate polynomial,
by combining PSA and a Trusted Execution Environment. This design
allows us to compute the parallelizable sections of our protocol outside
the TEE using advanced hardware, that can take better advantage of
parallelism. We show that Cryptonomial inherits the security require-
ments of PSA, and supports fully malicious security. We simulate our
scheme, and show that our techniques enable performance that is orders
of magnitude faster than similar work supporting polynomial calcula-
tions.

Keywords: Private multivariate polynomial evaluation · Trusted
execution environment · Secure aggregation

1 Introduction

Third-party analysis on personal records is becoming increasingly important due
to widespread data collection in the modern world. However, this data often con-
tains private information about users such that its publication could seriously
compromise their privacy, and a number of studies have shown that signifi-
cant precautions must be taken to protect such data from malicious actors [5].
Accordingly, it would be beneficial to have a technology that allows a third-
party aggregator to learn the result of the analysis performed on users’ private
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datasets over a network, but nothing else. Many such distributed analyses can
be done by or approximated by multivariate polynomial calculations. Common
machine learning (ML) tasks such as linear regression, support vector machines
(SVMs), activation functions, etc., can be formulated as a multivariate polyno-
mial function over users’ private inputs. In recent times, the COVID-19 crisis
has led to a renewed interest in applying ML to disease detection and diagno-
sis, and a number of highly successful techniques [8,29] have been developed to
assist medical researchers in combating the virus. For such pressing demands,
we consider the problem of allowing a set of users in S to privately compute a
polynomial function over their collected time-series data such that an untrusted
aggregator only learns the final result, and no individual honest user’s data is
revealed. More formally, we aim at supporting polynomial evaluation over users’
time-series input data in the following format of a general multivariate polyno-
mial : f({xi,j}i∈S,j=1,...,z) =

∑z
j=1 cj(

∏
i∈S mei,j

i,j,ts), where z is the number of
product terms in the polynomial, cj and ei,j are public parameters, and mi,j,ts

are secret data from the i-th user at time stamp ts.
There are relatively few practical techniques that can be utilized in this

setting, where maintaining the privacy of patients’ medical data is of critical
(and due to HIPAA, legal) importance. Fully Homomorphic Encryption (FHE),
Differential Privacy (DP), Secure Multiparty Computation (MPC), or Oblivious
Polynomial Evaluation (OPE) might be used individually as black boxes to solve
this problem, but each have significant constraints that negatively impact their
practical deployment in the real world. FHE’s high computational overhead leads
to significant slowdown that makes it impractical in large-scale settings. DP adds
noise to the final output of the function, and the resulting accuracy loss can
greatly harm the predictive power of any ML analysis. MPC requires participants
to send multiple messages during protocol execution, which can seriously degrade
overall runtime. OPE also requires multiple messages to be sent, and is focused
on the two party setting, which limits its applicability in large scale data analysis.

Private Stream Aggregation (PSA) is a form of distributed secure computing
that is promising for achieving this functionality. With this technique, users
independently encrypt their input data and send it to an aggregator in a way
that allows the aggregator to efficiently learn the aggregation results of time-
series data without being able to infer individual data. PSA is generally superior
to other types of secure computation paradigms (e.g., MPC, FHE) in large-scale
applications involving time-series data because of its extremely low overhead
and the ease of key management [16,30]. Notably, PSA is non-interactive (i.e.,
users send their time-series data in a “stream” and only one message is sent
per time interval) and asynchronous (i.e., users can leave after submitting their
inputs), making it more efficient in communication than most existing alternative
techniques [36]. Although PSA is a mature field of study, prior work in this
field is mostly limited to simple aggregation (sum, average, etc.). Due to these
limitations, it is challenging for even the most advanced PSA protocols to be
deployed in real-world applications for computing stream polynomial evaluation
over users’ time-series data.
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To overcome this limitation with existing works, we developed the Cryptono-
mial framework, which can convert any PSA scheme amenable to a complex
canonical embedding (CCE) [7], an isometric ring homomorphism between com-
plex numbers and integral polynomials, into a privacy-preserving stream polyno-
mial evaluation scheme, that supports additional functionality beyond an addi-
tive sum, up to general stream polynomial evaluation. With the use of a Trusted
Execution Environment (TEE), we avoid sacrificing security or performance,
and can build a highly scalable protocol that is capable of computing richer
statistics with high efficiency and throughput. Our framework intelligently com-
bines/tweaks traditional quantum-secure PSA, the CCE, and a TEE to efficiently
support stream polynomial evaluation without incurring the drawbacks of sim-
ply using a TEE alone or a PSA scheme alone to directly do so. Although it
may seem more efficient to simply send plaintext data to an SGX enclave to
be computed over, it is known that some TEEs (e.g., Intel SGX) have difficul-
ties exploiting multi-threading [35] due to the lack of common synchronization
primitives often found on traditional operating systems, and leveraging thread-
ing within TEEs can introduce security vulnerabilities [37] which compromise
data privacy. Overall performance can be improved by outsourcing the compu-
tationally expensive steps to an untrusted space in an encrypted form, so we can
leverage more robust forms of parallel computing especially on high performance
hardware such as GPUs, which is not possible with the approaches entirely based
on TEEs.

Cryptonomial combines additive PSA with a complex canonical embedding
to develop a multivariate polynomial PSA, where single product terms are leaked
to the aggregator in a basic design. This leakage is prevented by integrating a
TEE into the design, where only a small constant amount of computations are
outsourced due to the nature of our design. These techniques allow for signif-
icant performance improvements over the current state-of-the-art protocols for
privacy-preserving polynomial calculations by multiple orders of magnitude. It is
noteworthy that our framework is compatible with state-of-the-art techniques in
computational differential privacy [2,31,36] which prevent adversarial inference
from the outcomes of aggregation. Cryptonomial contributes to the develop-
ment of secure ecosystems of collection and analysis involving user-generated
datasets, by increasing the utility of the data gathered for data aggregators,
while still ensuring the privacy of users with a strong set of guarantees. Note
that tolerance of online/offline faults and input poisoning (when malicious users
send false inputs to poison the final function output) are orthogonal problems to
our work, and this paper focuses on expanding the versatility of PSA. Existing
solutions towards these problems [17,19] can be incrementally deployed on top
of ours if either of these properties are needed.

In summary, our contributions are as follows:

– We present a new framework to support for the first time PSA-based general
stream polynomial evaluation.

– We demonstrate the strong provable privacy guarantees of our instantiated
protocol by presenting a formal proof of security.
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– We provide an experiments in order to evaluate the performance when com-
pared to existing work and verify the improved efficiency over existing work
by multiple orders of magnitude. Our code is open source and available at
https://github.com/RyanKarl/CryptonomialDemo.

2 Potential Applications of Cryptonomial

Regression Analysis: Regression analysis (i.e. polynomial regression and ridge
regression) is a statistical process for estimating the relationship among multiple
variables, with numerous applications in finance, medical research, and a number
of other domains [28]. In this type of data analysis each user i ’s data record
is described as a feature vector x and a dependent variable yi, and training a
regression model is to find p which minimizes MSE(p) =

∑
i (yi − pxi)

2
, i.e.,

the linear predictor who predicts users’ dependent variable vector y using their
feature matrix X with minimum mean squared error. Since MSE(p) is convex,
it is minimized if and only if Ap = b where A = XTX and b = XTy, such
that A =

∑
i xixT

i and b =
∑

i yixi. By using our technique, the aggregator can
obliviously evaluate any polynomial regression model.

Support Vector Machines: This protocol can be useful for model-
ing/predicting diseases in individuals, by supporting a variety of privacy-
preserving ML techniques, such as support vector machines (SVM). Supervised
machine learning methods have high performance in solving classification prob-
lems in many biomedical fields, particularly the SVM [38]. Because the SVM
approach is data-driven and model-free, it has discriminative power for clas-
sification, especially in cases where sample sizes are small and there are large
numbers of variables. This technique has recently been used to develop auto-
mated classification and detection of diseases in the clinical setting [24,33], but
in all of these cases, participants’ privacy was not preserved, and participants
either forfeited their data or signed legal agreements that their data would not be
shared. In many instances this level of privacy protection may not be sufficient,
and we seek to design a system that protects the privacy of each individual data
point from public health authorities.

3 Related Work

There are six primary techniques that can be leveraged to achieve traditional
secure aggregation or secure polynomial evaluation: 1) FHE, which suffers from
high computational overhead, 2) DP, which introduces noise that negatively
impacts accuracy, 3) MPC, which increases the communication complexity (num-
ber of communication rounds) compared to other techniques, 4) PSA, which
overcomes most of the communication and computational overhead constraints
of the previous approaches, but is limited to computing simple functions, 5) OPE
which supports polynomials but suffers from high communication complexity and
is primarily focused on the two party setting, and 6) Secure/Privacy-preserving

https://github.com/RyanKarl/CryptonomialDemo


336 R. Karl et al.

Polynomial Evaluation, which also suffers from high communication complexity
and scalability issues. We discuss these in more detail below:

Fully Homomorphic Encryption: FHE [7] can be applied to evaluate a mul-
tivariate polynomial securely. However, the key management is nontrivial. The
aggregator must be trusted to not decrypt ciphertexts pre-aggregation, or the
duties of aggregation and decryption should be separated between two servers.
Furthermore, there can be significant computational overhead when using FHE.
For instance, existing work leveraging FHE [21] to construct secure protocols
for aggregation reports an overall computation time of approximately 15 min
when computing over only 40 thousand data points. As a result, FHE is often
impractical in large-scale aggregations.

Differential Privacy: Modified DP has been used in existing works [27,30] to
achieve O(1) error, while using generic differential privacy techniques alone would
result in at least Ω(N) error. Note, [27] also considers periodic aggregation of the
sum statistic in the presence of an untrusted aggregator. Their work does not
present a formal security definition and requires that the aggregator engage in
an extra round of interaction with the participants to decrypt the sum for every
time interval. While these techniques can be useful, we are interested in better
techniques that do not seriously impact the final accuracy of the aggregation.
High amounts of noise or accuracy loss in the secure aggregation can greatly
harm the predictive power of future data analysis, and we are primarily focused
on the case where users do not apply differentially private noise to their inputs.

Secure Multiparty Computation: MPC protocols allow a set of parties to
securely compute an arbitrary function over their inputs [3]. While it is feasible
to evaluate a polynomial with MPC, MPC protocols require multiple messages
be sent each time interval (round) between users, limiting scalability. All users
must wait on the slowest user, and the runtime of each round is determined by
that of the slowest user. In cases when MPC is conducted over the Internet,
communication round complexity is often the primary bottleneck [3,18], since
network latency slows the delivery of packets necessary for continuing to exe-
cute the protocol. This problem becomes significantly worse when parties are
geographically distant and the communication latency of each message is high.

Private Stream Aggregation: PSA was first studied by Rastogi et al. [27] and
Shi et al. [30]. There have been many papers that build on these works, but the
vast majority focus on sum aggregation, and not on more complicated functions,
such as those based on polynomials. The most extensively studied domain is the
pre-quantum PSA based on the Decisional Diffie-Hellman (DDH) assumption
and/or the Decisional Composite Residuosity (DCR) assumption [15]. These
PSA schemes are vulnerable against quantum computers. Some post-quantum
PSA schemes are superior to pre-quantum PSA schemes in overall throughput
due to the smaller parameters enabled by the quantum-secure constructions and
the various algorithmic optimizations available in quantum-proof cryptography.
Early work in quantum-secure PSA [2] employed existing lattice-based encryp-
tion schemes as black-box building blocks and was disadvantaged in performance
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due to complex designs. More recent work in quantum-secure PSA [31] has used a
white-box approach to reduce the complexity and overhead in both computation
and communication, but is still limited to a single additive aggregation.

Fig. 1. Comparison of Existing Work and Cryptonomial; s is the number of secret
shares, n is the number of users, w is the plaintext modulus, Δ is the range of inputs, l
is the bit length of the inputs, λ is the security parameter, d is the degree of the poly-
nomial, x is the number of terms in the polynomial, χ is the bitlength of the safe prime
numbers, t is the minimum threshold of participants in the aggregation, o is the number
of points defined on the polynomial, a is the length of the RSA modulus, X and Y are
sets of elements, D is the sum of the logarithms of the variable degrees for polynomials
consisting of r monomials, b is the number of inputs for each user, α is the degree
of the inputs, and k is a parameter where k ≤ n. Q indicates quantum security, AO
indicates aggregator obliviousness, SH/FM indicates security against semi-honest and
fully malicious adversaries respectively, Sem indicates semantic security, DP indicates
differential privacy and TA indicates a trusted aggregator is required.

Oblivious Polynomial Evaluation: OPE is a protocol involving two parties,
a sender whose input is a polynomial P, and a receiver whose input is a value α.
At the end of the protocol the receiver learns P(α) and the sender learns nothing
[25]. There are many interesting applications of this idea, including private com-
parison of data, mutually authenticated key exchange, and anonymous coupons.
Many have built on top of this idea, to support operations over floating point
numbers for use training neural networks [6], to allow verifiable outsourcing of
polynomial calculations to enable secure set intersection [13], to have tighter
bounds on computational and/or communication efficiency [34,39]. These tech-
niques can be powerful, but a major drawback is that they only consider the
two party setting and generally require multiple rounds of communication (i.e.
multiple messages must be sent each time-interval).
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Secure/Privacy-Preserving Stream Polynomial Evaluation: There is
existing work that supports private polynomial calculations [16,17]. However,
individual product terms are disclosed to the aggregator in some work [16], and
they generally rely on the DDH assumption and are not quantum secure. Also,
existing works have limited scalability, and their polynomial degree is limited
to a constant [12], otherwise the communication overhead is prohibitively large.
Some approaches also suffer from high communication round complexity and
low scalability [9,11,26]. A more general approach exists [4], however it is also
an interactive protocol with high communication round complexity.

Our work is more general than standard PSA, and can be used to compute
any function that can be written as a polynomial. It avoids the drawbacks of
the previous approaches by combining PSA and a TEE, to maximize efficiency
while supporting polynomial evaluation. We summarize our findings in Fig. 1.

4 Preliminaries

PSA Adversary Model: In general, PSA schemes are designed to allow an
untrusted third party (the aggregator) to perform aggregation computation while
providing semantic security to data sent by users. We consider a slightly different
adversary model than what is standard in PSA. The users have the same role as
before, and send ciphertexts to an aggregator, but in our work the aggregator
is equipped with a TEE. We assume that all users may collude with each other
and/or the aggregator, although the TEE is trusted according to its specification.
We want to guarantee that the aggregator cannot learn any individual input
from any honest user (this implies if an aggregator corrupts or colludes with a
user to learn their input, this does not impact the privacy of the honest users).
All the aggregator can learn is the output of the function. Standard aggregator
obliviousness [2,15,17,30], which states the aggregator and colluders learn only
the final aggregation outcome and what can be inferred from their inputs, is
guaranteed. More specifically, we consider the case of a set of n users and a
single aggregator A. Each user ui ∈ S where 0 < i ≤ n − 1 possesses a piece of
data xi,ts, corresponding to some timestamp ts. The users wish to calculate an
aggregation function f over the private values they send. PSA is formalized as
the following 3 algorithms:

– Setup(λ, · · · ): Takes a security parameter λ as input, along with any other
required parameters, e.g. the number of users n and the range of their data.
Returns a set of parameters parms, users’ secret keys si, i ∈ [0, n − 1], and
the aggregation key s′.

– Enc(parms, xi,ts, si, ts, · · · ): Takes the scheme’s parameters, and a user’s
secret key si and time-series input xi,ts, along with a timestamp ts. Returns
an encryption ci of the user’s noisy input under their secret key.

– Agg(parms, s′, ts, c0,ts, · · · cn−1,ts): Takes the scheme’s parameters, the aggre-
gation key, a timestamp ts, and the n time-series ciphertexts from the users
(with timestamp ts). Returns yts = f(x0,ts, x1,ts, · · · , xn−1,ts), where f is the
aggregation function.
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Users will run Enc on their data, and send their results ci,ts to the aggregator.
Then the aggregator calls Agg on the ciphertexts c0,ts, · · · cn−1,ts it has collected
to learn the aggregation result yts. Note we sometimes omit the timestamp nota-
tion moving forward for clarity when the context is clear. In PSA schemes, the
algorithm Setup is run in a trusted manner [2], via the use of an additional
trusted third party, secure hardware, or secure multiparty computation. Infor-
mally, we wish to require that an adversary able to compromise the aggregator
and any number of other users is unable to learn any new information about
uncompromised users’ data. This idea is known as aggregator obliviousness, and
the standard definition [2,30] is summarized below:

Definition 1. Suppose we have a set of n users, who wish to compute an aggre-
gation at a time point specified by the timestamp ts. An aggregation scheme π is
aggregator oblivious [2,30] if no polynomially bounded adversary has an advan-
tage greater than negligible in the security parameter λ in winning the following
game:

The challenger runs the Setup algorithm which returns the public parameters
parms to the adversary. Then the adversary will guess which of two unknown
inputs was a users’ data, by performing the following queries:

Encrypt: The adversary argues (i, xi,ts, ri,ts) to the challenger and receives back
Enc(parms, ski, ts, xi,ts, ri,ts) from the challenger.

Compromise: The adversary argues i ∈ [0, n) ∪ {ζ}. If i = ζ, the challenger
gives the aggregator’s decryption key s′ to the adversary. Otherwise, the chal-
lenger returns the ith user’s secret key si to the adversary.

Challenge: The adversary may only make this query once. The adversary
argues a set of participants S ⊂ [0, n), with i ∈ S not previously compro-
mised. For each user i ∈ S, the adversary chooses two plaintext-noise pairs
(xi,ts, ri,ts), (x̃i,ts, r̃i,ts) and sends them to the challenger. The challenger then
chooses a random bit b. If b = 0, the challenger computes ci,ts = Enc(parms,
si, ts, xi,ts, ri,ts) for every i ∈ S. If b = 1, the challenger computes ci,ts =
Enc(parms, si, ts, x̃i,ts, r̃i,ts) for every i ∈ S. The challenger returns the cipher-
texts {ci,ts}i∈S to the adversary. The adversary wins if they can correctly guess
bit b chosen during the Challenge.

Trusted Execution Environment: Note that our framework can work with
any form of Trusted Execution Environment (TEE), but we chose the Intel SGX
for our concrete instantiation.

Intel SGX is a set of new CPU instructions that can be used by applications
to set aside private regions of code and data. It allows developers to (among other
things) protect sensitive data from unauthorized access or modification by mali-
cious software that may be running at superior privilege levels. To do this, the
CPU protects an isolated region of memory called Processor Reserved Memory
(PRM) against other non-enclave memory accesses, including the kernel, hyper-
visor, etc. Sensitive code and data is encrypted and stored as 4KB pages in the
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Enclave Page Cache (EPC), a region inside the PRM. Even though EPC pages
are allocated and mapped to frames by the OS kernel, page-level encryption guar-
antees confidentiality and integrity. In addition, to provide access protection to
the EPC pages, the CPU maintains an Enclave Page Cache Map (EPCM) that
stores security attributes and metadata associated with EPC pages. This allows
for strong privacy and integrity guarantees if applications can be written in a
two part model [10,19].

Applications must be split into a secure part and a non-secure part. The
application can then launch an enclave, which is placed in protected memory,
that allows user-level code to define private segments of memory, whose con-
tents are protected and unable to be read or saved by any process outside the
enclave. Enclave entry points are defined during compilation. The secure exe-
cution environment is part of the host process, and the application contains its
own code, data, and the enclave, but the enclave contains its own code and data
too. An enclave can access its application’s memory, but not vice versa, due to a
combination of software and hardware cryptographic primitives. Only the code
within the enclave can access its data, and external accesses are always denied.
The enclave is decrypted “on the fly” only within the CPU itself, and only for
code and data running from within the enclave itself. This is supported by an
autonomous piece of hardware called the Memory Encryption Engine (MEE)
that protects the confidentiality and integrity of the CPU-DRAM traffic over a
specified memory range. Code running within the enclave is therefore protected
from being “spied on” by other code. Although the enclave is trusted, no pro-
cess outside it needs to be trusted, including the operating system [10,19]. Before
performing computation on a remote platform, a user can verify the authentic-
ity of the trusted environment. By using the attestation mechanism, users can
establish that software is running on an Intel SGX enabled device inside an
enclave.

Lattice-Based Cryptography: Our framework utilizes the complex canonical
embedding (CCE) [7], to support privacy-preserving polynomial evaluation on
floating-point data. The CCE and the inverse of it allows one to map a polyno-
mial ring element to a vector of complex numbers and vice versa, and this map-
ping is an isometric ring homomorphism, making it possible to encode complex
numbers into a quotient ring of polynomials. Thus, it is frequently used in the
lattice-based cryptography using polynomial rings, as complex-number inputs
can be encrypted with the CCE. As such, we anticipate our framework will be
most useful in conjunction with lattice-based PSA schemes. In general, lattice-
based cryptography has recently generated significant interest among cryptog-
raphy researchers, as it is quantum secure and generally faster than more tra-
ditional approaches (RSA, etc.) due to its shorter operands and other recent
optimizations. With large coefficients, Residue Number System (RNS) repre-
sentations can be used to break large numbers down into smaller components.
Using Single Instruction Multiple Data (SIMD) optimizations allows multiple
plaintexts to be encoded into a single ciphertext. Large polynomial degrees can
make polynomial multiplication very expensive, and to mitigate this the Number-
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Theoretic Transform (NTT) can be used to decrease the theoretical complexity
[7,31]. Full-RNS variants of lattice-based cryptosystems reduce the complexity
of the cryptosystems’ most expensive operations to the complexity of the NTT
[7]. The Ring Learning with Errors (RLWE) problem is frequently used as a
hardness assumption when designing lattice-based cryptosystems, and we give
an overview of it below. Note that we use boldface lowercase letters to denote
elements of rings. Consider two coprime numbers q, p, with q � p, and let s be a
random element of Rq with coefficients bounded by b (b is often 1), where R is the
quotient ring of Z[X]/Φ(X), and Φ(X) is the M = 2N -th cyclotomic polynomial
with degree N = 2d for some positive integer d, such that Rt = Zt[X]/Φ(X), is
the ring with all coefficients in Zt. We let [x]t be the centered modular reduction
of x mod t, such that [x]t = x − �x

t � · t ∈ Zt, where Zt = [−t
2 , t

2 ) ∩ Z; when
centered modular reduction is applied coefficientwise to ring elements we write
[a]t ∈ Rt. Let ai, ei be a polynomially bounded number of elements of Rq, with
ai chosen randomly and ei random and also b-bounded.

Fig. 2. The framework for complex-number PSA

An adversary is given the set of pairs (ai,bi) ∈ R2
q . Unknown to the adver-

sary is whether (ai,bi) are RLWE terms, i.e. bi = [ai ·si+p′ei]q with p′ ∈ {1, p},
or if bi was randomly chosen from Rq. The decisional RLWE problem is then
to determine whether the terms bi are RLWE terms or random elements of
Rq, without any knowledge of si or ei. The RLWE problem is believed to be
intractable for quantum computers; its difficulty comes from reduction to the
Shortest Vector Problem [22]. The difficulty of the RLWE problem is param-
eterized by q and N . Larger values of q provide more utility for RLWE-based
cryptosystems, but decreases the difficulty of the RLWE problem. Note increas-
ing N also increases the difficulty of the RLWE problem and thus the overall
security.
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5 Our Framework

We enable the stream polynomial evaluation via a composition of additive PSA
and CCE, and address its partial leakages with a TEE. It is extremely challenging
to apply an approach that uses RLWE terms as the computationally indistin-
guishable random elements to design multiplicative PSA with exact aggregation
[2,31]. One reason among others is that the RLWE term is inherently additive,
i.e., the error term ei,ts is added instead of multiplied in the term atssi + ei,ts,
making it challenging to cancel out the random terms if the ciphertexts are
multiplied together at the aggregator’s side. It should be said that traditional
PSA schemes are defined over integers, but by leveraging the CCE [7] we can
transform any PSA taking quotient rings of polynomials as the plaintext space
(e.g. any lattice-based PSA schemes based on the RLWE problem [2,23,31])
into PSA defined over floating point numbers. We summarize our framework for
transforming any PSA scheme operating over integers to operate over floating
point numbers in Fig. 2.

Fig. 3. The Framework of Polynomial Evaluation with Complex-Number PSA (using
the Framework for PSA of Complex Numbers, Fig. 2, as a building block)

The nature of PSA makes it possible to execute only a small constant amount
of computations inside a TEE, which minimizes the performance impact. We
achieve PSA for the multivariate polynomial f by composing the additive PSA
with a TEE so that each user i provides a ciphertext corresponding to their
private data {mei,j

i,j,ts}zj=1 and the aggregator can multiply each product term
∏

i∈S mei,j
i,j,ts for j = 1 to z. Note that, due to the SIMD technique, each user can

pack all z input values for the z product terms into one plaintext polynomial,
and the aggregator only needs to perform one multiplicative aggregation to get
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the outcome of z individual products. More specifically, we rely on the following
technique to build our multiplicative PSA: For each input mi,j,ts ∈ C of i-th user,
let the user calculate the natural logarithm of the input and encode it into a poly-
nomial as m′

i,ts = CCE(ln(mi,j,ts)) using the complex canonical embedding [7].
Then, the nearly-exact additive PSA is leveraged to let the aggregator compute∑

i∈S m′
i,ts with negligible error terms. We then undo the complex canonical

embedding to recover
∑

i∈S ln(mi,j,ts) = ln(
∏

i∈S mi,j,ts), and a natural expo-
nential function can be computed to get

∏
i∈S mi,j,ts. Due to the limitation of

the multiplicative PSA, we are limited to nearly-exact aggregation only, i.e., the
outcome is exact up to the pre-defined precision only. Then, the aggregator can
locally calculate f({mi,j,ts}i∈S,j=1,...,z) using the public parameters cj , where
S is the set of users whose ciphertexts are received by the aggregator. Such an
approach guarantees correct aggregation up to the precision of the outcome,
however, the aggregator learns all individual product terms which may not be
acceptable especially when the product terms are correlated.

Although such additional knowledge does not always lead to complete disclo-
sure of individuals’ inputs, the search space can be reduced by leveraging such
knowledge. Thus, the proposed PSA above fails to achieve the aggregator obliv-
iousness [2,30] that states the aggregator should learn only the final output. To
address this, we adopt the idea of a one-time program [14] that leverages trusted
hardware implementations to prevent the leakages similar to the one above.
Namely, we let the aggregator deploy a TEE, e.g., Intel SGX and leverage its
secure functionality to prevent the aggregator from receiving more information
than the final result. The memory encryption and isolation of the TEE guaran-
tees that operating systems cannot view or change the program/data within the
TEE. A näıve way to prevent the aforementioned leakages is to let the aggre-
gator perform the aggregation within the TEE. Then, even though the multiple
aggregation results are calculated for many different subsets, the final outcome
resides inside the TEE only, and the program running in it (which is verified
by all users through remote attestation) can decide to output the appropriate
result(s) to the outside of the TEE, i.e., the aggregator. In the case of stream
polynomial evaluation, the outcome of the multiplicative aggregation, i.e., the
individual product terms, resides in the TEE, and the remotely verified program
running in the TEE computes and returns only the sum of the product terms to
the aggregator. Though being secure, such a method is more complicated. One
can simply let users set up secure communication channels with the aggregator’s
TEE (by exchanging the keys) and let users send their input data to the TEE
who performs arbitrary aggregation within the TEE securely.

We design a method to integrate the TEE into the PSA such that users ben-
efit from the security guarantees of TEE while the overhead at the aggregator’s
end is much smaller than the overhead of the entire raw data being sent to the
TEE and aggregated inside the TEE. Note that if only one or a few constant
number of user ciphertexts are sent to the TEE and the rest, which are sent to
the aggregator, are aggregated outside the TEE, the aggregator only observes
the incomplete aggregation results which are indistinguishable from random
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elements due to the security of the PSA (e.g., randomness of the RLWE terms
[2,31]). After the aggregation of the ciphertexts outside the TEE is finished, the
aggregator can send the aggregated incomplete results into the TEE who con-
tinues the aggregation inside the TEE, at which point only a constant number
of operations need to be performed since only a few operations are needed inside
the TEE. Considering that the TEE introduces the extra overhead of mem-
ory encryption for every communication between the CPU and the DRAM, the
PSA with our optimization has higher throughput than the plain aggregation
performed entirely within the TEE especially when the scale of the aggregation
is large. Recall it is known that some TEEs (e.g., Intel SGX) have difficul-
ties exploiting multi-threading [35] due to the lack of common synchronization
primitives, and leveraging threading within TEEs can introduce security vul-
nerabilities [37]. Also, TEEs have been shown to run common functionalities
over an order of magnitude slower than what can be achieved on comparable
untrusted hardware, due to the overhead of computing within the enclave [35],
and performing a large number of context switches to send each user’s data into
the TEE can add serious overhead, especially in a big data setting. Overall per-
formance can be improved if we minimize the number of context switches and
outsource computationally expensive steps to an untrusted space that can bet-
ter leverage parallel computing. More specifically, we aggregate all of the users’
ciphertexts outside the enclave, and only perform a single context switch to send
this intermediate result into the enclave, where we add the aggregator’s secret
key to recover the product terms of the polynomial. We later calculate the sum
of the calculated products, so we learn the final output inside the TEE. We sum-
marize the data flow in our framework for transforming any PSA scheme into a
secure stream polynomial evaluation scheme in Fig. 3, and we formalize it with
the following 3 algorithms:

– Cryptonomial.Setup(λ, · · · ): All users perform attestation on the aggrega-
tor’s TEE, and input to the TEE a security parameter λ as input, along with
any other required parameters, e.g. the number of users n and the range of
their data. The TEE returns a set of parameters parms, users’ secret keys
ki, i ∈ [0, n) (over a secure channel), and the aggregation key k′.

– Cryptonomial.Enc(parms,mi,ts, ki, ts, · · · ): Takes the scheme’s parameters,
and a user’s secret key ki and vector of time-series input mi,j,ts, along with
a timestamp ts. Returns ci,ts, an additively homomorphic encryption of
CCE(ln(mi,j,ts)), the natural logarithm of the user’s vector of noisy inputs
encrypted under their secret key, where the natural log is taken component-
wise over the vector, and CCE is the complex canonical embedding function.

– Cryptonomial.Agg(parms, k′, ts, c0,ts, · · · cn−1,ts): Takes the scheme’s para-
meters, the aggregation key, a timestamp, and the n time-series cipher-
texts from the users (with timestamp ts). In the untrusted space com-
pute yts =

∑n−1
i=0 ci,ts via homomorphic addition. Then send yts into

the TEE and add in the aggregation key k′ as appropriate based on the
underlying PSA scheme. Then within the TEE take the inverse of the
CCE of this as

∑n−1
i=0 CCE−1(CCE(ln(mi,j,ts))) =

∑n−1
i=0 ln(mi,j,ts) =
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ln(
∏n−1

i=0 mi,j,ts). They then take the exponential to recover
∏n−1

i=0 mi,j,ts and
recover

∑z
j=1 cj(

∏n−1
i=0 mei,j

i,j,ts), where z is the number of product terms in the
polynomial, and cj ’s and ei,j ’s are public parameters.

6 Framework Instantiation with Existing PSA

PSA Chosen for Instantiation: Our scheme can leverage any PSA amenable
to a complex canonical embedding as a building block. There are several such
schemes [1,2], but we chose the noise-scaled variant of SLAP (i.e. SLAPNS , [31])
as a building block for its simplicity and open-source implementation. Before
describing our protocol, we review the SLAP protocol below. Note, in the scheme
operands are ring elements, not matrices or vectors. We denote the plaintext
domain as the ring Rt and the ciphertext domain as the ring Rq, with q � t
and an appropriate value of the polynomial modulus degree N to allow for the
necessary security. Secret keys and error terms are drawn from distributions χ, ζ
(1-bounded in practice) on Rq. The scheme is defined as follows:

– SLAPNS .Setup(λ, t, n): Takes in the security parameter λ, the plaintext mod-
ulus t, and the number of users n. Choose q such that log2(3) + log2(n) +
log2(t) < log2(q) and q, t are coprime. Choose the polynomial modulus N
such that λ bits of security are provided for the RLWE problem with ring
polynomial coefficients in Zq. Choose a set of public keys {ats} uniformly
at random, or a method of generating keys indistinguishable from such.
Choose users’ secret keys s0 · · · sn−1 from χ. Construct the aggregator’s key
as s′ = −[

∑n−1
i=0 si]q. Return parms = (Rq, t, n, {ats}), the users’ secret keys

si, and the aggregation key s′.
– SLAPNS .Enc(parms, si,mi,ts ∈ Rt, ts): Choose the user’s error ei,ts from ζ.

Return the user’s ciphertext ci,ts = [ats · si + tei,ts + mi,ts]q (based upon the
secret key, the user’s input, a small random error, and the timestamp ts).

– SLAPNS .Agg(parms, s′, ts, c0,ts · · · cn−1,ts): If any of c0,ts · · · cn−1,ts are
absent or not well-formed (i.e., an element of Rq), then abort. Otherwise,
compute and return yts = [[ats · s′ +

∑n−1
i=0 ci,ts]q]t

Our Instantiated Protocol (τ): We now present the concrete instantiation
of our scheme. Let CCE be the complex canonical embedding described in [7],
which is an isometric ring homomorphism that preserves the magnitude of the
elements, to encode complex numbers into polynomials. We assume the set of
users ui perform remote attestation with the aggregator A’s TEE, and the poly-
nomial function is agreed upon beforehand. We model our system in Fig. 3.
The protocol instantiated with our framework and the building block SLAP is
denoted as τ and defined as follows:

– τSetup(λ, t, n): Inside the TEE, call SLAPNS .Setup(λ, t, n). The secret keys
k0 · · ·kn−1 and the relevant parameters are then distributed to their owners
over secure channels, and the aggregator’s key k′ remains inside the TEE.
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– τEnc(parms,ki,mi,j,ts, ts): Note in this functionality each user determines
their private values mi,j,ts ∈ Rt they wish to send for a given time stamp ts,
and encrypt it as follows: First, take the natural logarithm of their inputs as
ln(mi,j,ts), and apply the complex canonical embedding over this as m′

i,ts =
CCE(ln(mi,j,ts)). Finally they encrypt this as ci,ts = SLAPNS .Enc(parms,
si,m′

i,ts, ts). Then each ui sends their ci,ts to A.
– τAgg(parms,k′, ts, ci,ts · · · cn−1,ts): In the untrusted space A computes yts =

[
∑n−1

i=0 ci,ts]q. Then they send yts into the TEE, and inside they compute
[[yts + ats · k′]q]t =

∑n−1
i=0 CCE(ln(mi,j,ts)). Then within the TEE they

take the inverse of the CCE of this as
∑n−1

i=0 CCE−1(CCE(ln(mi,j,ts))) =
∑n−1

i=0 ln(mi,j,ts) = ln(
∏n−1

i=0 mi,j,ts). They then take the exponential to
recover

∏n−1
i=0 mi,j,ts and compute

∑z
j=1 cj(

∏n−1
i=0 mei,j

i,j,ts), where z is the num-
ber of product terms in the polynomial, and cj ’s and ei,j ’s are public param-
eters.

Correctness: This protocol is correct, since we know that when adding n cipher-
texts ci,ts, we find [ats · k′ +

∑n−1
i=0 ci,ts]q = [

∑n−1
i=0 (tei,ts + CCE(ln(mi,j,ts)))]q.

The magnitude of the sum of the errors is bounded by n · t, and the magni-
tude of the sum of the inputs is bounded by n · t

2 . Then as long as 3·n·t
2 < q

2 ,
∑n−1

i=0 (tei,ts + CCE(ln(mi,j,ts))) does not overflow modulo q, guaranteeing cor-
rectness. Then reducing

∑n−1
i=0 (tei,ts+mi,j,ts) modulo t removes the error terms,

leaving us with the sum of the users’ inputs modulo t. Note
∑n−1

i=0 ln(mi,j,ts) =
ln(

∏n−1
i=0 mi,j,ts), so exponentiating recovers

∏n−1
i=0 mi,j,ts.

Security: Although a formal proof of aggregator obliviousness is in the full ver-
sion for completeness [20], note by the underlying security of SLAP [31], the
RLWE problem [22], and the TEE, the protocol is secure. Even if the untrusted
aggregator colludes with some malicious users, although they can learn the indi-
vidual inputs of the malicious users, since they only receive the aggregated func-
tion output as a final result, they cannot learn which honest user inputted which
value, provided there is more than one honest user. Similarly, since each term in
the polynomial is calculated inside the TEE, there is no partial leakage. Security
follows from SLAP [31], and from the underlying security of AES encryption
[10], which is used by the Intel SGX to encrypt data in the enclave. We can
easily guarantee differential privacy for our protocol using existing techniques if
necessary [2,31].

Parallel-Friendliness: Note that the computation of the product terms is per-
fectly parallelizable (except for one operation, adding the aggregator’s secret key,
which must be done inside the enclave) and thus can be outsourced to many-
core hardware. Existing work [32] notes the DDR4 specification gives a peak
data transfer rate of 25,600 MB/s, which gives 70µs seconds per ciphertext
transfer time from DRAM to the hardware used for parallelization. In practice,
the overhead from data transfer can be significantly less, due to pipelining and
interleaving of execution and data transfer. They estimate 21.2µs seconds per
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ciphertext transfer time from DRAM to the hardware after observing the time
difference between operating upon ciphertexts that were/were not resident in
cache memory [32].

7 Experimental Evaluation

To better understand the improvements gained in performance we simulated our
scheme using C++11, and version 2.10 of the Intel SGX SDK and present our
results below. For our PSA backend we used the open-source implementation of
SLAP’s noise-scaled variant [31], which uses optimizations including RNS, SIMD
batching, and NTT, which are discussed in Sect. 4. We used SLAP’s default
parameters; security parameter λ = 128, polynomial modulus degree N = 1024,
and ciphertext modulus q with 56 bits. Our experiments were run on a computer
running Ubuntu 18.04 with an Intel(R) Xeon(R) W-1290P 3.70GHz CPU with
10 cores, 20 threads, 128 GB of memory, and Intel SGX support. We did not
leverage GPUs/FPGAs because we did not have access to computers equipped
with both Intel SGX and GPUS/FPGAs. Our tests took average runtimes of 5
trials.

Benchmarks: To benchmark our protocol, we computed polynomials of the
form

∑2
j=1

∏n−j+1
i=1−j+1 mi,j,ts and report the time for each step below. Achiev-

ing accurate timings for operations within the enclave is difficult, because the
SGX primitive sgx get trusted time only supports second level precision, but
many operations can be computed at millisecond precision (Intel is committed
to providing better timing support in future releases). To measure benchmarks,
we used C++ std::chrono, which supports microsecond precision, and timed
the overall time to compute ECALLs within the untrusted component of the
program. We report how these times scale as we increase the number of users
in Fig. 4. In general, we find that preprocessing time is linear in the number of
users, and is ≤ 1 ms for 100,000 users (excluding network latency). Also, encryp-
tion and decryption time is linear in the number of users, and is approximately
1 ms per user. Aggregation time is logarithmic in the number of users, but is
still practical in large scale computation.

Fig. 4. Benchmarks of cryptonomial using SLAP as the PSA
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Case Study: To better understand how our technique performs in a real world
setting, we simulated multiple linear regression analysis using Cryptonomial,
and compared it to the performance reported by the current state-of-the-art
privacy-preserving polynomial evaluation technique known as PDA [17]. The
linear regression model consists of one equation of linearly increasing variables
(also called parameters or features) along with a coefficient estimation algorithm
called least squares, which attempts to determine the best possible coefficient
given a variable. Multiple linear regression is a model that can capture the linear
relationship between multiple variables and features, assuming that there is one.
The multiple linear regression formula is y = β0 + β1x1 + β2x2 + . . . + βixi + ε,
where β0 is known as the intercept, β1 to βi are known as coefficients, x1 to xi

are the features of the dataset, and ε are the residual terms.
We can also represent the formula for linear regression in vector notation.

Linear least squares (LLS) is the main algorithm for estimating coefficients of
the formula just shown. We use the most popular variant called ordinary least
squares (OLS). The OLS algorithm minimizes the sum of squares of residuals.
The following formula ensures that the resulting coefficients define a minimum
for the normal equation, which means that the result is the minimized total
sum of squared residual: β̂ =

(
XTX

)−1
XTy. Here β̂ is a vector containing all

of the coefficients that can be used to make predictions by using the formula
presented in the beginning for multiple linear regression. We simulated training
a linear regression model over the datasets in a privacy-preserving manner using
our scheme (Sect. 6) with data from the UCI Machine Learning Database as
done in PDA [17]. We measured the time to complete the training in a local
computer and our times are reported in Table 1. By utilizing batching and other
optimizations in SLAP, data for all features was encoded into a single ciphertext,
significantly reducing computation and communication overhead.

Table 1. Cryptonomial OLS performance on UCI dataset

Datasets Records Features Our time PDA time Speedup

Census 48,842 14 2.85 s 355 s 125x

Bank 45,211 17 2.75 s 341 s 124x

Insurance 9,822 14 0.64 s 74 s 115x

White wine 4,898 11 0.35 s 33 s 94x

Red wine 1,599 11 0.17 s 12 s 71x

We note that our technique is always the fastest by at least an order of
magnitude. This makes sense as our lattice-based PSA cryptographic primitive
combined with a TEE as discussed in our framework is considerably less compu-
tationally expensive than the ECC-based techniques of PDA. Also, PDA makes
use of an interesting but expensive ECC-based encoding procedure that allows
for a form of fault tolerance, where users can be dynamically added or dropped
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from the system. This encoding negatively impacts the overall run time, and this
trend continues as we increase the number of records in the final aggregation
calculation. We note that although this paper does not consider fault tolerance,
there are preexisting techniques that leverage a TEE to transform any tradi-
tional PSA scheme into a fault tolerant PSA scheme [19], and such techniques
can be incrementally deployed on our solution. Thus, we can conclude that in
secure polynomial evaluation scenarios where aggregation times greatly impact
the overall performance, our method offers the best efficiency.

8 Conclusion

We presented Cryptonomial, a framework for converting any PSA scheme
amenable to a CCE into a secure computation protocol that can compute any
function that can be written as a polynomial, by combining PSA and a TEE. We
showed that Cryptonomial meets the security and privacy requirements of PSA,
and supports strong security guarantees. Simulations show our scheme’s perfor-
mance is orders of magnitude faster than similar work supporting polynomial
calculations.
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