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Abstract. In federated learning framework, data are kept locally by
clients, which provides naturally a certain level of privacy. However, we
show in this paper that a curious onlooker can still infer some sensitive
information of clients by looking at the exchanged messages. More pre-
cisely, for the linear regression task, the onlooker can decode the exact
local model of each client in a constant number of rounds under both
cross-device and cross-silo federated learning settings. We improve one
of the learning algorithms and experimentally show that it makes the
onlooker harder to decode the local model of clients.

Keywords: Federated learning · Privacy-preserving · Distributed
optimization · Differential privacy

1 Introduction

Nowadays, data privacy draws public attention in the approach of machine learn-
ing and statistics. Under the distributed network, many mobile devices can gen-
erate amounts of rich data and store them locally every day. With the improve-
ment of computing and storage capabilities on these devices, it introduces the
concern on the transmission of private sensitive data. Therefore, training statis-
tical global models on remote devices rather than overpowered data server and
making the storage of data locally become urgent problems to be solved. This is
where the concept of federated learning (FL) comes from [1]. For privacy con-
cerns, clients may not be willing to share their original data to data centers and
keeping all private data on a central data processing server to train statistical
models.

In conventional federated learning optimization algorithms, there is an
assumption with a synchronous updating scheme running on entities commu-
nicating round by round in a distributed network. There is one server and fixed
selected clients with fixed local dataset in this network, which the server sends
the current global model parameters such as the model weight to selected clients
for efficiency. In convex setting, each selected client calculates the updating
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gradient-descent step using the receiving model parameters from the server and
sends the update to the server. The server averages on all receiving updates from
selected clients and gets the updating global model parameter, and the process
repeats. All selected clients and the server agree with a common optimal global
model parameters.

The objective of the training is to solve the problem below:

min
w∈Rd

l(w) where l(w) =
1
n

n∑

i=1

li(w), (1)

where n is the number of clients, w is the model parameters and li(w) is the
loss function of client i with respect to its local dataset. For a machine learning
problem, the objective can be non-convex neural network and convex functions.

One primary advantage of federated learning is that the raw data are locally
stored on the clients which can avoid the hidden onlooker to eavesdrop the per-
sonal raw data on the communication channels between clients and server. With
the increasing attention of data privacy-preserving of personal information, data
security and privacy-preserving analysis become important hotspots in myriad
domains. Whereas FL has a prominent advantage on protecting personal infor-
mation for clients, the sensitive information still could be deduced somehow by
onlookers with analyzing the differences of the trained and uploaded relevant
parameters sent by the clients. For example, paper [2] showed FL can disclose
some important personal data from the parameter updates for distributed opti-
mization and the transmission of gradients, the work in [3] demonstrated the
client-level privacy leakage from federated learning by the attack from a mali-
cious server.

In the literature, the traditional method to prevent privacy leakage is differ-
ential privacy (DP) [4]. Methods of DP based on FL were taken into account
the trade-off between the convergence performance and privacy during the train-
ing process. The work in [6] proposed DP based FL algorithm focusing on the
clients’ privacy-preserving which utilized secure multiparty computation (SMC)
for avoiding differential attacks. Whereas, the above works did not take into con-
sideration the risk about local model privacy of clients from hidden onlookers
during the uploading process. Motivated by this issue under the FL framework,
we give an attempt to improve one FL algorithm and focus on how to protect the
local model privacy for clients if there exists the onlooker based on our assump-
tions. There has been work done to show that sensitive information was hidden
inside the model. The work in [7] introduced a model inversion attack for a lin-
ear classifier study, in which sensitive information of clients might be learned
by the adversarial access to an ML model. Paper [8] proposed a novel class
of model inversion attack, which showed how the adversarial queries recovered
facial images only given the related names and access to ML model.

In our work, we consider two federated learning settings in paper [9]. Under
the cross-device FL setting, a great deal of clients who are mobile or IOT devices
can collaboratively train a model, the scale of clients is up to 1010, which is
massively parallel. The primary problems on the setting might be the com-
munication efficiency. It’s been applied in many domains, for example, Apple
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applied cross-device FL in IOS 13, applications like the voice recognition for
“Hey Siri” [10], Google applied it extensively to features on Pixel phones [11]
and the Gboard mobile keyboard [12]. Under cross-silo FL setting, clients train a
model on siloed data who are different organizations, such as financial or medical
data centers, while the scale of clients is normally 2–100 clients. The primary
problem in the setting is about the communication or the computation. Cross-
silo FL has been applied in rich domains like smart manufacturing [13] and
reinsurance financial risk prediction [14]. For the data distribution under these
settings, data are generated and stored locally on clients without the right to
read data from others.

We give the counter-examples to show in both settings to show the known
FL algorithms we studied can not protect the local model privacy when solving
a simple linear regression task. Surprisingly, the onlooker can decode the exact
local model in O(1) time by just looking at exchanged messages. We improve one
of the learning algorithms and experimentally show that it makes the onlooker
harder to decode for the local model of clients.

The reminder of this paper is organized as follows: In Sect. 2, we introduce
the preliminaries and background of FL. In Sect. 3, we introduce two kinds of
FL settings, give the decoding process for the onlooker and propose our pri-
vate method. In Sect. 4, we design a new onlooker to decode the model privacy
and demonstrate our numerical experiments. In Sect. 5, we give our concluding
remarks.

2 Preliminaries and Background

This section introduces some preliminaries and the related work about our study.

2.1 Graph Theory

Consider a network of N nodes represented by a directed graph G = (V,E).
Node set is V = {1, 2, ..., n}. Edge set is E ⊂ V × V , whose elements are
(i, j) ∈ E if and only if there is a communication link from node j to i, i.e.,
node j can send messages to node i. We assume no self-edges, i.e., (i, i) �∈ E
for all i ∈ V . Parameter pi,j > 0 represents the weight associated with each
edge (i, j). The out-neighbor set of node i, i.e., the set of nodes that can receive
messages from node i, denoted as Nout

i = {j ∈ V |(j, i) ∈ E}, j ∈ Nout
i . Similarly,

the in-neighbor of node i which the set of nodes can send messages to node i,
denoted as N in

i = {j ∈ V |(i, j) ∈ E}, j ∈ N in
i . Node i’s out-degree is denoted as

Dout
i = |Nout

i | and its in-degree is denoted as Din
i = |N in

i |. Our work focuses on
strongly connected graphs [15–17] which are defined as follows.

Definition 1. A directed graph is strongly connected if for any i, j ∈ V , there
is at least one directed path from i to j in G [18].
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2.2 Differential Privacy (DP)

The differential privacy was first proposed by Dwork et al. [19] in 2006 and has
been widely studied, (ε, δ)–differential privacy was first addressed in [20].

Definition 2. Differential privacy. A randomized algorithm M with domain
N

|x| is (ε, δ)–differential private if for all S ⊆ M and for all x, y ∈ N
|x| such

that ‖x − y‖1 ≤ 1:

Pr[M(x) ∈ S] ≤ exp (ε) Pr[M(y) ∈ S] + δ,

where the probability space is over the coin flips of the mechanism M, x is the
dataset which we will query on,‖x − y‖1 ≤ 1 is a measure of how many records
differ between x and y. If δ = 0, we say that M is ε–differential private (DP).

2.3 Related Work

With the improvement of computing and storage capabilities of mobile devices,
and the fact that the rich data which trained on data center is often private–
sensitive, McMahan et al. [1] introduces the concept of Federated learning, in
which keeping the trained local data on the mobile devices and learning a shared
global machine learning model by collecting the updates locally calculated.

Achieving average consensus is an important problem in distributed comput-
ing and has been widely studied in distributed networks. Kempe et al. [21] and
Bénézit et al. [22] introduced the conventional push–sum algorithm to achieve
average consensus for nodes interacting on a directed graph. In the convex set-
ting, Nedic et al. [23] proposed consensus–based gradient descent (CBGD) algo-
rithm for distributed optimization. The work in [15] took efforts to study the
converging rate to consensus. In this research direction, the relationship between
consistency and convergence was worthy of attention [24]. Olshevsky et al. [25]
proposed push–sum gradient descent (PSGD) algorithms while clients only sent
partial model parameters to its neighbors for privacy which was the first setting
on directed time–varying graphs. Paper [26,27,34] attached great importance to
distributed optimization and estimation in machine learning. Paper [28,33,35]
proposed a distributed subgradient optimization algorithm which was very close
to the work done in [25].

During the federated learning process, even sensitive data held on the mobile
devices, risks of privacy leakage are still available among the transmitted chan-
nels. One approach for privacy–preserving for sensitive data is adding noises on
them. Differential privacy provides privacy guarantee, which ensures that the
output from a query on the dataset does not change obviously whether one sin-
gle data point for the inputting dataset is absent or not [4]. The work in [5]
first gave an attempt to propose a novel DP algorithm which not only satis-
fied the privacy requirement but also kept the provable learning guarantees in
convex settings. Nabi et al.[29] proposed an optimization algorithm applied a
differential privacy mechanism into FL. Wei et al. [30] presented a novel app-
roach by applying differential privacy before aggregating step, i.e., noising before



Local Model Privacy-Preserving Study for Federated Learning 291

model aggregation FL (NbAFL). DP could give the guarantees of privacy while
sacrificing the accuracy, the trade–off between privacy and accuracy should be
considered. In our work, we will show that our proposed algorithm could protect
more privacy which means making the onlooker harder to decode the local model
without sacrificing accuracy of results.

3 Model Privacy

In this section, we introduce the conception of local model privacy. We take
into account the topology of a network as a distributed network with n clients.
The communication channels are connected among n clients in a strongly con-
nected directed graph G = (V,E). Client i can send(receive) messages to (from)
client j, j ∈ Nout

i (N in
i ). In this directed graph, every client i has a weight

parameter vector wi ∈ R
d related to the (global) model. Let li(w) : Rb → R

be the local(loss) function of client i and w∗
i be the optimal local model, i.e.,

w∗
i = arg min li(w). During the federated training process, clients can commu-

nicate with neighbors and update their wi approximate to the optimal global
parameter w∗ = arg min

∑N
i=1 li(w).

In our work, we assume that there is a strong onlooker who can eavesdrop
all transmissions on channels during the training process, and know the training
algorithm A and even the structure of the local (loss) function. Let Mi(A, t) be
the set of all the observations the onlooker collected by listening to the channels
of the client i till round t when the algorithm is running on the network. Based
on Mi(A, t), the onlooker runs its decoding algorithm D to infer the client i’s
local model w∗

i . Let wD
i (t) be the decoded model obtained by the onlooker,

i.e., wD
i (t) = D(Mi(A, t)). When the strong onlooker has the decoded model

w
D(t)
i equaling to w∗

i , we say that the algorithm can not protect the local model
privacy. In the following, we show that in both cross–device and cross–silo FL
settings, the model privacy could not be protected when clients learn a linear
regression model.

ServerServer

ClientsClients

(a) Cross–device setting.

ClientsClients

(b) Cross–silo setting.

Fig. 1. FL networks
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3.1 Cross–Device Federated Learning

In order to achieve more efficient communication during the process of training
global model, paper [1] proposed FederatedAveraging (FedAvg) algorithm shown
in Algorithm 1. FedAvg is one of the cross–device FL algorithms controlled by
three key parameters: C, the fraction of clients that perform calculation on each
round; B, the local minibatch size used for clients at updating step; and E, the
number of training passes (epochs) on local data of clients on each round. FedAvg
calculates the updating gradient–descent step with E times instead only one time
on selected clients at each round before averaging step. The server chooses C–
fraction of clients on each round to do the SGD step over all data maintained on
these clients [1]. At each round, the selected clients execute local SGD updates
for E epochs before sending the updated model parameters back to the server,
then the server averages all the model parameters sent by clients and sends back
the updating parameters to clients, the process repeats at each round.

Note that the structure of cross–device FL distributed network is shown in
Fig. 1(a) in which it has a server and clients, the communication among them is
not peer–to–peer.

Algorithm 1. FederatedAveraging (FedAvg) algorithm.
//The K clients are indexed by k and η is the learning rate.
Server executes:

initialize w0

for each round t = 1, 2, ... do
m ← max(C · K,1)
St ← (random set of m clients)
for each client k ∈ St in parallel do

wk
t+1 ← ClientUpdate(k, wt)

wt+1 ← ∑K
k=1

nk
n

wk
t+1

ClientUpdate(k, w): // Run on client k
B ← (split Pk into batches of size B)
for each local epoch i from 1 to E do

for batch b ∈ B do
w ← w − η∇�(w; b)

return w to server

Observation 1. When clients train a linear regression task using full local batch
for gradient updates, FedAvg can not protect the local model privacy.

Proof. Here, we give a simple instance to demonstrate Observation 1. We assume
there is an onlooker who knows the structure of the loss function, the learning
rate η, and how FedAvg works.

We consider a simple one–dimensional linear regression model (d = 1) and
the loss function is least quadratic. Thus the loss function is shown as following:

li(w) = ai(w − w∗
i )

2 + bi (2)
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and
∇li(w) = 2aiw − 2aiw

∗
i . (3)

So at round t, the onlooker who listens on the channels between client i and
server can collect the messages wt and wi

t, wt represents the model parameter
on server and wi

t represents the updated model on client i.
We set the notation e ∈ {1, ..., E} and wi

t(e) represents the model that
updated of the eth local epoch on client i at round t, note that wi

t = wi
t(E).

At the phase of ClientUpdate in Algorithm 1, we get the following updating
equation on client i at round t:

wi
t(e) = wi

t(e − 1) − η∇li(wi
t(e − 1))

= (1 − 2aiη)ewt + 2ηaiw
∗
i

e−1∑

j=0

(1 − 2aiη)j

= xe
iwt + w∗

i (1 − xe
i ),

(4)

where xi = 1 − 2aiη and only xi and w∗
i are unknown.

The decoding algorithm D works as follows.
Once the onlooker gets the messages wt, w

i
t(E) at round t, he rebuilds the

following linear equation in two unknowns:

wi
t(E) = xE

i wt + w∗
i (1 − xE

i ), (5)

where wi
t(E), wt, E are known.

At round t+1, the onlooker rebuilds another linear equation in two unknowns
if i ∈ St+1:

wi
t+1(E) = xE

i wt+1 + w∗
i (1 − xE

i ). (6)

By solving the system of linear equations in two unknowns (5) and (6), at
round t + 1, the onlooker gets:

xE
i =

dit+1(E)
dt+1

(7)

and

wD
i = w∗

i =
wi

t(E) − xE
i wt

1 − xE
i

, (8)

where dit+1(E) = wi
t+1(E) − wi

t(E), dt+1 = wt+1 − wt.
The above analysis shows that the onlooker can succeed in decoding the

sensitive local model of client i, i.e., w∗
i . Therefore, when clients train a linear

regression task, FedAvg which is under cross–device FL setting can not protect
the local model privacy.

3.2 Cross–Silo Federated Learning

Consensus–Based Gradient Descent Algorithm (CBGD). We first study
the widely used CBGD algorithm[23] that was first proposed for decentralized
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optimization where no centralized node exists that can be easily applied in a
cross–silo setting. This algorithm can avoid the communication bottleneck intro-
duced in FedAvg, and can be highly adaptive to the communication network
among silos. One feature of CBGD algorithm is that clients can interact and
send (receive) their updating models to (from) their neighbors in an undirected
graph. The algorithm can be realized synchronous distributed optimization based
on consensus (but requiring convex and separable functions) [17,31].

The CBGD algorithms follow the following general procedures at round t, for
each client i on a strongly connected graph shown in Fig. 1(b) seen as undirected.

Algorithm 2. Consensus–based gradient descent algorithm by client
i ∈ V at round t.
1. for t ∈ {0, ..., T} do
2. broadcasts model wi(t) to its neighbors in Ni and receives models wj(t) from

every j ∈ Ni

3. calculates a weighted average over all the received models and its own model
wi(t): zi(t) =

∑
j∈Ni∪{i} pi,jwj(t),

notes that the weight matrix P is doubly stochastic
4. updates its model: wi(t + 1) = zi(t) − ηt∇li(w̃(t)),

where w̃(t) could be wi(t) or zi(t) depending on the algorithm

Observation 2. When clients train a linear regression task, consensus–based
gradient descent algorithm can not protect the local model privacy.

Proof. We consider the same linear regression model as the former subsection
and the knowledge of the local loss function is the form as (2) and (3). Therefore,
the onlooker who listens for the channels of client i collects the data Mi(A, t) =
Mi(A, t − 1) ∪ {wj |j ∈ Ni ∪ {i}}. Since the onlooker knows how the algorithm
works including the consensus matrix P and learning rate η, he can obtain zi(t)
and w̃(t), then obtain wi(t + 1).

The process of decoding algorithm D works as follows.
Once the onlooker gets the knowledge of wi(t + 1) at round t + 1, he can

rebuild the following linear equation:

wi(t + 1) − zi(t) = −2ηt(aiw̃(t) − aiw
∗
i ), (9)

where only ai and w∗
i are unknown. At round t + 2, doing the same as before,

he can get another linear equation:

wi(t + 2) − zi(t + 1) = −2ηt+1(aiw̃(t + 1) − aiw
∗
i ). (10)

Thus, the onlooker can get two unknown linear equations from (9) and (10),
then recalculate the solutions as:

ai = (
di(t + 2)

2ηt+1
− di(t + 1)

2ηt
) × 1

w̃(t) − w̃(t + 1)
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and

wD
i (t + 2) = w∗

i = w̃(t) +
di(t + 1)

2aiηt
,

where di(t + 1) = wi(t + 1) − zi(t).
Therefore, starting from round 0, the onlooker under assumptions could suc-

ceed in decoding the local optimum w∗
i of client i at round 2, i.e., when clients

train a linear regression task, the cross–silo FL algorithm can not protect local
model privacy.

Push–Sum Gradient Descent Algorithm (PSGD). In CBGD algorithm,
we observe that the entire model parameters sent by the clients to neighbors gave
an important hint for the decoding process of the onlooker. In order to avoid the
privacy leakage, we turn to study PSGD algorithm [25] in which clients only send
partial models to their neighbors in directed graphs (also works in undirected
graphs). PSGD algorithm aims to solve the minimize problem shown in (1)
in a time–varying series of uniformly strongly connected directed graphs with
a collection of n nodes, which have access to the local dataset to calculate the
corresponding loss functions (convex functions). Each node knows its out–degree
and the state of the algorithm by rounds, while unknown about the number of
clients and the graph series as the condition to implement the algorithm. Paper
[25] shows that this algorithm can achieve distributed optimization with the
convergence rate as O(log t/

√
t). Nevertheless, we find the privacy vulnerability

risk during the communication among all nodes in the distributed networks.
We reference the knowledge of graph theory shown in Sect. 2.1, pj,i(t) repre-

sents the weight put on the client i’s model when i sends its model parameters
to its neighbor j, j ∈ Nout

i (t) at round t, and
∑

j∈Nout
i (t)∪{i} pj,i(t) = 1, i.e., P

is column–stochastic.
For initialization, client i has xi(0) = wi(0) ∈ R

d, scalar variable yi(0) = 1,
weights pj,i(t),∀j ∈ Nout

i (t) ∪ {i}, t ∈ {0, ..., T}. The algorithm works as follows
at round t, for each client i.

Algorithm 3. Push–sum gradient descent (PSGD) algorithm by client
i ∈ V at round t.
1. for t ∈ {0, ..., T} do
2. computes pj,i(t)xi(t) and pj,i(t)yi(t), sends them to all client j ∈ Nout

i (t)
3. receives pi,j(t)xj(t) and pi,j(t)yj(t) from every client j ∈ N in

i (t) and sums
them as follows:

zi(t + 1) =
∑

j∈ Nin
i (t)∪{i}

pi,j(t)xj(t), yi(t + 1) =
∑

j∈ Nin
i (t)∪{i}

pi,j(t)yj(t)

4. updates local parameter: wi(t + 1) ← zi(t+1)
yi(t+1)

5. executes one step of gradient descent: xi(t + 1) ← zi(t + 1) − ηt+1∇li(wi(t + 1))
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Observation 3. When clients train a linear regression task, push–sum gradient
descent algorithm can not protect the local model privacy.

Proof. With the assumptions that the onlooker knows how Algorithm 3 works,
the learning rate η(t), the structure of the loss function of clients and yi(0) = 1,
we give the decoding procedures for the onlooker to decode xi(t), zi(t), wi(t + 1)
during the execution of Algorithm 3.

We consider a simple one–dimension linear regression task (d = 1), and the
knowledge of the local loss function is the form as (2) and (3).

At round 0, the onlooker who eavesdrops the channels of i collects messages
such as Min

x (0) = {pi,j(0)xj(0),∀j ∈ N in
i (0)}, Min

y (0) = {pi,j(0)yj(0),∀j ∈
N in

i (0)}, Mout
x (0) = {pj,i(0)xi(0),∀j ∈ Nout

i (0)}, Mout
y (0) = {pj,i(0)yi(0),∀j ∈

Nout
i (0)}. Because he knows yi(0) = 1, he can randomly pick one pair of cor-

responding data from Mout
x (0),Mout

y (0) for calculating xi(0) = pj,i(0)xi(0)
pj,i(0)yi(0)

yi(0).
Due to weight matrix P is column–stochastic, i.e.,

∑
j∈Nout

i (t)∪{i} pj,i(t) = 1, he
can obtain the values of zi(1), yi(1):

zi(1) =
∑

j∈Nin
i (0)

pi,j(0)xj(0) + pi,i(0)xi(0)

=
∑

j∈Nin
i (0)

pi,j(0)xj(0) + (1 −
∑

j∈Nout
i (0)

pj,i(0))xi(0)

=
∑

m∈Min
x (0)

m −
∑

m∈Mout
x (0)

m + xi(0)

(11)

and
yi(1) =

∑

j∈Nin
i (0)∪{i}

pi,j(0)yj(0)

=
∑

m∈Min
y (0)

m −
∑

m∈Mout
y (0)

m + yi(0).
(12)

Therefore, the onlooker can decode the value of wi(1) from updating step in
Algorithm 3:

wi(1) =
zi(1)
yi(1)

.

Then the onlooker can rebuild the following linear equation according to
the gradient–descent step in line 5 from Algorithm 3 and the structure of loss
function:

xi(1) = zi(1) − 2η1ai(wi(1) − w∗
i ), (13)

where xi(1) can be obtained by the onlooker at round 1 by doing the same
process for decoding the value of xi(0) at round 0.

As the process repeats, the onlooker can obtain zi(2), yi(2), wi(2) by listening
the channels of client i to rebuild the following linear equation:

xi(2) = zi(2) − 2η2ai(wi(2) − w∗
i ), (14)
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where the onlooker can obtain xi(2) by repeating the same procedures as before
at round 2.

Thus the onlooker can get the two unknown linear equations from (13) and
(14) to recalculate the solutions as:

ai = (
di(2)
2η2

− di(1)
2η1

) × 1
wi(1) − wi(2)

)

and

wD
i = w∗

i =
di(1)

2aiη1 + wi(1)
,

where di(t) = xi(t) − zi(t).
Thus, the onlooker can obtain the local models of clients only by 3 rounds

from round 0, i.e., the PSGD algorithm can not protect local model privacy.

3.3 Private Push–Sum Gradient Descent Algorithm (PPSGD)

Algorithm 4. Private push–sum gradient descent by client i ∈ V at
round t.

// Client i has initial value xi(0) = wi(0) ∈ R
d and scalar value 0 < β < α < 1

2
.

1. randomly generates yi(0) from a distribution on a non–zero positive range
2. for t ∈ {0, ..., T} do
3. if |Nout

i (t)| > 0 then
4. chooses pi,i from a distribution on range [β, α]

5. pj,i ← 1−pi,i(t)

|Nout
i (t)| , ∀j ∈ Nout

i (t)

6. else pi,i ← 1
7. broadcasts pj,i(t)xi(t), pj,i(t)yi(t) to clients j ∈ Nout

i (t) and receives
pi,j(t)xj(t), pi,j(t)yj(t) from every client j ∈ N in

i (t) and sums them as follows:

zi(t + 1) =
∑

j∈ Nin
i (t)∪{i}

pi,j(t)xj(t), yi(t + 1) =
∑

j∈ Nin
i (t)∪{i}

pi,j(t)yj(t)

8. updates local parameter: wi(t + 1) ← zi(t+1)
yi(t+1)

9. executes gradient descent step: xi(t + 1) ← zi(t + 1) − ηt+1∇li(wi(t + 1))

According to the analysis about the privacy leakage from the three observations,
we focus on improving Algorithm 3 to make the onlooker harder to decode
the local model privacy. Since the onlooker can deduce the local models by
eavesdropping all the transmission without adding noises on channels under the
three FL algorithms, we find the condition of yi(0) = 1 in Algorithm 3 can give
the onlooker very important information to decode local model privacy. In order
to puzzle the onlooker, we propose our private method shown in Algorithm 4
by randomly generating yi(0) at the client side in line 1 and designing a new
strategy for weight matrix P in line 3–6. The work in [25] showed the weight
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strategy in time–varying graphs that the weights put on the messages of client
i were the same as pj,i(t) = 1

|Nout
i (t)|+1

,∀j ∈ Nout
i (t) ∪ {i}. However, the design

for the weight matrix P in [25] can be deduced easily for the onlooker who can
listen the messages on the channels with the knowledge of the degree |Nout

i (t)|
of each client at each round, so that to help the onlooker to obtain the values of
xi(t), yi(t), zi(t+1), wi(t+1) at round t, then even decoding the local model. The
weight strategy in our proposed private method can hardly make the onlooker
to decode the value of pj,i(t) even he knows the degree |Nout

i (t)| of client i, i.e.,
making the onlooker harder to decode the local privacy. We experimentally show
the performance of PPSGD in the next section.

4 Experiments and Relevant Analysis

In this section, we implement on our distributed network shown in Fig. 2 to
show the convergence of our PPSGD, the performance of the onlooker designed
in Sect. 4.2 on decoding from the time–series data by listening the channels of
client i, the classification accuracy for the onlooker from different distributions
of yi(0) on our PPSGD and we also run our algorithm on a real dataset to see
the corresponding results.

Fig. 2. A strongly connected directed
graph with 5 nodes.

Fig. 3. Convergence on PPSGD.

We consider a network of 5 nodes whose goal is to distributively solve the fol-
lowing minimization problem which is the same idea with (1):

min L(w) �
n∑

i=1

li(w) over w ∈ R
d, (15)

where we assume node i has already trained its local model on the local dataset
which is a convex function li : Rd → R

1, i.e., the loss function. Under the assump-
tion that the set of optimal solutions w∗ = arg minw∈Rd L(w) is not empty. We
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apply the PPSGD by which all clients maintain variables wi(t) converging to
the same point in w∗ over time.

Thus, our baseline is the original local models (loss functions) trained by the
clients are shown in following:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

l1(w) = w2 − 4w + 4

l2(w) = w2 − 9w + 9

l3(w) = w2 − 4w + 7

l4(w) = w2 − 4w + 4.75

l5(w) = w2 + w + 0.25

(16)

and

min L(w) �
5∑

i=1

li(w) = 5(w − 2)2 + 5. (17)

Hence, we can see the optimum of the global model L(w) is 5 when w = 2
which means each client converges to the optimal solution w∗ = 2.

4.1 The Convergence of PPSGD Algorithm

We use the programming language Python to implement our PPSGD algorithm
to see the convergence results based on the baseline. Figure 3 shows the evolution
of L(w) and the error between the real global optimum L(w∗) and the output
L(w̃∗) from our PPSGD. We observe that the output converges to the exact
optimal value 5 and the error is equal to 0 after around 20 rounds. Thus, our
proposed algorithm can still guarantee the convergence without sacrificing the
accuracy of the optimal solution and achieve distributed optimization. Actually
the convergence of Algorithm 4 can be proven, but here we move the result to
the future work.

4.2 New Design for Onlooker

Now we consider an onlooker with an easier task: is the local model different
from our baseline when the onlooker only has the ability of listening to the
transmitted messages on the channels of client i. Baseline represents the original
setting of our distributed network such as the local dataset maintained by clients
set in (16) and the structure of the network shown in Fig. 2. The task means if we
do modification on one client’s local dataset (local model) as a new case, could
the onlooker notice that we did such modification according to all transmitted
observations collected from our baseline and the new cases. This could be the
same spirit of the differential privacy shown in Sect. 2.2.

Shortly, now we assume the onlooker can train a machine learning classifier
model from the two datasets (one is collected from original network, i.e., our
baseline with label 0, another dataset is collected from the case that we do a
little change on one client’s local model with label 1). If he uses the model he
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learned on these two datasets, we want to see that he still can’t distinguish
whether local model has been changed from the outputs of his learning model,
which could confirm our method could make the onlooker harder to deduce the
local model of clients.

We can see that all the observations collected by the onlooker have time–
series property. Here, we let the training model trained by the onlooker be the
inception model [32] by importing package fast–ai1 in the implementation, then
he can predict the data from which classes according to the output of the learning
model.

The performance of the onlooker is related to how we define the training
dataset and testing dataset collected by the onlooker. Moreover, we define the
weak onlooker and the strong onlooker. The details are shown in the following
experimental subsection.

4.3 Classification on Time–Series Data

As the new onlooker we designed in Sect. 4.2 under the above setting shown in
(16) and (17), i.e., our baseline, we assume all time–series observations transmit-
ted on the channels belonging to class 0, and all the observations transmitted
on the channels belonging to class 1 under the case that we did change on the
local model of client 5.

Then we change the local model of client 5 increasingly to see the classi-
fication results by weak onlooker and strong onlooker under Algorithm 3 and
Algorithm 4. The change on the local model of client 5 is shown in Table 1 and
Table 2.

Weak Onlooker. Table 1 shows the form of the testing dataset and training
dataset for the weak onlooker’s classification model. We generate new local mod-
els by changing the local model of client 5 from our baseline (Case 0). And it
shows the variation on the optimal global model L(w∗) and the optimal solution
w∗ by changing the local model l5(w).

For the training dataset, we respectively run 100 times of Algorithm 3 and
Algorithm 4 with 100 rounds for our baseline (Case 0) to get 100 data with label
0, then we respectively run 20 times of these 2 algorithms with 100 rounds for
Case 1–5 to get totally 100 data with label 1. For the testing dataset, we run
100 times of the 2 algorithms with 100 rounds for Case 0 to get 100 data with
label 0, then we get another 100 data with label 1 for Case 6 with the same way.
Therefore, we finish the collections of the dataset for the onlooker.

To visualize the classification, we use the UMAP2 to do the dimensional
reduction and the data point in the leftmost column of Fig. 4 represents all
the observations from the channels got from one single execution(time) of the

1 https://github.com/tcapelle/timeseries fastai.
2 UMAP is a general purpose manifold learning and dimension reduction algorithm:

https://umap-learn.readthedocs.io/en/latest/basic usage.html.

https://github.com/tcapelle/timeseries_fastai
https://umap-learn.readthedocs.io/en/latest/basic_usage.html
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Table 1. Weak onlooker

Samples Case Local function of client 5 w∗ L(w∗) Label

Training dataset (200 data)

100 0 (baseline) w2 + w + 0.25 2 5 0

20 1 w2 + 0.4w + 1.75 2.06 5.28 1

20 2 w2 − 0.2w + 3.25 2.12 5.528 1

20 3 w2 − 0.8w + 4.75 2.18 5.74 1

20 4 w2 − 1.4w + 6.25 2.24 5.91 1

20 5 w2 − 2w + 7.75 2.3 6.05 1

Testing dataset (200 data)

100 0 w2 + w + 0.25 2 5 0

100 6 w + 0.5w + 1.2625 2.05 5 1

Table 2. Strong onlooker

Samples Case Local function of client 5 w∗ L(w∗) Label

Training dataset (200 data)

100 0 (baseline) w2 + w + 0.25 2 5 0

100 6 w2 + 0.5w + 1.2625 2.05 5 1

Testing dataset (200 data)

100 0 w2 + w + 0.25 2 5 0

100 6 w + 0.5w + 1.2625 2.05 5 1

algorithms we use, such as there are 200 data points which each of them has the
length of 1600 values in our experiment due to there are 8 links in Fig. 2.

Fig. 4. Classification accuracy by weak
onlooker.

Fig. 5. Classification accuracy by
strong onlooker.

The ground truth of the classification is shown in Fig. 4(1) and (4) where the
red points belong to class 0, violet points belong to class 1 on Algorithm 3 and
Algorithm 4. From the horizontal direction in Fig. 4, the rightmost column plots
(3) and (6) represent the classification accuracy results by adding the Gaussian
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noises on the transmitted observations with the accuracy as 66%, 51%, respec-
tively. And the middle two column plots (2) and (5) represent the classification
accuracy results under the two algorithms with the accuracy as 74%, 72%. From
the vertical direction, the upper three plots (1), (2), (3) are the classification
results under Algorithm 3, and the lower three plots (4), (5), (6) represent the
classification results under Algorithm 4.

Thus, we observe that the classification accuracy under Algorithm 3 is higher
than it under our proposed Algorithm 4, which means our private method can
make the onlooker harder to decode the local model without harming the accu-
racy of the result from the cross–silo FL algorithms, i.e., the global optimum.
Adding Gaussian noises can somehow protect privacy but also sacrifice the accu-
racy of the result.

Strong Onlooker. In the similar way, we define the dataset for the strong
onlooker shown in Table 2, in which the training dataset and testing dataset are
from the same two cases. Figure 5 shows the classification accuracy by the strong
onlooker. We observe the similar conclusions with the weak onlooker, comparing
to Fig. 4, it shows that the classification accuracy by the strong onlooker is
higher than the results from the weak onlooker, i.e., the weak onlooker is harder
to decode the local model privacy of clients.

4.4 The Influence on PPSGD from the Distribution of yi(0)

Table 3. The distribution of yi(0)

No. Distribution of yi(0) Exp Var Algorithm

1 yi(0) = 1 \ \ PSGD

2 yi(0) = 1 Adding noises ∼ N(0, 0.065) \ \ PSGD

3 yi(0) ∼ U(0.5, 1.5) 1 0.083 PPSGD

4 yi(0) ∼ U(0.3, 1.7) 1 0.163 PPSGD

5 yi(0) ∼ U(0.1, 1.9) 1 0.27 PPSGD

6 yi(0) ∼ Exp(1) 1 1 PPSGD

7 yi(0) ∼ Lognormal(−1, 2) 1 6.39 PPSGD

To observe the influence of yi(0) for the classification accuracy from the strong
onlooker’s model on the test dataset, we choose to test 20000 data on a strong
onlooker’s model to do classification. Then we choose to randomly generate yi(0)
from three kinds of distributions and add Gaussian noises to data when yi(0) = 1
to see the corresponding classification results, the details are shown in Tab. 3.

Here, we only focus on the transmitted data on the channels related to client
1, and for one single execution only with 3 rounds which means the shape of the
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training and test dataset is (20000, 18), note that we set the number of epochs
as 10 in the learning model.

Figure 6(a) and (b) show that the relation of the training loss and accuracy
is inverse. The higher classification accuracy means the onlooker can decode
better to more accurately distinguish two classes, instead easier to decode the
local privacy. PPSGD can make the onlooker harder to decode more privacy of
local model and can’t harm the accuracy results from the algorithm than the
traditional privacy–preserving way like adding noises (see the red dashed lines
and green lines with square marker).

From the results under the cases we randomly generate yi(0) from different
distributions, we observe that when the expectation of yi(0) is equal to 1, the
larger the variance of yi(0) is, the smaller the classification accuracy is, instead
the more secure to protect local privacy, and harder for the onlooker to distin-
guish two classes (see the lines except red lines).

Fig. 6. (a), (b) represent the evolution of training loss and accuracy of the training
model of the onlooker with 10 epochs, respectively; (c), (d) represent the evolution of
training loss and accuracy of the training model of the onlooker with 10 epochs by
removing yi(t), respectively. (Color figure online)

Then we do the same experiment but removing the information about yi(t)
from the dataset, we want to see whether the onlooker considers the element
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Fig. 7. Classification results on multivariate data.

about yi(t) for its decoding classifier algorithm in its learning process. The results
are shown in Fig. 6(c) and (d). Comparing to Fig. 6(a) and (b), we infer that
there is a relation between xi(t) and yi(t) in the learning model of the onlooker.
And removing the information about yi(t) from the dataset makes the onlooker
harder to do classification correctly. While it won’t influence the results under
the case yi(0) = 1 (PSGD) (see the red lines with triangle marker in Fig. 6(b)
and Fig. 6(d)) which shows the onlooker doesn’t need to consider yi(t) in its
learning algorithm and still could accurately distinguish the two classes.

4.5 Classification on Multivariate Data

To show the performance of the onlooker on multivariate data, we change the
network as a ring with 10 nodes. We choose the Boston Housing Dataset3 to
simulate clients to do multi–feature linear regression on this dataset with 5
epochs. Shortly, in the same way, to see the performance of the model trained by
the onlooker on multivariate data, we respectively do experiments under different
cases.

Figure 7 shows that the classification results by the onlooker under PSGD
and PPSGD, d represents the variation of the local optimum on one client’s
local model, t represents the number of rounds at each execution. Obviously, it
shows that our private method makes the onlooker harder to decode the local
model privacy of clients.

3 Boston House Dataset:https://scikit-learn.org/stable/modules/generated/sklearn.
datasets.load bost-on.html.

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_bost-on.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_bost-on.html
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5 Conclusion

In our work, we first focus on studying FL algorithms under cross–device and
cross–silo FL settings, and we propose the concept of local model privacy. We
demonstrate that these algorithms can not protect the local model privacy for
clients when they train a linear regression task with the assumption of existing a
curious onlooker. We improve one cross–silo FL algorithm, experimentally show
the relevant performance of our private method and it makes the onlooker harder
to decode the local model privacy of clients. In the future work, we will focus
on study the performance on PPSGD in more complex ML problems, such as
neural network.
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25. Nedić, A., Olshevsky, A.: Distributed optimization over time-varying directed
graphs. IEEE Trans. Autom. Control 60(3), 601–615 (2015)

26. Balcan, M.F., Blum, A., Fine, S., et al.: Distributed learning, communication com-
plexity and privacy. In: Conference on Learning Theory. JMLR Workshop and
Conference Proceedings, pp. 26-1 (2012)

27. Shamir, O., Srebro, N.: Distributed stochastic optimization and learning. In: 2014
52nd Annual Allerton Conference on Communication, Control, and Computing
(Allerton), pp. 850–857. IEEE (2014)

http://arxiv.org/abs/1912.04977
https://developer.apple.com/videos/play/wwdc2019/708
https://developer.apple.com/videos/play/wwdc2019/708
https://ai.google/stories/ai-in-hardware
http://arxiv.org/abs/1811.03604
http://musketeer.eu/project
https://finance.yahoo.com/news/webank-swiss-signed-cooperation-mou-112300218.html
https://finance.yahoo.com/news/webank-swiss-signed-cooperation-mou-112300218.html
http://arxiv.org/abs/1812.02255
https://doi.org/10.1007/11787006_1
https://doi.org/10.1007/11761679_29
https://doi.org/10.1007/11761679_29


Local Model Privacy-Preserving Study for Federated Learning 307

28. Tsianos, K.I., Lawlor, S., Rabbat, M.G.: Push-sum distributed dual averaging for
convex optimization. In: 2012 IEEE 51st IEEE Conference on Decision and Control
(CDC), pp. 5453–5458. IEEE (2012)

29. Geyer, R.C., Klein, T., Nabi, M.: Differentially private federated learning: a client
level perspective. arXiv preprint arXiv:1712.07557 (2017)

30. Wei, K., Li, J., Ding, M., et al.: Federated learning with differential privacy: algo-
rithms and performance analysis. IEEE Trans. Inf. Forensics Secur. 15, 3454–3469
(2020)

31. Nagumey, A.: Book review: parallel and distributed computation: numerical meth-
ods. Int. J. Supercomput. Appl. 3(4), 73–74 (1989)

32. Fawaz, H.I., Lucas, B., Forestier, G., et al.: Inceptiontime: finding alexnet for time
series classification. Data Min. Knowl. Disc. 34(6), 1936–1962 (2020)

33. Tsianos, K.I.: The Role of the Network in Distributed Optimization Algorithms:
Convergence Rates, Scalability, Communication/Computation Tradeoffs and Com-
munication Delays. McGill University Libraries (2013)
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