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Abstract. Private stream aggregation (PSA) allows an untrusted data
aggregator to compute statistics over a set of multiple participants’
data while ensuring the data remains private. Existing works rely on
a trusted third party to enable an aggregator to achieve fault tolerance,
that requires interactive recovery, but in the real world this may not be
practical or secure. We develop a new formal framework for PSA that
accounts for user faults, and can support non-interactive recovery, while
still supporting strong individual privacy guarantees. We first must define
a new level of security in the presence of faults and malicious adversaries
because the existing definitions do not account for faults and the security
implications of the recovery. After this we develop the first protocol that
provably reaches this level of security, i.e., individual inputs are private
even after the aggregator’s recovery, and reach new levels of scalabil-
ity and communication efficiency over existing work seeking to support
fault tolerance. The techniques we develop are general, and can be used
to augment any PSA scheme to support non-interactive fault recovery.
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1 Introduction

Third-party analysis on private records is becoming more important due to
widespread data collection for various analysis purposes in business, government,
academia, etc. This can be observed in many real life applications, such as the
Smart Grid, Social Network Services, Location Based Services, etc. [14]. Given
the great abundance of user-generated data and the collection of it in modern
times, data analysis frameworks must be capable of processing queries over mil-
lions and sometimes billions of devices with little to no latency. While existing
service providers support this over unencrypted data, data in its plaintext form
often contains private information about individuals, and the publication of such
data may violate privacy laws such as HIPPA, FERPA, GDPR, etc.

Within the context of many applications that process large amounts of data,
it is paramount that fresh results be available to consumers, despite the presence
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of frequent system faults [20]. For example, web companies such as Facebook
and LinkedIn execute daily data mining queries to analyze their latest web logs,
and online marketplace providers such as eBay and BetFair run fraud detection
algorithms on real-time consumer trading activity [22]. Similarly, various types
of failures are common in systems with user interactions, and the fault recovery
must not affect performance adversely. Critically, due to the number of users
participating in such protocols, the per-machine resource overhead of any fault
tolerance mechanism should be low. Thus, such systems must be able to recover
from failures without significantly impacting output accuracy, computation time
expectations, or requiring interaction with unreliable/untrusted parties.

It is well known that existing work has proposed to support privacy preserv-
ing computation (secure multi-party computation (MPC), functional encryption
(FE), perturbation, etc.) over multiple users’ data. Of the existing techniques,
Private Stream Aggregation (PSA) is very promising. PSA allows a third-party
aggregator to receive encrypted values from multiple parties and compute an
aggregate function without learning anything else, except what is learnable from
the aggregate value. PSA is generally superior to other types of secure computa-
tion paradigms (e.g., MPC, FE) in large-scale applications involving time-series
data because of its extremely low overhead and the ease of key management
[13,23]. Notably, PSA is non-interactive (i.e., users send their time-series data
in a “stream” and only one message is sent per time interval) and asynchronous
(i.e., users can leave after submitting their inputs), making it more efficient in
communication than most existing alternative techniques [26]. However, existing
solutions fail to achieve tolerance against faults during the aggregation without
placing trust in the aggregators. We distinguish between non-interactive fault
tolerance, which is the ability to recover from faults dynamically and “on the fly”
without requiring extra messages be sent from/to faulted users or some trusted
party, and interactive fault tolerance, which requires additional messages be
exchanged to support recovery.

In this paper, we present a novel framework, Cryptonite, that allows any PSA
scheme to gain non-interactive fault tolerance without significant additional over-
head. There are many existing works that build ad-hoc solutions for this purpose
that generally focus on providing one or a few of the following goals: privacy, effi-
ciency, practical benefits such as permitting a user to drop in and out, or some
type of interactive fault recovery mechanism. In contrast, our framework general-
izes data aggregation, while still achieving traditional levels of performance and
security, but more importantly, it introduces non-interactive recovery against
faults to existing secure aggregation primitives without requiring users to trust
the aggregator or requiring extra interaction.

This is a challenging problem to solve efficiently and securely, as most exist-
ing solutions require communicating with a trusted third party key dealer, which
requires sending additional messages (generally two) during the protocol, greatly
increasing the total overhead. A better solution would be non-interactive and
would allow the aggregator to recover from a fault locally without sending addi-
tional messages, or requiring additional computation on the user end. However,
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a non-interactive protocol would need to guarantee correct function output with
only one communication round. As a result, such a protocol would be by its
nature vulnerable to the residual function attack [15] in the standard model. In
this attack, an adversary can repeatedly evaluate the function locally, while vary-
ing some inputs and fixing the inputs of others, to deduce the values entered by
the participants. This vulnerability occurs because an aggregator that does not
receive all of the users’ encrypted inputs must be able to simulate acquiring such
inputs, in order to complete the calculation. Existing work allows an aggregator
to recover some partial data from the function they were to compute, but does
so by sending a message to a trusted third party [8,11] or aggregator to provide
sensitive information that could harm an individual user’s privacy if released
publicly [6,16]. Such existing work supports interactive fault tolerance simply
by allowing the aggregator to evaluate an aggregation multiple times, which is
essentially the residual function attack. This technique is insecure, and presents
a serious privacy risk even if the data is protected with privacy preserving (e.g.,
differentially private) noise. We need a new, more rigorous notion of privacy that
accounts for fault tolerance without sacrificing traditional security expectations.

In contrast, our scheme does not rely on any interaction with a third party,
thus cutting down on communication, while also supporting partial aggrega-
tion among the surviving participants (thus achieving non-interactive fault tol-
erance), to maximize utility for the aggregator. Our simulations show that the
fault recovery mechanism introduces negligible extra overhead to a PSA scheme
when no faults occur. More importantly, when faults occur, our framework allows
the PSA to recover from faults much more efficiently than other fault recovery
mechanisms for PSA. We achieve all of this while providing security in the pres-
ence of stronger adversaries, and our scheme can be easily extended to support
a wider variety of functions, such as max, average, etc. [11,24]. Our goals in
designing this framework are to 1) devise a system that is able to recover from
failures without significantly impacting processing result accuracy or computa-
tion/communication time expectations. 2) maximize user’s trust in the protocol
by requiring that any servers used to facilitate the aggregation not be trusted
by the users, and 3) enable computations at aggregate levels while still protect-
ing any individual level data. Any system seeking to support such goals should
provide a formal privacy analysis to demonstrate that the mechanism achieves
the above privacy goals. Our contributions are as follows:

1. We identify the trust issues of aggregators when fault tolerance needs to be
achieved during secure aggregation without extra interactions, and define a
new, stronger level of privacy in the presence of faults and malicious aggrega-
tors – fault-tolerable aggregator obliviousness.

2. We develop a new formal framework for PSA that accounts for user faults,
and develop general techniques that can be used to augment any PSA scheme
to support non-interactive fault recovery.

3. We develop the first protocol that provably reaches this level of privacy using
a Trusted Execution Environment (TEE). Rather than compute everything in
the TEE, we minimize the performance impact from the TEE by outsourcing
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computationally intensive work to an untrusted domain for efficiency, while
still allowing for strong privacy guarantees.

4. We demonstrate new levels of scalability and communication efficiency over
existing work that supports interactive fault tolerance. Our code is available
at: https://github.com/RyanKarl/CryptoniteDemo.

2 Related Work

Recently there has been interest in constructing PSA systems that allow for
dynamic user groups or interactive fault tolerance, that are similar to fault-
tolerable deterministic threshold signatures [21]. Fault tolerance in this context
is the property that in the event that a user or group of users do not send data to
the aggregator, either due to a natural failure or a malicious act, the aggregator
can still recover a partial sum over the remaining users’ messages that were
successfully sent. There are primarily two existing paradigms for this.

(1) Recovery via trusted parties: In the first [1,2,11,16], the aggregator
communicates with an independent third party to notify them of the fault, and
the third party provides the inputs to the aggregator to allow for the successful
completion of the protocol for each aggregation. Since the third party knows the
secrets assigned to every node, if some nodes fail to submit data, the aggregator
asks the dealer to submit synthetic data on behalf of those failed nodes. This
method incurs a round trip communication overhead between the key dealer
and the aggregator for each aggregation (i.e., interactive). Some researchers [16]
used a circle based construction to improve efficiency, but had to interact with a
third party to recover from faults, which can lead to high communication delay.
Other work [1,2] explored using elliptic curves to improve the overhead of com-
munication and computation, while still supporting interactive fault tolerance,
but this requires that some trusted, independent third parties be communicated
with each round for fault recovery. Similar work explored outsourcing expensive
computations to the cloud [11] to support a wider variety of functions instead
of just sum, such as min, average, etc., but they also require interactions with
trusted third parties.

(2) Recovery via input buffering: In the second paradigm [3,7,8], users
buffer their inputs that they send to the aggregator. Essentially, in this method
users send a set of ciphertexts corresponding to several timestamps/inputs to the
aggregator. Thus, if a user fails to communicate in the future, the aggregator can
utilize these ciphertexts to complete the aggregation and cancel out the noise
needed to recover the partial sum. This increases the overall message size by a
factor of how many rounds the user buffers their input (to buffer for 2 rounds, the
size of the message is twice as large, etc.). One of the first works explicitly inter-
ested in supporting interactive fault tolerance [6] used a novel approach based on
a binary interval tree technique to reduce the communication cost for joins and
leaves, via input buffering. However, their scheme has a high aggregation error,
which leads to the poor utility of the aggregate. Another technique [30] for buffer-
ing future ciphertexts was developed to reduce communication overhead, and was
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later made more efficient and scalable [3,7]. A security-enhanced data aggrega-
tion scheme [8] with interactive fault tolerance based on Paillier’s encryption
scheme has been proposed. Unfortunately, internal attacks are not considered in
the above data aggregation schemes thereby allowing internal attackers to access
the consumers’ data. This was later improved [19] by leveraging lifted El-Gamal
encryption to improve performance, and authentication methods were added for
message integrity, although the vulnerability to internal attackers was left as an
open problem. Later work [9] investigated using techniques to make key genera-
tion non-interactive. There has been some work that tries to solve this problem
by allowing users to communicate with each other if a fault is detected to restart
the protocol [28,31], but we are interested in developing better approaches that
do not require interaction among users, as this can lead to significant overhead
and scalability issues.

Advantage of Our Work: The aforementioned schemes are either inefficient,
fail to achieve non-interactive fault tolerance (i.e. extra messages must be sent to
trusted parties), and/or are insecure against the residual function attack. In con-
trast, our scheme supports non-interactive fault tolerance, thus cutting down on
communication, while also supporting partial aggregation among the surviving
participants without introducing residual function attack vulnerabilities.

Orthogonal Work: Defending against users that lie about their values to pol-
lute the final output is outside the scope of the paper, but one possible defense
is for each user to use a non-interactive zero-knowledge proof to prove the
encrypted input is either in a valid range or an already-committed value.

Common Misconceptions: Note that it is not possible to simply leverage
historical data, or utilize machine learning techniques to estimate possible inputs
of faulted users and use the inferred inputs to recover the final aggregation. This
is because, to have provable security guarantees, the ciphertexts shared with
the aggregator in the PSA are computationally indistinguishable from random
numbers. Therefore, no inference approaches can gain meaningful information
from the ciphertexts to predict and recover the missing inputs (e.g., due to
faults).

3 Preliminaries: Private Stream Aggregation

The field of PSA seeks to solve the following problem. Suppose an aggre-
gator wishes to calculate the sum of n users periodically. Let x

(t)
i (where

x
(t)
i ∈ {0, 1, . . . ,Δ}) denote the data of user i in aggregation period t (where

t = 1, 2, 3, . . .). Then, the sum for time period t is
∑n

i=1 x
(t)
i . In some scenarios,

in each time period t, each user i adds noise r
(t)
i to their data x

(t)
i , encrypts

the noisy data x̂
(t)
i = x

(t)
i + r

(t)
i with their key k

(t)
i and sends the ciphertext

to the aggregator. The aggregator can then use their own key, k
(t)
0 to decrypt

the noisy sum
∑n

i=1

(
x
(t)
i + r

(t)
i

)
. In this scenario, k

(t)
i and k

(t)
0 change in every
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time period. Note that we focus on the aggregation scheme over the same time
period and omit the t to save space when the context is clear. We also do not
add noise r

(t)
i for simplicity of presentation. We assume that every user com-

municates with the aggregator via a wireless connection, but note that in our
setup there is no need for users to communicate with each other. We assume that
time is synchronized among nodes. Generally speaking, for a private aggregation
protocol to be secure, it must achieve three properties: 1) the aggregator cannot
achieve any meaningful intermediate results (i.e. they learn the final noisy sum
but nothing else), 2) the scheme is aggregator oblivious (a party without the
aggregator learns nothing), and 3) the scheme achieves differential privacy. Note
that requirement 3 is needed in some contexts where it is assumed the accurate
sum may leak user privacy in presence of side information. Thus, the aggregator
is only allowed to obtain a noisy sum (the accurate sum plus noise).

4 New Notion of Security

To achieve a meaningful level of security, current aggregation schemes strive to
guarantee aggregator obliviousness which is informally defined as follows:

Definition 1 (Aggregator Obliviousness). Assuming that each honest par-
ticipant pi only encrypts once in each time period, a secure aggregation scheme
achieves aggregator obliviousness if: 1) the aggregator can only learn the final
aggregate for each time period, 2) without knowing the aggregator key, no one
can learn anything about the encrypted data, even if several users collude, and
3) if the aggregator colludes with a subset of the users, or if a subset of the
encrypted data has been leaked, the aggregator learns no additional information
about the honest participants’ individual data, beyond what can be inferred by the
final aggregation.

While this definition is useful in schemes that do not consider fault toler-
ance, it becomes less useful once faults occur and need to be recovered without
interactions. To recover from a fault without interactions, an aggregator must
be able to generate synthetic input from any user to complete the calculation.
This is because PSA schemes must encode data in such a way that no partial
information can be gained unless every participant’s key is used in the final
aggregation (for the sake of aggregator obliviousness). However, this actually
violates the aggregator obliviousness, since to recover from faults without inter-
actions, an aggregator must be able to calculate any partial sums, which would
allow the aggregator to deduce everyone’s input by subtracting the partial sums
(i.e., residual function attack). Introducing differential privacy is not sufficient
as the noise must be significantly larger than that in the PSA schemes with
computational differential privacy (O(n) where n is the number of users rather
than O(1) in existing schemes [4,23]) to prevent such residual function attack.
Many applications cannot afford to operate over results with excessive noise,
as the significant loss in data accuracy prevents the subsequent data analysis
from having any utility to analysts [10]. Therefore, we are primarily interested
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in investigating how to design a system where the residual function attack is not
possible even without differentially private noise being introduced to the input.

Note that introducing computational differential privacy [4,23] on top of such
a system is trivial. Users can locally add calibrated noise to their inputs before
encryption for the sake of computational differential privacy. This is independent
from the rest of the PSA and our framework, therefore we omit the description
due to the space limit.

Issues with Existing Techniques: Existing works try to avoid this issue by
introducing a trusted, independent third party that can assist the untrusted
aggregator with completing the protocol. This is facilitated by allowing the aggre-
gator to request the third party provide the keys or ciphertexts the user was sup-
posed to send to the aggergator so that they can complete the calculation and
determine the partial sum. While there may be scenarios where this adversary
model is acceptable, in the real world, it may be difficult or even impossible to
find such a trusted third party (arguably, if such a third party exists it may be
easier for users to send their plaintexts directly to them to speed up processing).
More specifically, we are interested in supporting privacy in a scenario where
there are no independent third parties involved in fault recovery. In this setting,
the two existing methods of achieving fault tolerance are ineffective, as they are
vulnerable to the residual function attack. An aggregator can compute the same
function over different inputs, compute the difference between the final outputs,
to infer individual values inputted by different users.

Consider the first family of fault tolerant protocols, which allow the aggre-
gator to ask an independent third party to provide the information needed to
recover the output. If such an third party is not trusted, the aggregator can
request all of the private information from this third party and recover every
party’s individual input via the residual function attack. We also note that even
if this third party is trusted, in existing work, it is unclear how to prevent
the untrusted aggregator from lying about users faulting, even if they complete
their part of the protocol, to recover the synthetic inputs they need to launch
the residual function attack. The second family of fault tolerant protocols, where
users buffer future inputs to the aggregator is similarly vulnerable. If there is
no trusted third party, the aggregator can simply request the buffered inputs,
even if a user does not fault, to execute the residual function attack. Similarly,
even if the third party that stores the buffer is trusted, the security guarantee
is somewhat unclear, as the aggregator can lie about the fault status of users
to recover the synthetic input needed to execute the residual function attack.
Clearly, we need a new definition of aggregator obliviousness within the context
of fault tolerant systems, that accounts for such scenarios. By extending the
existing definitions [12,23], we define the fault-tolerable aggregator obliviousness
as follows:

Definition 2 (Fault-Tolerable Aggregator Obliviousness). Define a set
of users i ∈ N , where 0 ≤ i ≤ |N |, where the subset of users that fault is
denoted U and the set of users that do not fault is denoted J , were N = U ∪ J .
A set of users N participating in a secure aggregation scheme β, with public
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parameters params, during timestep t, whose inputs and secret keys are denoted
xi and ski respectively, achieve aggregator obliviousness with fault tolerance if
no probabilistic polynomial-time adversary has more than negligible advantage in
winning the below security game:

Setup: Challenger runs a Setup algorithm, and returns the public parameters
params to the adversary.

Queries: The adversary makes the following three types of queries:

1. Encrypt: The adversary may specify (i, t, x) and ask for the ciphertext. Chal-
lenger returns the ciphertext affiliated with Enc(ski, t, xi) to the adversary.

2. Compromise: The adversary specifies an integer i ∈ {0, . . . , |N |} If i = 0,
the challenger returns the aggregator key sk0 to the adversary. If i �= 0, the
challenger returns ski the secret key for the ith participant, to the adversary.

3. Challenge: This query can be made only once throughout the game. The
adversary specifies a set of participants Q and a time t∗ Any q ∈ Q must not
have been compromised at the end of the game. The adversary also specifies
a subset of Q denoted Y of users they claim faulted (i.e. a user in Y may not
have actually faulted). For each user q ∈ Q the adversary chooses four plaintexts
(xq), (x′

q), (xy), (x′
y). The challenger flips a random bit b. If b = 0, the challenger

computes ∀q ∈ Q\Y : Enc (skq, t
∗, xq), ∀y ∈ Y : Enc (sky, t∗, xy) and returns the

ciphertexts to the adversary. If b = 1, the challenger computes and returns the
ciphertexts ∀q ∈ Q\Y : Enc

(
skq, t

∗, x′
q

)
, ∀y ∈ Y : Enc

(
sky, t∗, x′

y

)
instead.

Guess: The adversary outputs a guess of whether b is 0 or 1. We say that the
adversary wins the game if they correctly guess b and the following condition
holds. Let K ⊆ N denote the set of compromised participants at the end of the
game. Let M ⊆ N denote the set of participants for whom an Encrypt query
has been made on time t∗ by the end of the game. Let Q ⊆ N denote the set of
(uncompromised) participants specified in the Challenge phase. If Q = K ∪ M :=
N\(K ∪ M), J ∪ Y �= ∅, and the adversary has compromised the aggregator key,
the following condition must be met:

∑
q∈Q xq+

∑
y∈Y xy =

∑
q∈Q x′

q+
∑

y∈Y x′
y.

Essentially we say that a secure aggregation scheme achieves fault-tolerable
aggregator obliviousness if: 1) the aggregator can only learn one sum for each
time period, even if a subset of users fault, 2) without knowing the aggregator
key, no one can learn anything about the encrypted data, even if several users
collude, and 3) if the aggregator colludes with a subset of the users, or if a
subset of the encrypted data has been leaked, the aggregator learns no additional
information about the honest participants’ individual data. This better captures
the requirements needed to protect against the residual function attack, since
at least two separate function evaluations must be completed by an adversary
for the attack to be successful. In the previous definition, multiple sums could
still be calculated by an attacker, while still fulfilling the requirements of the
definition. Also, to be fault tolerant, multiple ciphertexts associated with one
user need to be available to the aggregator, so making an assumption that only



Cryptonite 319

one ciphertext is associated with each user may limit the utility of the previous
definition, as if a user faults, another ciphertext associated with the user, but
generated independently from the user may be needed for recovery.

5 Cryptonite: A Novel Framework for Any PSA Scheme

5.1 The Framework Definition

To achieve the above notion of privacy, we design a new secure aggregation frame-
work β in Fig. 1, that addresses fault tolerance. At a high level, our framework
follows the same general procedure used by existing PSA schemes based on addi-
tive key homomorphism to distribute private keys to each participant during
Setup. Following this, each user leverages their private key to encrypt their pri-
vate data during Enc. After the aggregator receives all the users’ ciphertexts, the
aggregator can optionally invoke a fault recovery mechanism, FaultRecover, for
a subset of users they claim faulted. This mechanism will verify that the aggre-
gator’s claim is accurate, and they did not claim a user faulted when they in fact
received their ciphertext. If it is found the aggregator made a false claim the pro-
tocol aborts. After this, the aggregator can recover the final aggregation result
of the data it successfully received from the users with AggrDec. We formalize

Framework β
Setup(1λ) : Takes in a security parameter λ, and outputs public parameters
param, a private key ski for each participant, as well as a aggregator key sk0

needed for decryption of aggregate statistics in each time period. Each participant
i obtains the private key ski, and the data aggregator obtains the key sk0 at the
end of this algorithm.
Enc(param, ski, t, xi) : During time step t, each participant calls the Enc algorithm
to encode its data xi via ski. The result is an encryption of xi using the additive
key homomorphism from the chosen PSA, denoted ENC(xi) or ci.
FaultRecover(J, U, t): The fault recovery algorithm takes in the set of all the
IDs of all the users that the aggregator reports as having faulted, denoted J ,
during time period t, along with the IDs of all of the users that successfully sent
their encrypted data U . The algorithm then verifies that the two sets of users
are disjoint. If the sets are not disjoint the algorithm outputs nothing and the
protocol aborts. If the two sets are disjoint, the algorithm outputs for all j ∈ J
the ciphertexts corresponding to an encryption of 0 as cj . This algorithm can only
be called once for each time period.
AggrDec (param, sk0, t, cu∀u ∈ U, cj∀j ∈ J) Takes in the public parameters
param, a key sk0, the ciphertexts for all users in the set of users that did not fault
u ∈ U as cu, and the ciphertexts for all users in the set of users that did fault
j ∈ J as cj , for the same time period t. For each i ∈ N where N is the union of
U and J let ci = Enc (ski, t, xi). Let x := (x1, . . . , xn). The decryption algorithm
outputs f(x).

Fig. 1. Our framework
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the fault recovery mechanism so that we can better enforce that protocols will
not be vulnerable to the residual function attack. This framework supports the
same general functionality as the previous framework, but allows the aggregator
to recover the needed information regarding users who fault to complete the
protocol in a privacy preserving manner as described in Definition 2.

5.2 Framework Instantiation

To formally investigate the correctness and the security of our framework, we
instantiate a precise protocol, θ, using Cryptonite. We first present our basic
approach, and we later overcome performance limitations in our optimized ver-
sion, which is presented in the following section. The greatest challenge we face
when designing this protocol is how to guarantee that the aggregator cannot act
maliciously and acquire the synthetic data it needs to execute a residual function
attack. Since any actions taken by an aggregator must be tightly controlled to
support non-interactive fault recovery, and previous work has shown achieving
specific security guarantees in certain non-interactive protocols is impossible in
the standard model without additional hardware assumptions [15], a natural
choice to support this functionality is to leverage trusted hardware, such as a
Trusted Execution Environment (TEE), combined with PSA based on additive
key homomorphism. We summarize the requisite background below.

Trusted Hardware: One of the most prevalent forms of trusted hardware in
modern computing is Intel SGX, a set of new CPU instructions that can be used
by applications to set aside private regions of code and data. It allows developers
to protect sensitive data from unauthorized access or modification by malicious
software running at higher privilege levels. To support this, the CPU protects
an isolated region of memory called Processor Reserved Memory (PRM) against
other non-enclave memory accesses. Sensitive code and data is encrypted and
stored as 4KB pages in the Enclave Page Cache (EPC), a region inside the PRM.
Although EPC pages are allocated and mapped to frames by the OS kernel,
page-level encryption guarantees confidentiality and integrity. To provide access
protection to the EPC pages, the CPU maintains an Enclave Page Cache Map
(EPCM) that stores security attributes and metadata associated with EPC pages.
Note our framework can work with any TEE. To utilize Intel SGX, applications
must be written in a two part model, where applications must be seperated into
secure parts and non-secure parts. The application can then launch an enclave,
that is placed in protected memory, to allow user-level code to define private
segments of memory. The contents of these segments are protected and unable
to be read or saved by any process outside the enclave. Enclave entry points are
defined during compilation, such that the secure execution environment is part
of the host process, and the application contains its own code, data, and the
enclave, but the enclave contains its own code and data too [18].

Elliptic Curves: Note that our framework instantiation can work with any
PSA that is based on additive key homomorphism [25], but we chose elliptic
curve cryptography (ECC) for our concrete instantiation. ECC provides the
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same level of security as RSA, Paillier, or discrete logarithm systems over Zp

with considerably shorter operands (approximately 160–256 bit vs. 1024–3072
bit), which results in shorter ciphertexts and signatures. As a result, in many
cases, ECC has performance advantages over other public-key algorithms [5].

Protocol θ: Note that [25] uses a key-homomorphic weak PRF to construct PSA,
and uses the seminal PSA of Shi et al. [23] as an example. Thus we choose to
instantiate our framework with theirs, so that our framework can be adapted to
turn any PSA that is based on additive key homomorphism into a fault-tolerable
version. When the context is clear, we sometimes use standard addition and
multiplication operators, as done in previous PSA papers [6,23], when operating
over ciphertexts, for simplicity of presentation. Let G denote a cyclic group of
prime order p for which Decisional Diffie-Hellman is hard. Let H : Z → G

denote a hash function modeled as a random oracle. We assume the aggregator
is equipped with an Intel SGX, and model our system design in Fig. 2.

Fig. 2. System diagram

Setup(1λ): Each user first performs attestation with the aggregator’s Intel SGX,
to verify it will faithfully execute the protocol (this is a one time process). The
Intel SGX performs key generation, and chooses a random generator g ∈ G, and
n + 1 random secrets s0, s1, . . . , sn ∈ Zp such that s0 + s1 + s2 + . . . + sn = 0.
The public parameters param := g. The aggregator obtains the key sk0 := s0
and participant i obtains the secret key ski := si. For practical purposes, we can
use secret shares that sum to zero as secret keys.

Enc(param, ski, t, xi): For participant i to encrypt a value x ∈ Zp for time step
t, they compute the following ciphertext ci ←− gxi ·H(t)ski , where H(t) denotes
the hash of t that maps t to an elliptic curve. Note, after this the user sends its
ciphertext and unique id to the aggregator’s SGX.

FaultRecover(cj , cu, t): Here, after the time period has ended, within the Intel
SGX, we check each ciphertext that was received against a hash table of all users
who participated in the setup process, and record which users failed to respond
within the time window. Note this process cannot be tampered with from outside
the enclave. Then, since the Intel SGX has each user’s secret key, it can compute
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ci ←− g0 ·H(t)skj for all users j ∈ J . Notice that a nice property of this setup is
that if a user is late and sends a ciphertext associated with time period t after
that time period has passed, the Intel SGX can simply discard it and there is
no danger of it being leaked to the aggregator.

AggrDec(param, sk0, t, cj , cu): Compute within the enclave (note N = U ∪ J)
V ← H(t)sk0

∏n
i=1 ci. To decrypt the sum, we can leverage Pollard’s lambda

method, as done in previous works [23], to compute the discrete log of V base g.
This method requires decryption time roughly square root in the plaintext space,
although in general solving the discrete log is highly parallelizable and can be
done efficiently in practice as long as the plaintext is small [6].

Note that this construction is secure under Definition 2, and we can prove
this via a security game, using proof techniques from existing work [23]. We
include the full proof in Appendix A, and sketch it here for completeness. Essen-
tially, assuming that the Decisional Diffie-Hellman problem is hard in the group
G and that the hash function H is a random oracle, we can prove that the
above construction satisfies aggregator oblivious security with fault tolerance,
by showing via reduction to a series of hybrid games that the game described
above is hard to win for our scheme. More specifically, to prove the theorem,
we will modify the aggregator oblivious security game as such. In the Encrypt
queries, if the adversary submits a request for some tuple (q, x, t∗) where t∗ is
the time step specified in the Challenge phase, the challenger treats this as a
Compromise query, and simply returns the skq to the adversary. Given skq,
the adversary can compute the requested ciphertext. The adversary has access
to a the functionality, FaultRecover, that can only be called once (since this is
enforced via trusted hardware), which takes in a set of users that have not been
compromised (j ∈ J), and returns the set of ciphertexts that correspond to those
users encrypting 0. This modification actually gives more power to the adver-
sary. Note that this protocol is not vulnerable to the residual function attack,
as the adversary cannot access multiple ciphertexts associated with a user for
a given timestamp. Here, the individual ciphertexts are sent into the enclave,
which can independently handle the computations needed for fault recovery in
an isolated environment that cannot be spoofed or tampered with by an attacker
(unlike in the previously discussed techniques that provide fault tolerance that
requires additional communication rounds). Thus, the fault recovery process can
be performed in a secure, non-interactive way, that removes the opportunity for
an attacker to spoof the fault recovery to obtain an encryption of 0 for a user,
even when the user participates and does not fault, such that the attacker can
perform the residual function attack by utilizing both ciphertexts to deduce the
user’s plaintext input. Achieving differential privacy is not the primary focus
of this paper, but we can easily adapt the methods of existing works if needed
[6,23].

A More Efficient Protocol. The above protocol achieves security according
to Definition 2, but it incurs additional computational overhead since the aggre-
gation is done inside the TEE. It would be better if we could outsource the
aggregation computation to the untrusted aggregator to improve performance
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and avoid the MEE’s overhead. We can accomplish this by following the same
Setup procedure as before, but instead having users send two messages simulta-
neously. They can send their ciphertext (i.e. the result of Enc) to the untrusted
aggregator, and also send one separate message to the Intel SGX to indicate they
are participating in the protocol. Intuitively, the aggregator can simultaneously
begin the partial summation of the ciphertexts of the users that did not fault out-
side the TEE (by calling AggrDec), while inside the SGX, FaultRecover is run
to determine which users faulted and computes their synthetic ciphertexts which
are sent out of the TEE to the aggregator. In this way, the somewhat expensive
aggregation step can be done on more powerful, albeit untrusted hardware (e.g.,
GPU, FPGA), that has better access to parallel computing resources, without
compromising security. We note that this scheme is not secure if the adversary
can disrupt communication between the users and the Intel SGX, but we can
solve this by simply having all users send their ciphertexts signed with a digital
signature directly to the SGX first, instead of just the separate message. Then
the SGX can output the users’ ciphertexts who did not fault to the untrusted
space controlled by the aggregator, along with the synthetic data used to over-
come existing, verified faults, which can be more efficiently aggregated outside
the enclave.

Outsourcing to Parallel-Friendly Processors. It may seem more efficient
to simply send plaintext data to an SGX enclave to be aggregated, but it is
known that Intel SGX has difficulties exploiting multi-threading due to the lack
of common synchronization primitive support often found on traditional operat-
ing systems [18] (threading can also introduce security vulnerabilities [29]). Also,
TEEs have been shown to run common functionalities over an order of magnitude
slower than what can be achieved on comparable untrusted hardware, due to the
overhead of computing within the enclave [18], and performing a large number
of context switches to send each user’s data into the TEE can add serious over-
head, especially in a big data setting. Overall performance can be improved if
we minimize the number of context switches and outsource the aggregation step
(i.e., AggrDec over inputs without faults) to processors with high parallel com-
puting ability (e.g., many-core CPUs, GPUs, or FPGAs), because the additions
of AggrDec are perfectly parallelizable.

PSA Schemes Requiring Trusted Parties. In PSA schemes, the Setup is
run only once and in a trusted manner [4,12,23]. This is typically accomplished
through the use of an additional trusted third party key dealer or secure multi-
party computation. However, with our framework, this can be replaced with the
TEE, since the integrity of private key generation that is secure from eavesdrop-
ping will be guaranteed via remote attestation. Thus, our framework can remove
the reliance on an external trusted third party in our PSA building block.

6 Experiments

To better understand the practical performance of our protocol we ran experi-
ments using C++11 that simulated having thousands of users run our protocol,
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as is standard in the literature [6,16]. For these tests, we used a workstation
running Ubuntu 16.04 LTS equipped with a Intel(R) Core(TM) i7-8700 CPU @
3.20GHz (6 cores and 12 threads) with Intel SGX support. We did not leverage
GPUs/FPGAs because we did not have access to computers equipped with both
Intel SGX and GPUS/FPGAs. During tests we simulated the cryptosystem over
Koblitz curve secp160k1, that offers 160 bits of security. We used time series
data from the 3W dataset from the UCI machine learning data repository [27],
and report the average time for 50 trials for each experiment.

Although there are space constraints associated with an Enclave, and a pro-
gram that exceeds the allocated space incurs paging overhead, we found that
in practice we could efficiently process aggregation over large numbers of users
without major issues. Note the data footprint per user is roughly 100 bytes, and
since in practice we can fit roughly 93 mb of data into an Enclave before trigger-
ing paging, we conservatively estimate that we can support about 900,000 users
per Enclave, assuming we can fit the remaining program logic and metadata into
roughly 3 mb. Since Intel plans to support Enclaves up to 1 terabyte in size in
upcoming releases, we anticipate this being less of an issue in the future [17].

(a) Overall Time of Basic Scheme (b) Overall Time of Improved Scheme

(c) Recovery Time of Basic Scheme (d) Recovery Time of Improved Scheme

Fig. 3. Experimental results

Basic Scheme: The results for our basic scheme, assuming no users fault, are
shown in Fig. 3a. It is interesting to note that in all cases the overall time is domi-
nated by the overhead of paging into and out of the enclave, and other important
operations, such as performing the aggregation, only minimally contribute to the
overall runtime. This makes sense, as it has been documented that these opera-
tions are comparatively expensive, due to the expensive cryptographic operations
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involved and the time needed to marshal the data. However, our results show
that the overall time scales well in the presence of a large number of users. For
instance our protocol takes about a second to finish when there are 10,000 users,
assuming the setup step is precomputed. We report the additional time needed
to recover from faults in Fig. 3c. We notice that since the dummy ciphertexts
can be precomputed, the amount of time needed to recover is dominated by the
time needed to traverse the hash table to determine which users faulted. As a
result, the more users that are involved in the protocol, the longer this process
takes. However, we note that even in the worst case, when many thousands of
users fault, the additional recovery time is under 30 s. Unlike existing work that
requires additional communication to support fault recovery, since we leverage a
co-located TEE, we can remove the time needed for two communication rounds
over existing works [8,11], while still supporting strong privacy guarantees, to
improve communication complexity.

Improved Scheme: Since the amount of time needed to page into the enclave
leads to significant overhead, we designed an improved protocol to try and min-
imize the performance impact by safely outsourcing more computations to the
untrusted adversary. We report our results, assuming no users fault, in Fig. 3b.
It is interesting to note that because we reduce the amount of enclave computa-
tion, we are able to improve our overall performance by approximately 26% in
most cases. This makes sense, as we are able to reduce the amount of expensive
enclave operations. We report the recovery time in Fig. 3d. We note that the
amount of time needed to recover is comparatively more expensive than in the
basic scheme, as we need to marshal out of the enclave the dummy ciphertexts
needed to recover from faults to the untrusted aggregator. As a result, this can
sometimes increase the overall runtime by several seconds in the worst case prac-
tical scenario when many users fault. This is tolerable for our applications, but
it does illustrate a tradeoff that may inform which scheme should be used on a
case by case basis.

(a) Encryption Comparison (b) Aggregation Comparison

Fig. 4. Experimental comparison results

Comparison to Existing Work: We experimentally evaluated our work when
compared to baseline techniques, and ran simulations to compare our scheme
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to two state of the art secure aggregation schemes: 1) the Binary scheme [6]
which has users buffer their inputs that they send to the aggregator, and 2)
the Circle scheme [16], which has the aggregator communicate with a trusted
party, to support fault tolerance. Our technique outperforms these schemes in
scenarios where faults occur, often by several orders of magnitude. We compare
times reported in Figs. 4 and 5.

We compare the encryption time and the aggregation time of the respective
protocols, assuming no users fault, and vary the number of users. Note that
the computational complexity of both of our schemes and the Circle Scheme
is much less than that of the Binary scheme. This makes sense, as the Binary
scheme requires that users compute �(log2(n)� encryptions per round where n
is the number of users, in order to support fault tolerance via their binary tree
mechanism, which negatively impacts the run time. In contrast, our schemes
and the Circle scheme only require one encryption per round, and thus support
more efficient encryption. Note that the Circle scheme is slightly faster than our
scheme, as they leverage a more efficient cryptographic primitive, the HMAC.
The HMAC also contributes to the improved performance of the Circle scheme
over our schemes and the Binary technique during aggregation. Thus we conclude
that our encryption scheme scales well in the presence of large numbers of users,
but is roughly 2–6x slower that the state of the art Circle scheme if no users
fault.

Fig. 5. Aggregation with faults comparison

We also compared the aggregation time of the respective protocols when
there are 100,000 participants, and varied the number of user faults. We report
results in Fig. 5. Note our schemes have the fastest overall run time when faults
are introduced, sometimes by several orders of magnitude. This makes sense, as
to recover from faults, we can efficiently interact with the on board TEE. In
contrast the Circle Scheme incurs the roundtrip time of communicating with a
trusted key dealer to collect the cryptographic keys needed to recover from the
faults, and the Binary scheme must traverse the binary tree of ciphertexts it con-
structed to gather the ciphertexts it needs to cancel the appropriate randomness
and recover the noisy plaintext. Unlike both of these schemes, we can recover
from faults without either buffering ciphertexts, which causes increased com-
munication overhead, or requiring additional rounds of communication, while
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supporting a stronger level of security overall, that does not require that we
communicate with a trusted third party to recover from a fault.

7 Conclusion

We defined a new level of security for Private Stream Aggregation in the pres-
ence of faults and malicious adversaries. After describing a new framework for
PSA that accounts for fault tolerance, we developed the first protocol that prov-
ably reaches this security level. Our simulations demonstrated our work reaches
high levels of scalability and communication efficiency over existing work while
supporting a higher level of security and better fault tolerance. Our techniques
are general, and can extend any PSA scheme to support non-interactive fault
recovery.
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A Proof of Fault Tolerable Aggregator Obliviousness

Theorem 1. Assuming that the Decisional Diffie-Hellman problem is hard in
the group G and that the hash function H is a random oracle, then the above con-
struction satisfies aggregator oblivious security with fault tolerance, as described
in Definition 2.

Proof. First, we prove that the following intermediate game is difficult to win,
given that Decisional Diffie-Hellman is hard. Let G be a group of prime order p.

Setup: The challenger picks random generators g, h ∈ G, and random
α0, α1, . . . , αn ∈ Zp such that

∑n
i=0 αi = 0. The challenger gives the adversary:

g, h, gα0 , gα2 , . . . , gαn .

Queries: The adversary can compromise users adaptively and ask for the value
of αi. The challenger returns αi to the adversary when queried.

Challenge: The adversary selects an uncompromised set Q ⊆ {0, . . . , N}, and
specifies a subset of Q denoted Y of users they claim faulted, where J = Y for the
duration of the game. The challenger flips a random bit b. If b = 0, the challenger
returns to the adversary {hαq | q ∈ Q\Y } , {hαy | y ∈ Y }. If b = 1, the challenger
picks |Q|/|Y | random elements h′

q, for q ∈ Q/Y and |Y | random elements h′
y, for

y ∈ Y from the group G, such that
∑

q∈Q h′
q+

∑
y∈Y h′

y =
∑

q∈Q hαq +
∑

y∈Y hαy .
The challenger returns h′

q, for q ∈ Q/Y and h′
y, for y ∈ Y to the adversary. The

adversary can make additional compromise queries, as described in the above
step as they see fit.

Guess: The adversary guesses either b = 0 or 1. The adversary wins if they have
not asked for any αq for q ∈ Q, Y = J , and if they successfully guess b.
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Lemma 1. The above game is difficult for computationally bounded adversaries
assuming Decisional Diffie Hellman is hard for group G.

We define the following sequence of hybrid games, and assume that the set
Q specified by the adversary in the challenge stage is Q = {q1, q2, . . . , qm}.
For simplicity, we write (β1, . . . , βm) := (αq1 , . . . , αqm

) , and include Y within
Q to save space. In Gamed, the challenger sends the following to the adver-
sary: R1, R2, . . . , Rd, hβd+1 , ..., hβm . Here, each Rq(q ∈ [d]) means an indepen-
dent fresh random number, and the following condition holds:

∏
1≤q≤d Rq =

∏
1≤q≤d hβq . Clearly Game1 is equivalent to the case when b = 0, and Gamem−1

is equivalent to the case when b = 1. With the hybrid argument we can show that
games Gamed−1 and Gamed are computationally indistinguishable. To demon-
strate this, we show that if, for some d, there exists a polynomial-time adversary
A who can distinguish between Gamed−1 and Gamed, we can then construct an
algorithm B which can solve the DDH problem.

Suppose B obtains a DDH tuple
(
g, gx, gl, T

)
. B’s task is to decide whether

T = gxl or whether T is a random element from G. Now B randomly guesses two
indices e and b to be the dth and the (d + 1)th values of the set Q specified by
the adversary in the challenge phase. The guess is correct with probability 1

N2 ,
and in case the guess is wrong, the algorithm B aborts. Now B picks random
exponents {αq}q �=e,q �=b and sets αb = x and αe = −∑

q �=e αq. Notice that B
does not know the values of αe and αb, however, it can compute the values of

gαb = gx and gαe =
(∏

q �=e gαq

)−1

= (gx)−1.
∏

q �=e,q �=b gαq · B gives A the tuple
(
g, h = gl, gα1 , . . . , gαn

)
. If A asks for any exponent except αe and αb,B returns

the corresponding αq value to A; if A asks for αe or αb, the algorithm B aborts.
In the challenge phase, A submits a set Q = {q1, q2, . . . qm}. If e and b are not

the dth and the (d + 1)th values of the set Q, i.e., if qd �= e or qd+1 �= b, the algo-
rithm B aborts. If qd = e and qd+1 = b, then B returns to A: R1, R2, . . . , Rd−1,
(
∏

q/∈{q1,...,qd+1}(g
l)αq · ∏d−1

q=1 Rq · T )−1, T , and (gl)αqd+2 ,...,(gl)αqm . Clearly if
T = gxl, then the above game is equivalent to Gamed−1. Otherwise, if T ∈R G,
then the above game is equivalent to Gamed. Thus, if A has a non-negligible
advantage in guessing whether it is playing Gamed−1 or Gamed and B could
solve the DDH problem with non-negligible advantage.

Now to prove the theorem, we will modify the aggregator oblivious security
game. In the Encrypt queries, if the adversary submits a request for some tuple
(q, x, t∗) where t∗ is the time step specified in the Challenge phase, the chal-
lenger treats this as a Compromise query, and simply returns the skq to the
adversary. Given skq, the adversary can compute the requested ciphertext. The
adversary has access to a the functionality, FaultRecover, that can only be
called once (since this is enforced via trusted hardware), which takes in a set of
users that have not been compromised (j ∈ J), and returns the set of cipher-
texts that correspond to those users encrypting 0. Note that this modification
actually gives more power to the adversary. From now on, we will assume that
the adversary does not make any Encrypt queries for the time t∗.
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Let K ⊆ N denote the set of compromised participants. Let K̄ := N\K
denote the set of uncompromised participants. Since we assume the aggregator
is untrusted, we are interested in the case where Q = K̄ or the aggregator key
has been compromised. We must show that the adversary cannot distinguish
whether the challenger returns a true encryption of the plaintext submitted in
the challenge stage, or a random tuple with the same aggregation.

Given an adversary A who can break the PSA game with non-negligible
probability, we construct an algorithm B that can solve the above intermediate
problem with non-negligible probability. B obtains from the challenger C the
tuple g, h, gα0 , gα1 , . . . , gαn . B sets α0 to be the aggregator’s key, and α1, . . . , αn

to be the secret keys of participants 1 through n respectively. Note param is g.
Let qH denote the total number of oracle queries made by the adversary A

and by the algorithm B itself. B guesses at random an index b ∈ [qH ]. Suppose
the input to the bth random oracle query is t∗. The algorithm B assumes that t∗

will be the challenge time step. If the guess is found to be wrong later, B aborts.

Hash Function Simulation: The adversary submits a hash query for the inte-
ger t. B first checks the list L to see if t has appeared in any entry (t, z). If so,
B returns gz to the adversary. Otherwise, if this is not the bth query, B picks a
random exponent z and returns gz to the adversary, and saves (t, z) to a list L.
For the bth query, B returns h.

Then the following Queries can take place:

• Encrypt: The adversary A submits an Encrypt query for the tuple (q, x, t).
In the modified version of the game, we ensure that t �= t∗, as otherwise, we
simply treat it as a Compromise query. B checks if a hash query has been
made on t, and if not, B makes a hash oracle query on t. Thus, B learns the
discrete log of H(t). Now H(t) = gz, so B knows z, and since B also knows
gαq ,B can compute the ciphertext gx · (gz)αq as gx · (gαq )z.

• Compromise: B forwards A’s query to its own challenger C, and forwards
the answer αq to A.

• FaultRecover: B forwards A’s query to its own challenger C, and forwards
the set of ciphertexts (i.e. ∀j ∈ J , c ←− g0 · H(t)skj )) to A.

Challenge: The adversary A submits a set N = J ∪Q and a time t∗, as well as
plaintexts {xq | q ∈ N}. If t∗ does not agree with the value submitted in the bth

hash query, then B aborts. B submits the set Q in a Challenge query to its own
challenger, and it obtains a tuple {Tq}q∈N . The challenger returns the following
ciphertexts to the adversary: ∀q ∈ Q : gxq · Tq (i.e. c ←− gxq · H(t)skq · Tq).

More Queries: Same as the Query stage.

Guess: If the adversary A guesses that B has returned a random tuple then B
guesses b′ = 1. Otherwise, B guesses that b′ = 0

If the challenger C returns B a faithful Diffie-Hellman tuple ∀q ∈ Q : Tq =
hαq , then the ciphertext returned to the adversary A is a true encryption of the
plaintext submitted by the adversary. Otherwise, if the challenger returns to B
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a random tuple, then the ciphertext returned to A is random under the product
constraint.
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