
TESLAC: Accelerating Lattice-Based
Cryptography with AI Accelerator

Lipeng Wan1,2,3, Fangyu Zheng1,3(B), and Jingqiang Lin4

1 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing, China

zhengfangyu@iie.ac.cn
2 School of Cyber Security, University of Chinese Academy of Sciences,

Beijing, China
3 Data Assurance and Communication Security Research Center,

Chinese Academy of Sciences, Beijing, China
4 School of Cyber Security, University of Science and Technology of China,

Hefei, China

Abstract. In this paper, we exploit AI accelerator to implement crypto-
graphic algorithms. To the best of our knowledge, it is the first attempt
to implement quantum-safe Lattice-Based Cryptography (LBC) with AI
accelerator. However, AI accelerators are designed for machine learning
workloads (e.g., convolution operation), and cannot directly deliver their
strong power into the cryptographic computation. Noting that polynomial
multiplication over rings is a kind of time-consuming computation in LBC,
we utilize a straightforward approach to make the AI accelerator fit well for
polynomial multiplication over rings. Additional non-trivial optimizations
are also made to minimize the overhead of transformation, such as using
low-latency shared memory, coalescing memory access. Moreover, based
on NVIDIA AI accelerator, Tensor Core, we have implemented a proto-
type system named TESLAC and give a set of comprehensive experiments
to evaluate its performance. The experimental results show TESLAC can
reach tens of millions of operations per second, achieving a performance
speedup of two orders of magnitude from the AVX2-accelerated reference
implementation. Particularly, with some techniques, TESLAC can also be
scaled to other LBC with larger modulo q.

Keywords: Lattice-based cryptosystems · Polynomial multiplication
over rings · AI accelerator · Tensor Core · LAC

1 Introduction

Quantum computing has brought a huge security challenge to the widely-used
conventional cryptosystems. If large-scale quantum computers are ever built,

This work was partially supported by National Key R&D Program of China under
Award 2018YFB0804401 and National Natural Science Foundation of China under
Award No. 61902392.

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2021

Published by Springer Nature Switzerland AG 2021. All Rights Reserved

J. Garcia-Alfaro et al. (Eds.): SecureComm 2021, LNICST 398, pp. 249–269, 2021.

https://doi.org/10.1007/978-3-030-90019-9_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90019-9_13&domain=pdf
https://doi.org/10.1007/978-3-030-90019-9_13

250 L. Wan et al.

they will be able to break many of the public-key cryptosystems currently in
use, such as RSA and ECDSA [17], with Shor’s algorithm [24]. That would seri-
ously compromise the confidentiality and integrity of digital communications. In
this situation, NIST has initiated a project [20] to solicit, evaluate, and standard-
ize one or more quantum-safe public-key cryptographic algorithms (also called
post-quantum cryptography, PQC [8]). The goal of PQC project is to develop
cryptosystems that are secure against both quantum and classical computers and
can be compatible with existing communication protocols and networks. Among
the candidates, LBC, a kind of quantum-safe cryptographic algorithm that has
been studied for several years, is considered to be the most promising public-
key cryptographic standard scheme. The well-known LBC includes NTRU [12],
NewHope [4], Kyber [5], Saber [11], etc.

On the other hand, high performance cryptographic computing has always
been the pursuit of academia and industry. Since performance is also an impor-
tant metric in the evaluation of NIST PQC project, researchers have tried to
optimize the proposed schemes in both levels of algorithm design and hardware
implementation, such as FPGA [6,19], ASIC [18], CPU supported by AVX2 or
AVX-512 [1,23], and even GPU [2,3,10,14]. Compared with the basic implemen-
tation, these optimization solutions may have some improvement in performance.
However, the performance is still difficult to meet the needs of practical appli-
cations.

Along with quantum computing and quantum-safe cryptography, AI (artifi-
cial intelligence) is another hot issue that attracts a lot of attention. At the same
time, many processor vendors have designed their own dedicated AI processors
or accelerators, including server products (e.g., NVIDIA Tensor Core1, Google
TPU), mobile terminals (e.g., Apple Neural Engine), and embedded devices (e.g.,
Intel neural network stick, and even Tesla self-driving car), to power AI appli-
cations. Because AI accelerators are designed for high-density machine learning
workloads, they can deliver multiple times computing power than the general-
purpose CPU or even GPU. Taking NVIDIA Tensor Core as an example, it
can deliver up to 125 Tensor TFLOPS on Tesla V100 for training and inference
applications [13], while typical CUDA cores can only provide up to 15 TFLOPS.

Such a huge performance advantage has inspired us to introduce AI accelera-
tors to cryptographic implementation. However, little work has been done ever. In
this paper, we have explored the feasibility of implementing LBC with AI acceler-
ators. It is not easy to utilize AI accelerators to implement the cryptographic com-
putation directly, since they are generally dedicated to specific operations and it is
almost impossible for third-party developers to control AI accelerators in a more
fine-grained way. As for Tensor Core, the 125 TFLOPS can only be achieved in its
unique mixed-precision matrix-multiply-and-accumulate computing model which
is designed for convolution operation. Specifically, the data precision is very small,
the input multiplier of Tensor Core is half-precision floating-point format (abbre-
viated as FP16 or half) with only 11 bits of significance.

1 NVIDIA has launched different generations of Tensor Core. If there is no additional
explanation, Tensor Core in this paper refers to the one on the architecture of
Volta.

TESLAC: Accelerating Lattice-Based Cryptography with AI Accelerator 251

Polynomial multiplication over rings is often the performance bottleneck of
LBC. To demonstrate the application of AI accelerators in high performance
cryptographic computing, we extend polynomials to matrices of a specific size
to adapt it to the operating mode. Compared with other approaches, such as
NTT, this method is straightforward and more suitable for Tensor Core. And we
choose LAC [15], a kind of LBC, to be implemented with Tensor Core on Tesla
V100, and name the prototype as TESLAC (TEnSor-core accelerated LAC).

Our Contributions. The highlight of TESLAC is to turn the machine learning
workloads into cryptography workloads. To exploit the maximum potential of
TESLAC, we have made the following contributions:

– Firstly, as far as we know, it is the first time to introduce AI accelerators
into LBC acceleration, which can provide a new high-performance alternative
platform for the development and application of cryptography.

– Secondly, we propose a framework to turn the machine learning workloads
(more precisely, convolution operation) to polynomial multiplication over
rings. For instance, we represent a method to expand the polynomial (or vec-
tor) into a matrix of a specific size to apply the calculation to the operating
mode of Tensor Core.

– Thirdly, we have implemented the entire LAC prototype system TESLAC
on NVIDIA Tesla V100. A series of optimizations have been made to bring
the true power of Tensor Core into practice, such as making full use of low-
latency shared memory to cache data, coalescing global memory accesses.
Consequently, TESLAC can deliver tens of millions of LAC operations per
second, which is two orders of magnitude faster than the LAC submission
implementation running in CPU with AVX2, and outperforms other LBC
schemes on CPU or GPU by a wide margin.

Organization. The rest of this paper is organized as follows. Section 2 presents
background knowledge. Section 3 expounds the polynomial multiplication rule
over rings, and explains the reason why we choose LAC. Section 4 demonstrates
how to apply Tensor Core to the implementation of LAC and the details of TES-
LAC. Section 5 illustrates the environment configuration, shows the evaluation
and analysis of experimental results, and compares with other implementations.
Section 6 concludes our work.

2 Preliminaries

2.1 Lattice-Based Cryptography

A lattice L ⊂ R
n is the set of all integer linear combinations of basis vectors

v1,v2, . . . ,vn ∈ R
n, i.e., L := {∑

aibi|ai ∈ Z}. LBC (Lattice-Based cryptogra-
phy) is the generic term for constructions of cryptographic primitives that involve
lattices, either in the construction itself or in the security proof. Lattice-Based

252 L. Wan et al.

constructions are currently important candidates for PQC. Compared with more
widely used and known public-key schemes such as RSA, DH, and ECC, LBC
is believed to be secure against both classical and quantum computers.

Vectors and Matrices. Vectors are denoted by bold lower-case characters,
such as a. And matrices are denoted by uppercase characters, such as A.

An m-dimensional vector a = (a0, ..., am−1), where the ai is the component
of a for 0 ≤ i < m.

Algebraic Structures. Let R be real numbers, Q be rational numbers, and
Z be integers. For an integer q ≥ 1, let Zq be the residue class ring modulo q
and Zq = 0, . . . , q − 1. Define the ring of integer polynomials modulo xn + 1
as R = Z[x]/(xn + 1) for an integer n ≥ 1, and the ring Rq = Zq[x]/(xn + 1)
denotes the polynomial ring modulo xn + 1 where the coefficients are from Zq.
The addition and multiplication of the elements in Rq are performed according
to those of polynomials.

2.2 LAC

Currently, most lattice-based cryptosystems are based on learning with errors
(LWE) assumption [22] and its variants. In case of Ring-LWE, the noisy equation
is (a, b = as+ e), where a, s, e are chosen from a ring. Usually, the integer
polynomial ring Rq = Zq[x]/(xn +1) for suitable ring dimension n is used. LAC,
a proposal to the NIST PQC standardization that has advanced to round 2, is
a kind of LBC based on Poly-LWE (a simplification version of Ring-LWE). The
basic primitive comprises three algorithms: KG (key generation), Enc (encryp-
tion), Dec (decryption). The core of the whole cryptographic scheme is based on
the above three algorithms.

Notations. Define the message space M ∈ {0, 1}lm for a positive integer lm,
and the space of random seeds S be {0, 1}ls for a positive integer ls. We use n
independently identical distribution of Ψσ, namely Ψn

σ .

Subroutines. In the subroutines dealing with the encoding and decoding of the
error correction, ECCEnc, ECCDec, the conversion between m ∈ {0, 1}lm and its
encoding m̂ ∈ {0, 1}lv is provided, wherein lv is a positive integer denoting the
length of the encoding and depending on the specific choice of the parameter
settings. Key Generation randomly generates a pair of public key and secret key
(pk, sk). Details are described in Algorithm 1.

The algorithm Encryption on the input pk and a message m, encrypts m
with the randomness seed. In case that seed is not given, the process is random-
ized. Otherwise, the encryption is deterministic for the same seed. Details are
described in Algorithm 2. The subroutine ECCEnc converts the message into a
codeword m̂.

The Decryption on input sk and a ciphertext c, recovers the corresponding
message m. The subroutine ECCDec inputs an encoding m̂, and decodes the
codeword in it.

TESLAC: Accelerating Lattice-Based Cryptography with AI Accelerator 253

Algorithm 1. Key Generation
Ensure: A pair of public key and secret key (pk, sk).

1: seeda
$←− S

2: a ← Samp(U(Rq; seeda)) ∈ Rq

3: s
$←− Ψn,h

σ

4: e
$←− Ψn,h

σ

5: b ← as+ e
6: return (pk := (seeda, b), sk := s)

Algorithm 2. Encryption
Require: (pk, seeda, b),m ∈ M; seed ∈ S
Ensure: A ciphertext c.
1: seeda

$←− S.
2: a ← Samp(U(Rq; seeda)) ∈ Rq

3: m̂ ← ECCEnc(m) ∈ {0, 1}
4: (r,e1,e2) ← Samp(Ψn,h

σ ,Ψn,h
σ ,Ψ lv

σ)
5: c1 ← ar + e1 ∈ Rq

6: c2 ← (br)lv + e2 + � q
2� · m̂ ∈ Z

lv
q

7: return c := (c1, c2) ∈ Rq × Z
lv
q

Algorithm 3. Decryption
Require: sk = s, c = (c1, c2)
Ensure: A plaintext m
1: u ← c1s ∈ Rq

2: m̃ ← c2 − (ulv) ∈ Z
lv
q

3: for i = 0 to lv − 1 do
4: if q

4 ≤ m̃i < 3q
4 then

5: m̂i ← 1
6: else
7: m̂i ← 0
8: end if
9: end for

10: m ← ECCDec(m̂)
11: return m

2.3 Tensor Core

When we talk about NVIDIA GPU cores, it usually refers to CUDA Cores. From
intelligent assistants to autonomous robots and beyond, the deep learning models
are addressing challenges that are rapidly growing in complexity. But converging
these models has become increasingly difficult and often leads to underperform-
ing and inefficient training cycles. To mitigate these problems, NVIDIA adds

254 L. Wan et al.

Tensor Core to their GPUs to accelerate AI training. Unlike CUDA Core, Ten-
sor Core, available on Volta and subsequent architectures, is a kind of acceler-
ator designed for computationally-intensive tasks such as fully-connected and
convolutional layers in CNN. It consists of programmable matrix-multiply-and-
accumulate units, and its associated data path is custom-crafted to dramatically
increase floating-point computing throughput at only modest area and power
costs.

The Convolution Operation. Taking Convolutional Neural Network (CNN)
as an example, Fig. 1 shows the operating procedure of the convolutional layer
when performing feature extraction on pictures. The input image (a 5×5 matrix)
works with the convolution kernel (a 3 × 3 matrix).

Fig. 1. Basic convolution operation.

The operating mode of Tensor Core is similar to this operation. Each Tensor
Core of Tesla V100 provides a matrix processing array which performances the
operation D = A ∗ B + C, where D, A, B, C are 4 × 4 matrices.

Data Type and Precision. What Tensor Core really performs is Fused Mul-
tiply and Add (FMA) mixed-precision operation (FP16 as multipliers and FP32
as an accumulator, shown in Fig. 2).

FP16

FP16

FP32

FP32

storage/input accumulator

more products

result

full precision
product

+

Fig. 2. Tesla V100 Tensor Core operation.

FP16, or half, is a binary floating-point computer number format that occu-
pies 16 bits [9], shown in Fig. 3. In the IEEE 754–2008 standard, the 16-bit base-2

TESLAC: Accelerating Lattice-Based Cryptography with AI Accelerator 255

format is referred to as binary16. It is intended for the storage of floating-point
values in the application where higher precision is not essential for performing
arithmetic computations. The exponent is encoded using an offset-binary rep-
resentation, with 11-bit (10 bits fraction and an implicit lead bit with value
1) significand precision. Therefore, the maximum value exactly represented is
211 = 2048.

exponent (5 bits)

sign (1 bit)

fraction (10 bits)

Fig. 3. IEEE 754 half-precision binary floating-point format.

2.4 CUDA Programming Model

CUDA is a general-purpose parallel computing platform launched by NVIDIA.
Our proposed prototype is programmed based on this platform.

Thread Model. CUDA hardware can possess thousands of cores, which means
thousands of threads can execute in parallel. In CUDA C++, it is allowed to
define the function as kernel, executed by multiple threads simultaneously. CUDA
threads are organized in three levels, grid, block, and thread.

A CUDA hardware contains several SMs (Streaming Multiprocessors), and
a block is usually executed on an SM. However, SM schedules only one warp
(usually 32 threads) of the block each time. These threads work in SIMT
(Single-Instruction, Multiple-Thread) mode. And block is the basic unit of device
resource (such as shared memory) allocation. Therefore, when setting the num-
ber of threads included in the block, it is better to set an integer multiple of the
number of warp.

Memory Model. CUDA hardware has multiple available memory spaces, i.e.,
global, local, register, shared, constant, or texture memory, and they all have
different scopes, lifetimes, and caches.

In general, registers are the fastest, but they are allocated and used by a
single thread and are difficult to be used for data sharing and interaction between
threads. Local memory is private to the thread and is automatically allocated
by the compiler when all registers are used up. Shared memory is allocated
according to a single block and visible to all threads in the block. Since shared
memory is on-chip, it has much higher bandwidth and much lower latency than
local and global memory.

256 L. Wan et al.

Low-Level Programming of Tensor Cores. However, a single Tensor Core
is the smallest execution unit, but not the smallest control unit. Multiple Tensor
Cores are used concurrently by a full warp. A larger 16×16×16 matrix operation
(shown in Fig. 4), implicitly divided by multiple Tensor Cores, is conducted by
the warp. In addition to using the cuBLAS and cuDNN libraries, developers can
also program Tensor Core directly in CUDA C++ via a set of functions and types
in the nvcuda::wmma namespace. These warp-level matrix operations are exposed
in the CUDA warp matrix-multiply-and-accumulate (WMMA) API listed in the
appendix.

A15,0

...

A1,0

A0,0

A15,1

...

A1,1

A0,1

...

...

...

...

A15,15

...

A1,15

A0,15

B15,0

...

B1,0

B0,0

B15,1

...

B1,1

B0,1

...

...

...

...

B15,15

...

B1,15

B0,15

C15,0

...

C1,0

C0,0

C15,1

...

C1,1

C0,1

...

...

...

...

C15,15

...

C1,15

C0,15

D =

A B C

+

Fig. 4. A warp-level 16 × 16 × 16 matrix operation

At first, the data need to be loaded or initialized to the specific format
(fragment) required by Tensor Core, with load matrix sync or fill fragment. In
CUDA, fragment is an overloaded class containing a section of a matrix dis-
tributed across all threads in the warp. The mapping of matrix elements into
fragment internal storage is unspecified. Only certain combinations of template
arguments are allowed. The first template parameter specifies how the fragment
will participate in the matrix operation. The namespace and class fragment are
also shown in the appendix listing. Acceptable values for Use are: matrix a (A),
matrix b (B), accumulator (C or D). The m, n, and k describe the shape of the
warp-wide matrix tiles participating in the multiply-accumulate operation. The
dimension of each tile depends on what value for Use. The data type, T, may
be half, float on Tesla V100. After the MMA (matrix-multiply-and-accumulate)
operation (mma sync) is performed , the result needs to be stored into memory
through the function store matrix sync.

Meanwhile, the parameter mptr in function load matrix sync and store
matrix sync must be a 256-bit aligned pointer pointing to the first element of the
matrix in memory. In addition, ldm describes the stride in elements between con-
secutive rows (for row-major layout) or columns (for column-major layout) and
must be a multiple of 16 bytes.

Since CUDA does not provide more fine-grained APIs, these functions should
be treated as atomic operations on the thread warp. And the focus of program-
ming is how to divide matrix tiles, fill fragments, and achieve parallelism and
synchronization.

TESLAC: Accelerating Lattice-Based Cryptography with AI Accelerator 257

3 Design

3.1 The Reason to Choose LAC

As mentioned previously, Tensor Cores have a special working mode that is
based on dedicated matrix fragments, and the mapping of matrix elements into
internal storage of fragment is unspecified. In addition to the warp matrix func-
tions provided in CUDA, third-party developers cannot get more fine-grained
programming interfaces.

On the other hand, polynomial multiplication over a ring in LBC is not
the calculation of dot product, while the execution of Tensor Core is that of
the multi-tuples dot product. It is impossible to utilize Tensor Core with LAC
directly.

Compared with other NIST-PQC candidates, LAC is not well-known. How-
ever, LAC has unique design features: it uses a byte-wide modulus. Adopting
error-correcting codes means that LAC can tolerate a higher decryption failure
rate, which allows it to use a smaller modulus that leads to improved perfor-
mance. The Table 1 lists some values for different LBC cryptosystems selected
from NIST-PQC Round-2 [21]. In the table, pk stands for public key, sk for secret
key, ct for cipher-text, n for dimension, and q for modulus. Since Kyber [5] is
based on Module-LWE and Saber [11] is based on Module-LWR, k means the
module rank.

Table 1. Comparison of Several LBC

Algorithm pk(B) sk(B) ct(B) n q k

KYBER512 800 1632 736 256 3329 2
LAC128 544 1056 712 512 251 –
NewHope512 928 869 1088 512 12289 –
NTRU443 611 701 611 443 2048 –
Saber(Light) 672 1568 736 256 213 2

Since the multiplier’s data type of Tensor Core on Tesla V100 is FP16, only
integers between 0 and 2048 can be exactly represented in a single data. In LAC,
each coefficient is less than 251 (the modulus q = 251) and is very suitable to
be directly represented in FP16. That is the main reason for choosing LAC.
However, this is not to say that our scheme can only be utilized for LBC with a
small modulus. For the modulus larger than 2048, taking additional processing
and techs, such as multi-precision representation and KaraTsuba algorithm, this
platform can also be applied to some other eligible algorithms. More details will
be discussed later.

258 L. Wan et al.

3.2 The Rule of Polynomial Multiplication Rule over Rings

Polynomial multiplication is the basic and most computationally intensive oper-
ation in Lattice-Based cryptosystems. There are some rules for polynomial mul-
tiplication over rings, which can be used for fast reduction.

Over ring Rq = Zq[x]/(xn + 1), since the modulus is xn + 1, there is

xn ≡ −1 mod (xn + 1)

Assume a, b are n-dimensional vectors on the ring, define a, b as:

a = a0 + a1x + a2x
2 + · · · + an−1x

n−1

b = b0 + b1x + b2x
2 + · · · + bn−1x

n−1

For c = ab, there is

c = a0b0 + (a0b1 + a1b0)x + ... + (a0bn−1 + ... + an−1b0)

xn−1 + (a1bn−1 + ... + an−1b1)xn + ... + an−1bn−1x
2n−2

= a0b0 + (a0b1 + a1b0)x + ... + (a0bn−1 + ... + an−1b0)

xn−1 − (a1bn−1 + ... + an−1b1) − ... − an−1bn−1x
n−2

(1)

c = (c0, · · · , cn−1), then

c0 = a0b0 − (a1bn−1 + a2bn−2 + · · · + an−1b1)
c1 = a0b1 + a1b0 − (a2bn−1 + · · · + an−1b2)

· · ·
cn−1 = a0bn−1 + a1bn−2 + · · · + an−1b0

⇒ ci =
i∑

j=0

ajbi−j −
n−1∑

j=i+1

ajbn+i−j (2)

3.3 The Application of Tensor Core

We decide to apply Tensor Core to accelerate the polynomial multiplication
and addition (c = ab + e) over the ring Rq = Zq/(xn + 1). However, the
parameter vectors are generally one-dimensional and cannot be used directly on
Tensor Core. In a thread warp, Tensor Cores operate on a 16×16 tile, while the
dimension n = 512 is greater than the tile capacity, then all coefficients cannot
be completely loaded into the tile at one time. What’s more, the tile operates in
rows and columns. For each intermediate result, that is, 16 pairs of coefficients
are multiplied and then accumulated. If a vector (part) is placed in the 16 rows of
one tile, shown in Fig. 5, it will make the process more complicated. For instance,
the intermediate values are at the diagonal position of the Tile C, and need to
be rearranged and sorted.

TESLAC: Accelerating Lattice-Based Cryptography with AI Accelerator 259

Fig. 5. Tensor Core operation on 1 vector

Some adjustments must be made. There are some idiosyncrasies of (2) and
the matrix representation (3) can be inferred.

c =
[
a0 a1 . . . an−1

]

⎡

⎢
⎢
⎢
⎣

b0 b1 · · · bn−1

−bn−1 b0 · · · bn−2

.
.

−b1 −b2 . . . b0

⎤

⎥
⎥
⎥
⎦

(3)

Therefore, we consider placing a vector (part) in a single row instead of 16
rows of the Tile A. In a round of calculation, Tensor Cores manipulate 16
different vectors and get 16 different rows of valid intermediate results, shown in
Fig. 6. Further, the vector corresponding to Tile B is transformed into an n×n
matrix.

Fig. 6. Tensor Core operation on 16 vectors

In this way, the results of a vector are all in one row and can be directly
stored in memory without filtering. What’s more, this can also handle multiple
(at least 16) vectors simultaneously, solving the applicability of Tensor Core. As
for the final results, they can be obtained through the accumulation of these
intermediate values and should look like (4), where ai, ci represent different
vectors and b∗ is the expanded form of vector.

⎡

⎢
⎢
⎣

a0

a1

a2

. . .

⎤

⎥
⎥
⎦ b∗ =

⎡

⎢
⎢
⎣

c0

c1

c2

. . .

⎤

⎥
⎥
⎦ (4)

260 L. Wan et al.

All multipliers on the right side of (2) (or (3)) are elements of a and b. The
difference lies in the index of the elements, and the sign may also change. For
each ci, supposing the sequence a (b is equivalent here) is fixed, and then the
relative position of the coefficient sequence of b has not been changed, while it
is similar to a cycle, shown in Fig. 7.

Fig. 7. c = ab

As for the matrix representation of b, only [bn−1,bn−1, · · · ,b0,−bn−1,−bn−2,
· · · ,−b1] needs to be stored, and the number of elements is 2n − 1. On the other
hand, the mptr in WMMA API must be a 256-bit aligned pointer pointing to
the first element of the matrix in memory. 256-bit means 16 elements (half). For
instance, when the pointer is pointing to b0, if you need to execute a new line
starting with b1, you need to move to another row (stride of at least 16 FP16
elements or integral times of 16) instead of just adding 1 to the pointer. At the
same time, the Tile B should contain 16 columns. Finally, to meet the alignment
requirements of the Tensor Core, we expand a vector into a 2n × 16 matrix that
is completely suitable, shown as Fig. 8. In addition, each column will be padded
with 0.

Fig. 8. Compression and expand for alignment

4 Implementation

4.1 Overview

The overview of the prototype system is shown in Fig. 9. Data is transmitted
between the host and CUDA Hardware through the PCIe bus. Because the
two are heterogeneous, the overall task needs to be split. The random number

TESLAC: Accelerating Lattice-Based Cryptography with AI Accelerator 261

HOST

CUDA Hardware

CPU

RAM

Register

Kernel

Block

Global Memory

Shared
Memory

RegistersTensor
Cores

CUDA Cores

Random
Number

Generation

Error Code
Correction

Key
Generation

Encryption

Decryption

Data
preparation

Fig. 9. The overview of the prototype system.

generation and error correction code are generally carried out by the host, while
CUDA hardware, also called device, is mainly responsible for computing tasks
involving polynomial multiplication. If the error correction code processing is
assigned to the device, the control flow would become very complicated. As
for random number generation, it can be considered as a portable module, and
where it is generated doesn’t need to be concerned if the security requirements
are satisfied. In other words, the random numbers can be generated by the host,
the device, or a third-party hardware module. For convenience, we arrange this
task on the host.

The key generation, encryption, and decryption tasks are arranged for the
device. However, there are specific requirements for the type and format of the
data to be processed by Tensor Core, therefore, the data from the host need to
go through a data preparation stage before they participate in the calculation.

4.2 Setting of LAC Parameters

Depending on different security strengths, the dimension n of the LAC can be
512 or 1024. Further, according to the length of plaintext, there are 3 categories
of parameters, as Table 2.

Table 2. Parameter settings of LAC

Categories n q Distribution BCH[ne, le, de, te] Plaintext length lm

LAC128 512 251 Ψ1 [511, 264, 59, 29] 256
LAC192 1024 251 Ψ 1

2
[511, 392, 27, 13] 384

LAC256 1024 251 Ψ1 [1023, 520, 111, 55] 512

262 L. Wan et al.

4.3 Data Type Conversion

On Tesla V100, the data processed by Tensor Core is required to be half, while the
parameters generated by the host are byte or int. That requires the use of some
CUDA built-in functions, such as short2half, to perform data type conversion on
the original parameters.

4.4 Memory Coalescing

Grouping of threads into warps is not only relevant to computation but also
global memory accesses. The device coalesces global memory loads and stores
issued by threads of a warp into as few transactions as possible to minimize
DRAM bandwidth. If each thread holds a running instance, the memory access
stride will be very large. That might lead to an increase in the number of memory
requests. Therefore, we coalesce all the instances’ memory and use the block as
a computing unit to ensure that the memory accessed by threads in a block is
as continuous as possible.

4.5 Iteration

Intermediate iterations need to be set according to the size of block. As men-
tioned earlier, the WMMA APIs are warp-wide functions and manipulate 16
elements for a single vector parameter. An approach is to set up enough threads,
and each warp (32 threads) performs only one WMMA operation. Due to the
limitation of hardware resources, this method is not feasible. The other method
is to iterate in a multiplexed manner, that is, each warp calculates multiple tiles.
The iterations should satisfy:

Total Tensor Core operations

Warps
=

(n/16) × (n/16)
block size/warp size

Meanwhile, n of LAC128 is 512, and a total of 512/16 × 512/16 Tensor Core
operations are performed. In TESLAC, the block size should be equal or less than
n. We set the default block size as 512 and the warp size as 32. That is to say,
each warp iterates 64 times. Considering that Tensor Core can automatically
sum up, the calculation results, which is obtained by iterating on the matrix
B in 16 columns as a round, are parts of the final results without the need
for subsequent processing. This also means that the workload of a warp is two
columns of tiles of matrix B. The partition of overall workload and iterations
are shown in Fig. 10.

4.6 Exploiting Shared Memory and Optimization

For each load operation, data are read from global memory. This part of delay
seriously affects the performance. When iterating, the matrix B takes the form of
n×n, and while storing, it is compressed into 2n×16, which has been described

TESLAC: Accelerating Lattice-Based Cryptography with AI Accelerator 263

Fig. 10. Partition and iterations of C = AB

earlier. Even so, it is not a small piece of memory for the cache. Therefore, it is
necessary to reduce the proportion of memory access time in the whole iteration.
After comparing several memory spaces, we decide to use shared memory for
caching, considering its low latency and relatively large capacity. On Tesla V100,
each block can use up to 48 kB shared memory. However, as for matrix B, its
storage size is 2 × 512 × 16 × sizeof(half) = 32 kB. After being copied to shared
memory, the data is loaded from shared memory rather than global memory.
Moreover, if the data in shared memory does not need to be used later, the
intermediate results can also be cached in that storage.

Although, this will also encounter another trouble—n might be 1024 or larger,
the capacity of shared memory is not enough for caching two or more expanded
matrices. Simply, the solution is to divide the matrix into parts and copy data
several times. Whatever, a little more cost is acceptable.

5 Results and Analysis

5.1 Setup

Our TESLAC is implemented on a machine with CPU (Intel(R) Xeon(R) CPU
E5-2620 v2, 2.10 GHz) and CUDA hardware (NVIDIA Tesla V100). The oper-
ating system is Ubuntu 16.04.6 LTS, the CUDA runtime version is 10.1 and the
driver version is 460.56. More technical specifications of Tesla V100 are shown
in Table 3.

5.2 Performance

The main purpose of our experiments is to demonstrate the feasibility of combin-
ing AI accelerator with LBC and understand the performance gain. Firstly, we
test polynomial multiplication (c = ab) to get the performance of running equal
instances under different configurations. Then, we have evaluated and compared
the calculation part of TESLAC with the original implementation. Furthermore,
we have also compared TESLAC with other PQC implementations.

264 L. Wan et al.

Table 3. Some technical specifications of Tesla V100

Item Spec Item Spec

CUDA Capability 7.0 Memory Bus Width 4096-bit
GPU Max Clock rate 1380 MHz Memory Clock rate 877 Mhz
CUDA Cores 5120 SM 80
CUDA Cores/SM 64 Shared memory/block 49152 B
Total Global memory 16160 MB Registers available/block 65536
Tensor Cores 640 Tensor Cores/SM 8
Max threads/SM 2048 Max threads/block 1024

Polynomial Multiplication. We randomly generate 81920 pairs (a, s) to test
b = as. The grid size and block size is Configurable. And the test record is
shown in Table 4.

Table 4. Test polynomial multiplication under different configurations

Grid size 80 80 160 160

Block size 128 256 128 256
Elapsed time (ms) 21.2664 25.4433 18.903 23.1496
Performance million pairs (a, s)/s 3.85208 3.21971 4.33369 3.53872

We have compared the performance of polynomial multiplication with the
experimental results in [14], shown in Fig. 5. Lee et al. have performed polynomial
multiplication using the Nussbaumer algorithm on RTX2060, 490,061 op/s, while
our implementation result is 44,150,108 op/s. After scaled by GFLOPS (CUDA
Cores×Boost Clock), our implementation is still about 4 times speedup, which
mainly results from the utilization of Tensor Core.

Table 5. Comparison of polynomial multiplication implemented on different platform

GPU Platform Architecture CUDA
Cores

Boost Clock
(MHz)

op/s op/s (scaled)

[14] RTX 2060 Turing 1920 1680 490,061 1,073,234
TESLAC Tesla V100 Volta 5120 1380 4,333,690 4,333,690

Comparison with Original LAC Implementation. After modifying the
CPU source code downloaded from the NIST PQC website [21], we compile and
execute as the readme file, then evaluate the same calculation steps of LAC on
Intel(R) Core(TM) i7-7700K CPU. Error correction coding and random number

TESLAC: Accelerating Lattice-Based Cryptography with AI Accelerator 265

generation are not in the scope of our evaluation, because they are replaceable
and not the core of the computation. The results are shown in Table 6. The orig-
inal source code of LAC provides 3 implementation methods, including Normal,
Optimized, and AVX2. We use the latter two to compare with TESLAC.

Table 6. Comparison with original work

LAC128.KeyGen (op/s) LAC128.Enc (op/s) LAC128.Dec (op/s)

CPU Optimized [21] 55,488 28,615 61,118
AVX2 [21] 237,494 114,092 234,157
TESLAC 4,005,495 15,488,955 49,720,202

In terms of CPU implementations, the performance of the AVX2 implementa-
tion is about 4 times of the Optimized. In addition, the computing performance
of LAC128.Enc is much lower than that of LAC128.KeyGen and LAC128.Dec.
Because each round of encryption operation needs to perform polynomial mul-
tiplication and addition twice (c1 and c2). As for TESLAC, at least 16 sets of
data were processed simultaneously with Tensor Core. So the computing perfor-
mance has been greatly improved, which is about 16x, 135x, and 212x that of
the AVX2, respectively.

However, these results mainly consider the calculation part of each algorithm.
Developers will also encounter time-consuming operations such as data trans-
mission. They can also use other techniques such as pipeline, multiple execution
streams and preprocessing to circumvent these effects.

Comparison with Related Work. We have chosen the AVX2 implementa-
tion of Kyber512 [5], LightSaber [11] from NIST-PQC Round 2, and GPU imple-
mentation of NTRU443 from [2] to compare with TESLAC. The performance
evaluation of Kyber512 and LightSaber in [5,11] is conducted by counting CPU
cycles consumed. Here, we assume that the CPUs (Intel Core i7-4770K, Intel
Core i7-6600U, respectively) are at the maximum frequency, and convert the
results to operations per second. In addition, the implementation of NTRU443
is based on NVIDIA GTX1080. The details are shown as Table 7. TDP means
the Thermal Design Power.

As far as we know, there is no solution to implement encryption algorithm
on AI accelerator yet. Generally speaking, the results of GPU implementation
are significantly better than CPU because of massively parallel computation.
With the support of AI accelerator, TESLAC greatly exceeds pure GPU imple-
mentation. In particular, performance per watt of Tensor Core is far superior.
It only needs to consume several times of power and gain hundreds of times of
computing performance.

266 L. Wan et al.

Table 7. Comparison with related work

Algorithm Platform Supported
technology

Base
frequency

Max
frequency

TDP KeyGen (op/s) Enc (op/s) Dec (op/s)

Kyber512 [5] Intel i7-4770K AVX2 3.50 GHz 3.90 GHz 84 W 116,669 79,294 96,144
LightSaber [11] Intel i7-6600U AVX2 2.60 Ghz 3.40 Ghz 15 W 54,973 46,773 48,155
NTRU443 [2] GTX1080 CUDA Cores – – 180 W – 508,541 –
TESLAC (LAC128) Tesla V100 Tensor Core – – 250 W 4,005,495 15,488,955 49,720,202

Of course, these performance improvements might mainly come from the
hardware revenue, while the characteristics of the algorithm itself can not be
ignored, and how to make full use of the hardware resources to match the algo-
rithm is the biggest challenge.

5.3 The Scalability for Larger Modulus

Certainly, the techniques used in TESLAC are not limited to LAC. In fact, it is
very rare to use a small modulus like LAC, while the coefficients of most LBCs
are greater than 2048. In this case, the modulus q exceeds the range represented
by FP16. Then, multi-precision presentation can be used to deal with it. Now,
suppose we need to calculate Z = X × Y , where X,Y is greater than 2048.
Then, we can represent X and Y in more than one FP16 data, for example,
X = Xh · 2Base + Xl and Y = Yh · 2Base + Yl, where Xh,Xl, Yh, Yl meets the
requirements. The procedure in multi-precision presentation is shown in (5).

Z = X × Y

= (Xh · 2Base + Xl) × (Yh · 2Base + Yl)

= Xh × Yh · 22Base + (Xh × Yl + Xl × Yh) · 2Base + Xl × Yl

(5)

Besides, other technologies such as Montgomery reduction [16] or Barrett
reduction [7] can also be combined. With the upgrade of hardware products,
the significand precision of Tensor Core may be larger, then there will be less
restrictions on the scalable application.

6 Conclusion

In this paper, we introduce AI accelerators to high performance cryptographic
computing for the first time. Based on NVIDIA’s Tensor Core, a kind of AI
accelerator, we present a vector expanding method for polynomial multiplica-
tion over rings to adapt to the operating mode of Tensor Core. Considering the
precision and simplicity of computation, we choose to implement LAC selected
from NIST PQC with our techniques on Tesla V100. Consequently, the perfor-
mance improvement is outstanding.

TESLAC: Accelerating Lattice-Based Cryptography with AI Accelerator 267

AI accelerator, which can be treated as an optional platform for high per-
formance cryptographic computing, has great potentiality to be tapped. The
performance gain mainly comes from the hardware revenue, but how to make
full use of the hardware resources to match the algorithm is the biggest chal-
lenge. Meanwhile, these techniques can also be scalable to other LBCs of which
the modulus is larger, with a method such as multi-precision representation.

A Appendix

1 #include <mma.h>

2 using namespace nvcuda;

3

4 template <typename Use ,int m,int n,int k,typename T,typename

Layout=void > class fragment;

Listing 1.1. The namespace and class fragment

1 void load_matrix_sync (fragment <...> &a, const T* mptr ,

unsigned ldm);

2 void load_matrix_sync (fragment <...> &a, const T* mptr ,

unsigned ldm , layout_t layout);

3 void store_matrix_sync(T* mptr , const fragment <...> &a,

unsigned ldm , layout_t layout);

4 void fill_fragment(fragment <...> &a, const T &v);

5 void mma_sync(fragment <...> &d, const fragment <...> &a,

const fragment <...> &b, const fragment <...> &c, bool

satf=false);

Listing 1.2. The WMMA functions

References

1. Aguilar-Melchor, C., Barrier, J., Guelton, S., Guinet, A., Killijian, M.-O., Lepoint,
T.: NFLlib: NTT-based fast lattice library. In: Sako, K. (ed.) CT-RSA 2016. LNCS,
vol. 9610, pp. 341–356. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
29485-8 20

2. Akleylek, S., Goi, B., Yap, W., Wong, D.C., Lee, W.: Fast NTRU encryption
in GPU for secure IoP communication in post-quantum era. In: 2018 IEEE
SmartWorld, Ubiquitous Intelligence Computing, Advanced Trusted Computing,
Scalable Computing Communications, Cloud Big Data Computing, Internet of
People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBD-
Com/IOP/SCI), pp. 1923–1928 (2018)

3. Akleylek, S., Dağdelen, Ö., Yüce Tok, Z.: On the efficiency of polynomial multipli-
cation for lattice-based cryptography on GPUs using CUDA. In: Pasalic, E., Knud-
sen, L.R. (eds.) BalkanCryptSec 2015. LNCS, vol. 9540, pp. 155–168. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-29172-7 10

4. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange—
a new hope. In: 25th USENIX Security Symposium (USENIX Security 16), pp.
327–343 (2016)

https://doi.org/10.1007/978-3-319-29485-8_20
https://doi.org/10.1007/978-3-319-29485-8_20
https://doi.org/10.1007/978-3-319-29172-7_10

268 L. Wan et al.

5. Avanzi, R., et al.: CRYSTALS-KYBER: algorithm specifications and supporting
documentation. https://pq-crystals.org/kyber/. Accessed 15 Sep 2020

6. Aysu, A., Patterson, C., Schaumont, P.: Low-cost and area-efficient FPGA imple-
mentations of lattice-based cryptography. In: 2013 IEEE International Symposium
on Hardware-Oriented Security and Trust (HOST), pp. 81–86. IEEE (2013)

7. Barrett, P.: Implementing the Rivest Shamir and Adleman public key encryption
algorithm on a standard digital signal processor. In: Odlyzko, A.M. (ed.) CRYPTO
1986. LNCS, vol. 263, pp. 311–323. Springer, Heidelberg (1987). https://doi.org/
10.1007/3-540-47721-7 24

8. Bernstein, D.J.: Introduction to post-quantum cryptography. In: Post-Quantum
Cryptography, pp. 1–14. Springer (2009). https://doi.org/10.1007/978-3-540-
88702-7 1

9. Committee, I.S., et al.: 754–2008 IEEE standard for floating-point arithmetic.
IEEE Comput. Soc. Std. 2008, 517 (2008)

10. Dai, W., Sunar, B., Schanck, J., Whyte, W., Zhang, Z.: NTRU modular lattice
signature scheme on CUDA GPUs. In: 2016 International Conference on High
Performance Computing & Simulation (HPCS), pp. 501–508. IEEE (2016)

11. D’Anvers, J.P., Karmakar, A., Roy, S.S., Vercauteren, F.: Saber: Mlwr-based kem.
https://www.esat.kuleuven.be/cosic/pqcrypto/saber/index.html. Accessed 15 Sep
2020

12. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosys-
tem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0054868

13. Jeremy Appleyard, S.Y.: Programming tensor cores in CUDA 9. https://devblogs.
nvidia.com/programming-tensor-cores-cuda-9/. Accessed 5 Apr 2020

14. Lee, W.K., Akleylek, S., Wong, D.C.K., Yap, W.S., Goi, B.M., Hwang, S.O.: Paral-
lel implementation of nussbaumer algorithm and number theoretic transform on a
GPU platform: application to qTESLA. The Journal of Supercomputing, pp. 1–26
(2020)

15. Lu, X., et al.: LAC: practical Ring-LWE based public-key encryption with byte-
level modulus. IACR Cryptology ePrint Archive 2018, 1009 (2018). https://eprint.
iacr.org/2018/1009

16. Montgomery, P.L.: Modular multiplication without trial division. Math. Comput.
44(170), 519–521 (1985)

17. Nist, F.: FIPS 186-4-Digital Signature Standard (DSS). National Institute of Stan-
dards and Technology (2013)

18. Oder, T., Güneysu, T., Valencia, F., Khalid, A., O’Neill, M., Regazzoni, F.: Lattice-
based cryptography: From reconfigurable hardware to ASIC. In: 2016 International
Symposium on Integrated Circuits (ISIC), pp. 1–4. IEEE (2016)

19. Pöppelmann, T., Güneysu, T.: Towards efficient arithmetic for lattice-based cryp-
tography on reconfigurable hardware. In: Hevia, A., Neven, G. (eds.) LATIN-
CRYPT 2012. LNCS, vol. 7533, pp. 139–158. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-33481-8 8

20. Post-quantum cryptography project, N.: Post-quantum cryptography. https://csrc.
nist.gov/Projects/Post-Quantum-Cryptography. Accessed 23 Sep 2020

21. Post-quantum cryptography project, N.: Round 2 submissions. https://csrc.
nist.gov/Projects/Post-Quantum-Cryptography/Round-2-Submissions. Accessed
4 Apr 2020

22. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM (JACM) 56(6), 1–40 (2009)

https://pq-crystals.org/kyber/
https://doi.org/10.1007/3-540-47721-7_24
https://doi.org/10.1007/3-540-47721-7_24
https://doi.org/10.1007/978-3-540-88702-7_1
https://doi.org/10.1007/978-3-540-88702-7_1
https://www.esat.kuleuven.be/cosic/pqcrypto/saber/index.html
https://doi.org/10.1007/BFb0054868
https://devblogs.nvidia.com/programming-tensor-cores-cuda-9/
https://devblogs.nvidia.com/programming-tensor-cores-cuda-9/
https://eprint.iacr.org/2018/1009
https://eprint.iacr.org/2018/1009
https://doi.org/10.1007/978-3-642-33481-8_8
https://doi.org/10.1007/978-3-642-33481-8_8
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-2-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-2-Submissions

TESLAC: Accelerating Lattice-Based Cryptography with AI Accelerator 269

23. Seiler, G.: Faster AVX2 optimized NTT multiplication for Ring-LWE lattice cryp-
tography. IACR Cryptology ePrint Archive 2018, vol. 39 (2018)

24. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-
ing. In: Proceedings 35th Annual Symposium on Foundations of Computer Science,
pp. 124–134. IEEE (1994)

	TESLAC: Accelerating Lattice-Based Cryptography with AI Accelerator
	1 Introduction
	2 Preliminaries
	2.1 Lattice-Based Cryptography
	2.2 LAC
	2.3 Tensor Core
	2.4 CUDA Programming Model

	3 Design
	3.1 The Reason to Choose LAC
	3.2 The Rule of Polynomial Multiplication Rule over Rings
	3.3 The Application of Tensor Core

	4 Implementation
	4.1 Overview
	4.2 Setting of LAC Parameters
	4.3 Data Type Conversion
	4.4 Memory Coalescing
	4.5 Iteration
	4.6 Exploiting Shared Memory and Optimization

	5 Results and Analysis
	5.1 Setup
	5.2 Performance
	5.3 The Scalability for Larger Modulus

	6 Conclusion
	A Appendix
	References

