
Explanation-Guided Diagnosis of Machine
Learning Evasion Attacks

Abderrahmen Amich(B) and Birhanu Eshete

University of Michigan, Dearborn, USA
{aamich,birhanu}@umich.edu

Abstract. Machine Learning (ML) models are susceptible to evasion
attacks. Evasion accuracy is typically assessed using aggregate evasion
rate, and it is an open question whether aggregate evasion rate enables
feature-level diagnosis on the effect of adversarial perturbations on eva-
sive predictions. In this paper, we introduce a novel framework that har-
nesses explainable ML methods to guide high-fidelity assessment of ML
evasion attacks. Our framework enables explanation-guided correlation
analysis between pre-evasion perturbations and post-evasion explana-
tions. Towards systematic assessment of ML evasion attacks, we propose
and evaluate a novel suite of model-agnostic metrics for sample-level and
dataset-level correlation analysis. Using malware and image classifiers,
we conduct comprehensive evaluations across diverse model architectures
and complementary feature representations. Our explanation-guided cor-
relation analysis reveals correlation gaps between adversarial samples
and the corresponding perturbations performed on them. Using a case
study on explanation-guided evasion, we show the broader usage of our
methodology for assessing robustness of ML models.

Keywords: Machine learning evasion · Explainable machine learning

1 Introduction

The widespread usage of machine learning (ML) in a myriad of application
domains has brought adversarial threats to ML models to the forefront of research
towards dependable and secure ML systems. From image classification [29] to voice
recognition [12], from precision medicine [18] to malware/intrusion detection [38]
and autonomous vehicles [42], ML models have been shown to be vulnerable not
only to training-time poisoning and evasion attacks, but also to model extraction
and membership inference attacks [10]. In typical evasion attacks, an adversary
perturbs a legitimate input to craft an adversarial sample that tricks a victim
model into making an incorrect prediction.

Motivation: Prior work has demonstrated adversarial sample-based evasion of
ML models across diverse domains such as image classifiers [11,20,30], malware
classifiers [6,9,14,26,38], and other domains such as speech and text processing.
In the current state-of-the-art, the effectiveness of evasion is typically assessed

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2021

Published by Springer Nature Switzerland AG 2021. All Rights Reserved

J. Garcia-Alfaro et al. (Eds.): SecureComm 2021, LNICST 398, pp. 207–228, 2021.

https://doi.org/10.1007/978-3-030-90019-9_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90019-9_11&domain=pdf
https://doi.org/10.1007/978-3-030-90019-9_11


208 A. Amich and B. Eshete

through aggregate evasion rate by computing the percentage of crafted adver-
sarial samples that lead a model to make evasive predictions. For a ML model f
that accepts a d-dimensional input x = [x1, ..., xd] to predict f(x) = ytrue, the
adversary perturbs x to obtain x′ = [x1 + δ1, ..., xd + δd], where δ = [δ1, ..., δd]
represents pre-evasion perturbations applied to each feature. When f is queried
with x′, it produces an evasive prediction f(x′) = y′ �= ytrue. The natural ques-
tion then is whether there exists correlation between pre-evasion perturbations
and the evasive prediction. Unfortunately, aggregate evasion rate is inadequate to
offer fine-grained insights to answer this question. It does not show how much the
evasion strategy, through adversarial perturbations, influences individual sam-
ples to result in an evasive prediction. We consequently argue that unless one
“unpacks” aggregate evasion rate at the resolution of an adversarial sample, it
could give false sense of evasion success for it lacks the fidelity at the level of
individual features. Such a coarse-grained nature of the aggregate evasion met-
ric can potentially misguide the evaluation of model robustness in the face of
adversarial manipulations.

Approach: In this paper, we harness feature-based ML explanation methods
and propose an explanation-guided correlation analysis framework for evasion
attacks on ML models. Explainable ML techniques [23,33,39,44] interpret pre-
dictions returned by a ML model and attribute model’s decision (e.g., predicted
class label) to feature importance weights. In particular, for each evasive predic-
tion f(x′) = y′ �= ytrue, explanation methods such as LIME [39] and SHAP [33]
produce post-evasion explanations of the form [x1 : w1, ..., xd : wd], where wi is
the weight of contribution of feature xi to the evasive prediction y′. To address
the lack of detailed insights from aggregate evasion rate, we leverage post-evasion
explanations and empirically explore their feature-level correlations with pre-
evasion perturbations performed by the adversary. Our key insight is that, since
the perturbations are the only manipulations done on the feature-space of an
input sample, when the model makes an evasive prediction on a perturbed vari-
ant of the input sample, there should exist some correlation between pre-evasion
perturbations and post-evasion explanations. Towards systematic assessment of
the link between adversarial perturbations and evasive predictions, we propose
and evaluate a novel suite of metrics that allow (adversarial) sample-level and
(evasion) dataset-level diagnosis of evasion attacks. Our suite of metrics is appli-
cable to any ML model that predicts a class label given an input because, in
the design of the metrics, we make no assumptions about the ML task and
model architecture. The benefit of the fine-grained diagnosis for a defender is
twofold. First, it enables systematic measurement of the strength of correla-
tion between an evasive prediction and feature-level perturbations across diverse
classification tasks, model architectures, and feature representations. Second, it
allows zooming-in on limitations of feature perturbation strategies to inform
pre-deployment adversarial robustness evaluation of ML models.

Note on Scope: This paper is not yet another adversarial sample crafting app-
roach for which problem-space to feature-space mapping is crucial to maintain
functional integrity of adversarial samples (e.g., in adversarial malware samples).
Our approach rather relies on feature-space perturbations performed to craft an



Explanation-Guided Diagnosis of Machine Learning Evasion Attacks 209

adversarial sample and model output explanations of the same sample. Our goal
correlation analysis between perturbations and explanations.

Evaluation Highlights: We evaluate our framework across different classifica-
tion tasks (image, malware), diverse model architectures (e.g., neural networks,
multiple tree-based classifiers, logistic regression), and complementary feature
representations (pixels for images, static and dynamic analysis-based features
for malware). Our explanation-guided correlation analysis reveals an average of
45% per-model adversarial samples that have low correlation links with pertur-
bations performed on them –indicating the inadequacy of aggregate evasion rate,
but the utility of fine-grained correlation analysis, for reliable diagnosis of evasion
accuracy. Our results additionally suggest that, although a perturbation strategy
evades a target model, at the granularity of each feature perturbation, it can lead
to a per-model average of 36% negative feature perturbations (i.e., perturbations
that contribute to maintain the original true prediction fb(x′) = ytrue). We fur-
ther evaluate the utility of our framework in a case study on explanation-guided
adversarial sample crafting.

Contributions: In summary, this paper makes the following contributions:

• Explanation-guided diagnosis of evasion attacks. To improve the sole reliance
of evasion assessment on aggregate evasion rate, we propose an explanation-
guided correlation analysis framework at the resolution of individual fea-
tures. To that end, we introduce a novel suite of correlation analysis met-
rics and demonstrate their effectiveness at pinpointing adversarial examples
that indeed evade a model yet exhibit loose correlation with perturbations
performed to craft them.

• Comprehensive evaluations. In malware classification and image classifica-
tion, we conduct extensive evaluations across diverse model architectures and
feature representations, and synthesize interesting experimental insights that
demonstrate the utility of explanation-guided correlation analysis.

• Further case study. We conduct a case study using pre-perturbation feature
direction analysis to guide evasion strategies towards crafting more accurate
adversarial samples correlated with their evasive predictions.

2 Background: ML Evasion and Explanation Methods

In this section, we introduce ML evasion attacks and ML explanation methods.

2.1 ML Evasion Attacks
Adversarial Sample Crafting. Given a deployed ML model (e.g., malware
classifier, image classifier) with a decision function f : X → Y that maps an input
sample x ∈ X to a true class label ytrue ∈ Y , then x′ = x + δ is called an adver-
sarial sample with an adversarial perturbation δ if: f(x′) = y′ �= ytrue, ||δ|| < ε,
where ||.|| is a distance metric (e.g., one of the Lp norms) and ε is the maximum
allowable perturbation that results in misclassification while preserving semantic
integrity of x. Semantic integrity is domain and/or task specific. For instance,



210 A. Amich and B. Eshete

in image classification, visual imperceptibility of x′ from x is desired while in
malware detection x and x′ need to satisfy certain functional equivalence (e.g.,
if x was a malware pre-perturbation, x′ is expected to exhibit maliciousness
post-perturbation as well). In untargeted evasion, the goal is to make the model
misclassify a sample to any different class (e.g., for a roadside sign detection
model: misclassify red light as any other sign). When the evasion is targeted, the
goal is to make the model to misclassify a sample to a specific target class (e.g.,
in malware detection: misclassify malware as benign).

Evasion attacks can be done in white-box or black-box setting. Most gradient-
based evasion techniques [11,20,30,34] are white-box because the adversary
typically has access to model architecture and parameters/weights, which allows
to query the model directly to decide how to increase the model’s loss function.
In recent years, several white-box adversarial sample crafting methods have been
proposed, specially for image classification tasks. Some of the most notable ones
are: Fast Gradient Sign Method (FGSM) [20], Basic Iterative Method (BIM) [30],
Projected Gradient Descent (PGD) method [34], and Carlini & Wagner (CW)
method [11]. Black-box evasion techniques usually start from some initial per-
turbation δ0, and subsequently probe f on a series of perturbations f(x + δi),
to craft a variation of x that evades f (i.e., misclassified to a label different
from its original). In malware classifiers, while gradient-based methods have been
widely adopted both in white-box and black-box settings, two other strategies
also standout for evasion in a black-box setting. The first one is called additive
because it appends adversarial noise (e.g., no-op bytes) to the end of a sample
(e.g., Windows PE) to preserve original behavior [21,28]. The second class of
methods uses targeted and constrained manipulations after identifying regions in
the PE that are unlikely to be mapped to memory [49].

One of the challenges for state-of-the-art adversarial sample crafting methods
is the lack/impossibility of mapping of feature-space perturbations to the prob-
lem space. Such a mapping and reversibility between the two spaces is essential
in domains where the functionality of an adversarial sample needs to be pre-
served post-perturbation [24]. A recent work by Pierazzi et al. [37] proposes
formulations and shows promising experimental results towards the feasibility of
crafting evasive malware samples with real-world consequences. As discussed in
Sect. 1, problem space perturbations are out of this paper’s scope.

2.2 ML Explanation Methods

ML models have long been perceived as black-box in their predictions until the
advent of explainable ML [33,39,44], which attribute a decision of a model to
features that contributed to the decision. This notion of attribution is based on
quantifiable contribution of each feature to a model’s decision.

ML explanation is usually accomplished by training a substitute model based
on the input feature vectors and output predictions of the model, and then use
the coefficients of that model to approximate the importance and direction (class
label it leans to) of the feature. A typical substitute model for explanation is
of the form: s(x) = w0 +

∑d
i=1 wixi, where d is the number of features, x is



Explanation-Guided Diagnosis of Machine Learning Evasion Attacks 211

the sample, xi is the ith feature for sample x, and wi is the contribution/weight
of feature xi to the model’s decision. While ML explanation methods exist for
white-box [45,47] or black-box [23,33,39] access to the model, in this work we
consider ML explanation methods that have black-box access to the ML model,
among which the notable ones are LIME [39], SHAP [33] and LEMNA [23].
Next, we briefly introduce these explanation methods.

LIME and SHAP. Ribeiro et al. [39] introduce LIME as one of the first model-
agnostic black-box methods for locally explaining model output. Lundberg and
Lee further extended LIME by proposing SHAP [33]. Both methods approximate
the decision function fb by creating a series of l perturbations of a sample x,
denoted as x′

1, ..., x
′
l by randomly setting feature values in the vector x to 0. The

methods then proceed by predicting a label fb(x′
i) = yi for each x′

i of the l per-
turbations. This sampling strategy enables the methods to approximate the local
neighborhood of fb at the point fb(x). LIME approximates the decision bound-
ary by a weighted linear regression model as: g∈G

∑l
i=1 πx(x′

i)(fb(x
′
i) − g(x′

i))
2,

where G is the set of all linear functions and πx is a function indicating the
difference between the input x and a perturbation x′. SHAP follows a similar
approach but employs the SHAP kernel as weighting function πx, which is com-
puted using the Shapley Values [43] when solving the regression. Shapley Values
are a concept from game theory where the features act as players under the
objective of finding a fair contribution of the features to the payout –in this case
the prediction of the model.

LEMNA. Another black-box explanation method designed work well for
non-linear models is LEMNA [23] that uses a mixture regression model for
approximation, i.e., a weighted sum of K linear models defined as: f(x) =
∑K

j=1 πj(βj .x + εj), where the parameter K specifies the number of models,
the random variables ε = (ε1, ..., εK) originate from a normal distribution
εi ∼ N(0, σ) and π = (π1, ..., πK) holds the weights for each model. The vari-
ables β1, ..., βK are the regression coefficients and can be interpreted as K linear
approximations of the decision boundary near fb(x).

3 Explanation-Guided Evasion Diagnosis Framework

In this section, we present our explanation-guided correlation analysis method-
ology. Table 1 describes notations used here and in the rest of the paper.

3.1 Overview

As described in Sect. 1, the effectiveness of an evasion method is typically
assessed using aggregate evasion accuracy. While aggregate evasion quantifies
the overall success of an evasion strategy, it fails to offer sufficient insights.
It does not show how the evasion mechanism influences individual samples to
result in evasive predictions. We argue that, unless one examines evasion success
at the resolution of each adversarial sample, aggregate evasion rate could give



212 A. Amich and B. Eshete

Table 1. Notations.

Notation Brief description

Xb Training set of black-box model fb

Xe Evasion set disjoint with Xb

X′
e Adversarial counterpart of Xe

Xs Training set of explanation model fs

x ∈ Xe Sample in evasion set

x′ ∈ X′
e Adversarial variant of x

Y = {y1, ..., yk} Set of classes (labels)

x = [x1, ..., xd] d-dimensional feature vector of sample x

Wx,yi = {w1, ..., wd} Feature weights (explanations) of a sample x toward the class yi

pos(x, yi) Number of features in x positive to the prediction fb(x) = yi

neg(x, yi) Number of features in x negative to the prediction fb(x) = yi

neut(x, yi) Number of features in x neutral to the prediction fb(x) = yi

P (x′) Number of perturbed features in x′

τ Threshold to decide highly correlated adversarial samples

false sense of adversarial success for it lacks feature-level fidelity of perturba-
tions that result in an adversarial sample. To address the stated lack of fidelity
in aggregate evasion accuracy, we systematically explore how ML explanation
methods are harnessed to assess feature-level correlations between pre-evasion
adversarial perturbations and post-evasion explanations.

Figure 1 shows an overview of our explanation-guided correlation analy-
sis framework. Given an evasion set X ′

e of adversarial samples, our frame-
work enables correlation analysis both at the sample-level (for each x′ ∈ X ′

e

at the granularity of each perturbed feature) and at the evasion dataset-level
(∀x′ ∈ X ′

e). Intuitively, given a decisive feature (obtained via ML explanations)
of an evasive sample (fb(x′) �= ytrue), for such a feature to be considered the
cause of (correlated to) the evasion, there needs to be a corresponding feature
that was perturbed in the original sample x. By repeating the correlation of
each decisive feature with its perturbed counterpart, our sample-level correla-
tion analysis establishes empirical evidence that links an evasive prediction with
its cause.

More precisely, our correlation analysis is performed by harnessing the post-
evasion features directions (“2. Explanation” in Fig. 1) of adversarial samples
(“1. Evasion” in Fig. 1). First, we explore the feature directions of the pre-evasion
perturbations to obtain an assessment of the contribution of each feature pertur-
bation to the attack (i.e., feature-level assessment). Second, we use those results
to zoom-out to a sample-level assessment (Sect. 3.3). Finally, we move to the
higher level of the whole evasion dataset to obtain an overall assessment of the
evasion attack (Sect. 3.4).



Explanation-Guided Diagnosis of Machine Learning Evasion Attacks 213

Fig. 1. Explanation-guided correlation analysis framework.

Conducting such fine-grained correlation analysis has two key benefits.
Firstly, it verifies whether evasion can be attributed to the adversarial pertur-
bations employed on the sample, and, in effect, performs diagnosis on aggre-
gate evasion accuracy. Secondly, it provides visibility into how sensitive certain
samples and/or features are to adversarial perturbations, which could inform
robustness assessment of ML models in the face of evasion attacks.

Fig. 2. A comparative illustration of pre-perturbation and post-perturbation explana-
tions using SHAP [33] on a test sample from the MNIST [31] dataset.

3.2 Post-Evasion Feature Direction

In a typical classification task, for an input sample x, fb(x) = yi ∈ Y =
{y1, ..., yk}, where Y is the set of k possible labels. For example, in the multi-
class handwritten digit recognition model of the MNIST [31] dataset, the input
is an image of a handwritten digit and the label is one of the 10 digits (i.e.,
Y = {0, .., 9} where k = 10). In the malware detection domain, the typical
model is a binary classifier (i.e., Y = {Benign, Malware} where k = 2). Next, we
use MNIST as an illustrative example to describe post-evasion feature direction.

Explanations returned from ML explanation methods reveal the direction
of each feature. For each class yi ∈ Y and an adversarial sample x′, a ML
explanation method returns a set of feature weights Wx′,yi

= {w1, .., wd} where



214 A. Amich and B. Eshete

wj reflects the importance (as the magnitude of wj) and the direction (as the
sign of wj) of the feature x′

j towards the prediction fb(x′) = yi. Depending on
the sign of wj , feature x′

j can be positive, negative, or neutral with respect to the
prediction fb(x′) = yi. When wj > 0, we say x′

j is positive to (directed towards)
yi. Conversely, when wj < 0, x′

j is negative to (directed away from) y′
i. When

wj = 0, we say x′
j is neutral to yi (does not have any impact on the prediction

decision). In case of binary classification (k = 2), if x′
j is not directed to the

label y1 (Benign for malware detection) and is not neutral, then x′
j can only be

directed to the other label y2 (Malware) and vice versa. To illustrate how we
leverage feature direction in our analysis, next we describe a concrete example
from the MNIST [31] handwritten digit recognition model.

In Fig. 2, the upper box shows SHAP [33] pre-evasion feature explanations
of a correct prediction on an image of “9“(i.e., fb(x) = 9). The lower box shows
post-evasion feature explanations of the misclassification fb(x′) �= 9 using an
adversarial variant x′ ← x + δ. Each column (i.e., “Label = yi“; yi ∈ {0, ..., 9})
represents the feature directions for the possibility of a prediction fb(x) = yi
(upper box) and fb(x′) = yi (lower box). The color codes are interpreted as
follows: given an explanation, pink corresponds to positive features while blue
corresponds to negative features. The intensity of either color (pink or blue) is
directly proportional to the feature weight towards the prediction. Neutral fea-
tures are represented with white. For instance, focusing on the correct prediction
label ytrue = 9 in the upper-box, we notice a large concentration of pink features
which positively contribute to the predicted label (9).

Our approach primarily relies on post-evasion explanations (lower box in
Fig. 2) and we observe that feature importance weights vary for each studied
label as a potential prediction fb(x′) = yi ∈ {0, ..., 9}. When the prediction
fb(x′) = 8 (image below ‘Label = 8’ in lower box), the explanations show that
most features are positive (directed to label 8), which explains the change of the
prediction label from 9 to 8. Examining the colors, we realize that most features
that were directed to label 9 in the pre-perturbation explanations have become
either neutral to the prediction fb(x′) = 9 or are positive towards fb(x′) = 8. It
is noteworthy that some perturbed features are oriented to the original label 9
(notice pink pixels in the image below ‘Label = 9’ in lower box). Such observa-
tions suggest that even though the attack is successful (i.e., fb(x′) = 8 �= 9), the
effectiveness of each single feature perturbation is not guaranteed to result in an
evasive prediction. Thus, the evasion success may not always be correlated with
each feature perturbation the adversary performs on the original sample. We,
therefore, argue that a perturbation strategy that produces many features that
are uncorrelated with the misclassification might perform poorly on other feature
representations (e.g., colored or not centered images in image classification) or
other feature types (e.g., static vs. dynamic features in malware detection) which
reflects a potential limitation of the stability of a perturbation method. Next,
we introduce novel sample-level metrics that capture the fine-grained assessment
that leverages post-evasion explanations. We refer to Table 1 for the feature
direction-related notations. Our focus will be on the post-perturbation feature
directions of an evasive sample x′ and we suppose that its original prediction
(pre-perturbation) is fb(x) = ytrue.



Explanation-Guided Diagnosis of Machine Learning Evasion Attacks 215

3.3 Sample-Level Analysis

Post-evasion explanations reveal the direction (positive, negative, or neutral)
of each perturbed feature in an adversarial sample x′. Sample-level analysis is
performed to empirically assess feature perturbations that positively contribute
towards misclassification (positive perturbations) against the ones that contribute
to maintain the true label as a prediction (negative perturbations). Next, we
introduce two sample-level metrics which will later serve as foundations to con-
duct overall correlation analysis over the evasion dataset.

Definition 1: Per-Sample Perturbation Precision (PSPP). Out of all
performed feature perturbations (P (x′)) to produce an adversarial sample x′,
PSPP enables us to compute the rate of perturbations that contribute to change
the original prediction ytrue to another label yi ∈ Y − {ytrue}. In other words,
it measures the rate of perturbed features that are “negative” to the original
prediction (ytrue) and “positive” to other predictions yi �= ytrue. We call such
perturbations positive perturbations because they positively advance the evasion
goal. More formally, the Per-Sample Perturbation Precision for an adversarial
sample x′ is computed as follows:

PSPP (x′) =
1
2
(

1
k − 1

(
∑

yi∈Y yi �=ytrue

pos(x′, yi)
P (x′)

) +
neg(x′, ytrue)

P (x′)
) (1)

Equation 1 is the average of two ratios:

• ( 1
k−1 (

∑
yi∈Y yi �=ytrue

pos(x′,yi)
P (x′) ): The average rate of perturbed features that

are directed to a class yi �= ytrue, over all k − 1 possible false classes yi ∈
Y − {ytrue}.

• (neg(x
′,ytrue)

P (x′) ): The rate of perturbed features that are not directed to the
original label ytrue and not neutral.

Both ratios that are considered in Eq. 1 measure Positive Perturbations that
contribute to a misclasssification. We note that PSPP (x′) falls in the range [0, 1].
The closer PSPP (x′) is to 1, the more the overall perturbations performed on
the features of x′ are precise (effective at feature level). More importantly, when
x′ evades the model, i.e., fb(x′) �= fb(x), then the closer PSPP (x′) is to 1 the
stronger the correlation between the evasion success and each performed feature
perturbation that produced adversarial sample x′.

Definition 2: Per-Sample Perturbation Error (PSPE). Another per-
sample measurement for our correlation analysis is the Per-Sample Perturba-
tion Error, PSPE(x′), that computes the rate of perturbed features that are
directed to the original class ytrue (positive to the original prediction ytrue).
These features stand against the adversary’s goal of misclassifying x′. Such fea-
tures are considered negative perturbations with respect to the original class.
More formally, PSPE(x′) is defined as follows:

PSPE(x′) =
pos(x′, ytrue)

P (x′)
(2)



216 A. Amich and B. Eshete

Given an adversarial sample x′, PSPE(x′) returns the rate of perturbation
errors over all perturbed features. We note that a perturbed feature that is
neutral (wj = 0) to the original prediction (fb(x′) = ytrue) is considered neither
as perturbation error nor an effective manipulation to advance the evasion goal.
Thus, PSPE(x′) may not be directly computed from PSPP (x′) and vice versa.
Moreover, in the case of a slightly different threat model in-which the evasion is
targeted to change the original prediction ytrue to a new target label ytarget ∈
Y − {ytrue}, then only the term pos(x′,ytarget)

P (x′) would be considered to compute

the perturbation precision PSPP (x′), and only the term neg(x′,ytarget)
P (x′) suffices

to compute the rate of committed perturbation errors, PSPE(x′).

3.4 Evasion Dataset-Level Analysis

Using PSPP (x′) and PSPE(x′) defined in Eqs. 1 and 2 as foundations, we
now introduce novel correlation analysis metrics that operate at the level of the
evasion dataset X ′

e to empirically analyze correlation between perturbations and
post-evasion explanations.

Definition 3: High-Correlation Rate (HCR). As explained in Sect. 3.3,
PSPP (x′) quantifies the correlation of each single feature perturbation with
the evasion fb(x′) �= ytrue. The closer PSPP (x′) is to 1, the higher is the corre-
lation and vice-versa. We consider a threshold τ that indicates the “strength” of
the correlation between positive perturbations on x that resulted in x′ and the
important features that “explain” fb(x′) �= ytrue. Based on an empirically esti-
mated τ , we call an adversarial sample x′ a High-Correlated Sample if PSPP (x′)
falls in [τ, 1]. In our evaluation, based on empirical observations, we use τ = 0.5.

Based on the above definition, we compute High-Correlation Rate (HCR) as
the percentage of High-Correlated Samples in the evasion set X ′

e as follows:

HCR =
|X ′

e(PSPP > τ)|
|X ′

e|
(3)

where X ′
e(PSPP > τ) = {x′ ∈ X ′

e : PSPP (x′) > τ} ∩ {fb(x′) �= ytrue} .
We note that HCR quantifies the degree to which adversarial samples are both
evasive and correlated to most feature perturbations performed on original sam-
ples.

Definition 4: Average Perturbation Error (APE). As shown in Eq. 2,
PSPE(x′) computes the number of errors committed during the perturbation
of each feature in x to produce the manipulated sample x′ (which is the same
as computing the number of negative perturbations). We leverage PSPE(x′) to
compute the average of negative perturbations (APE) over all samples in X ′

e.
Formally, APE is given as follows:

APE =
∑

x′∈X′
e

PSPE(x′)
|X ′

e|
(4)



Explanation-Guided Diagnosis of Machine Learning Evasion Attacks 217

As opposed to aggregate evasion rate that computes the percentage of evasive
samples versus non-evasive samples without deeper insights about the effective-
ness of each single feature perturbation, APE computes the rate of “evasive fea-
tures” versus “non-evasive features” of each evasive sample, over all perturbed
samples. Such in-depth investigations into evasion attacks provide a fine-grained
assessment of any evasion strategy on ML models.

4 Evaluation

We now evaluate the utility of our suite of metrics for high-fidelity correlation
analysis of ML evasion attacks. We describe our datasets and experimental setup
in Sect. 4.1 and 4.2, respectively. We then validate our methodology in Sect. 4.3.
Finally, we extend our evaluation with a case study in Sect. 4.4.

4.1 Datasets

We use three datasets from two domains. From the malware classification
domain, we use two complementary datasets, one based on static analysis, and
the other on dynamic (execution behavior) analysis. From image classification,
we use a benchmark handwritten digits recognition dataset. We selected these
two as representative domains because (a) malware detection is a naturally
adversarial domain where adversarial robustness to evasion attacks is expected
and (b) image recognition has been heavily explored for evasion attacks in recent
adversarial ML literature. We describe these datasets next.

CuckooTrace (PE Malware). We collected 40K Windows PEs with 50%
malware (from VirusShare [4]) and the rest 50% benign PEs (from a good-
ware site [1]). We use 60% of the dataset as a training set, 25% as a training
for explanation substitute model, and the remaining 15% as evasion test. Each
sample is represented as a binary feature vector. Each feature indicates the pres-
ence/absence of behavioral features captured up on execution of each PE in the
Cuckoo Sandbox [2]. Behavioral analysis of 40K PEs resulted in 1549 features,
of which 80 are API calls, 559 are I/O system files, and 910 are loaded DLLs.

EMBER (PE Malware). To assess our framework on complementary (static
analysis-based) malware dataset, we use EMBER [7], a benchmark dataset of
malware and benign PEs released with a trained LightGBM with 97.3% test
accuracy. EMBER consists of 2351 features extracted from 1M PEs using a
static binary analysis tool LIEF [3]. The training set contains 800K samples
composed of 600K labeled samples with 50% split between benign and malicious
PEs and 200K unlabeled samples, while the test set consists of 200K samples,
again with the same ratio of label split. VirusTotal [5] was used to label all the
samples. The feature groups include: PE metadata, header information, byte
histogram, byte-entropy histogram, string information, section information, and
imported/exported functions. We use 100K of the test set for substitute model
training, and the remaining 100K as our evasion set against the LightGBM pre-
trained model and a DNN which we trained. We use version 2 of EMBER.



218 A. Amich and B. Eshete

MNIST (Image). To further evaluate our framework on image classifiers, we
use the MNIST [31] dataset, which comprises 60K training and 10K test images
of handwritten digits. The classification task is to identify the digit correspond-
ing to each image. Each 28 × 28 gray-scale sample is encoded as a vector of
normalized pixel intensities in the interval [0, 1].

4.2 Models and Setup

Studied ML Models. Across CuckooTrace, EMBER and MNIST, we train
8 models: Multi-Layer Perceptron (MLP), Logistic Regression (LR), Random
Forest (RF), Extra Trees (ET), Decision Trees (DT), Light Gradient Boosting
decision tree Model (LGBM), a Deep Neural Network (DNN), and a 2D Convolu-
tional Neural Network (CNN). As in prior work [35,36], we choose these models
because they are representative of applications of ML across domains includ-
ing image classification, malware/intrusion detection, and they also complement
each other in terms of their architecture and susceptibility to evasion.

Employed Evasion Attacks. Using the evasion set of each dataset, we craft
adversarial samples. For the evasion attack, we consider a threat model where
the adversary has no knowledge about the target model, but knows features used
to train the model (e.g., API calls for malware classifiers, pixels for image clas-
sifiers). More precisely, for CuckooTrace and EMBER we incrementally perturb
features of a Malware sample until the model flips its label to Benign. Following
previous adversarial sample crafting methods [26,49], we adopt only additive
manipulations. For instance, for binary features of CuckooTrace (where 1 indi-
cates presence and 0 indicates absence of an API call), we flip only a 0 to 1.
Like prior work [46], we also respect the allowable range of perturbations for
each static feature in EMBER (e.g., file size is always positive). For MNIST,
we add a random noise to the background of the image to change the original
gray-scale of each pixel without perturbing white pixels that characterize the
handwritten digit. The outcome is an adversarial image that is still recogniz-
able by humans but misclassified by the model. Table 2 shows the comparison
between pre-evasion accuracy and post-evasion accuracy. All models exhibit sig-
nificant drop in the test accuracy after the feature perturbations. We recall that
the main purpose of our analysis is to explore the correlation between a per-
turbed feature and the misclassification result, regardless of the complexity of
the evasion strategy. Thus, our choice of perturbation methods is governed by
convenience (e.g., execution time) and effectiveness (i.e., results in evasion).



Explanation-Guided Diagnosis of Machine Learning Evasion Attacks 219

Table 2. Pre-evasion accuracy and post-evasion accuracy across studied models.

Dataset Model Pre-evasion
accuracy

Post-evasion
accuracy

Aggregate evasion
accuracy

CuckooTrace MLP 96% 6.05% 89.95%

CuckooTrace LR 95% 21.75% 73.25%

CuckooTrace RF 96% 18.61% 77.39%

CuckooTrace DT 96% 7.8% 88.20%

CuckooTrace ET 96% 16.27% 79.73%

EMBER LGBM 97.3% 56.06% 40.94%

EMBER DNN 93% 12.08% 80.92%

MNIST CNN 99.4% 33.1% 66.30%

Table 3. High-correlation rate and average perturbation error for all models.

Dataset Model High-correlation rate Average perturbation error

CuckooTrace MLP 34.56% 32.96%

CuckooTrace LR 34.96% 38.92%

CuckooTrace RF 36.09% 60.73%

CuckooTrace DT 66.85% 37.86%

CuckooTrace ET 33.41% 54.62%

EMBER LGBM 95.03% 7.47%

EMBER DNN 96.72% 4.89%

MNIST CNN 44.31% 49.40%

Employed ML Explanation Methods. Informed by recent studies [15,50]
that compare the utility of ML explanation methods, we use LIME [39] on
CuckooTrace and EMBER, and SHAP [33] on MNIST. More specifically, these
studies perform comparative evaluations of black-box ML explanation methods
(e.g., LIME [39], SHAP [33], and LEMNA [23]) in terms of effectiveness (e.g.,
accuracy), stability (i.e., similarity among results of different runs), efficiency
(e.g., execution time), and robustness against small feature perturbations. On
the one hand, these studies show that LIME performs best on security systems
(e.g., Drebin+ [21], Mimicus+ [23]). Thus, we employ LIME on the two mal-
ware detection systems (i.e., CuckooTrace and EMBER). On the other hand,
SHAP authors proposed a ML explainer called “Deep Explainer”, designed for
deep learning models, specifically for image classification. Thus, we use SHAP
to explain predictions of a CNN on MNIST. We note that independent recent
studies [15,50] suggested that both LIME and SHAP outperform LEMNA [23].



220 A. Amich and B. Eshete

4.3 Correlation Analysis Results

Results Overview. Across all models and the three datasets, the evasion attack
scores an average HCR = 55% and APE = 36%. Linking back to what these
metrics mean, an average HCR = 55% shows that for each model an aver-
age of only 55% of the adversarial samples have strong feature-level correlation
with their respective perturbations. That entails an average of 45% adversarial
samples per-model are loosely correlated with their perturbations. APE assesses
the per-model average number of negative perturbations per sample. Results
in Table 3 suggest a significant rate of negative perturbations are produced by
the evasion attack. More precisely, on average across all models around 36% of
the perturbations are negative (i.e., they lead the evasion strategy in the wrong
direction, by increasing the likelihood of predicting the original label). Next, we
expand on these highlights of our findings.

Correlation Between Perturbations and Explanations. Although an eva-
sion attack can achieve a seemingly high aggregate evasion rate (e.g., as high
as 94% accuracy drop on MLP on CuckooTrace), we notice that the correlation
between each single feature perturbation and a misclassification is not guaran-
teed. In fact, averaged across models, 45% of the crafted adversarial samples have
low-correlated perturbations more than high-correlated ones (PSPP (x′) < 0.5),
suggesting that almost 1 in 2 adversarial samples suffers from weak correlation
between post-evasion explanations and pre-evasion perturbations. As a result,
counting in such samples in the aggregate evasion rate would essentially give false
sense of the effectiveness of an attack strategy at the granularity of each feature
perturbation. We underscore that such insights would not have been possible
to infer without the high-fidelity correlation analysis. In summary, these results
confirm that not all evasive predictions of an adversarial sample are correlated
with the performed feature manipulations.

Visualizing the Per-sample Perturbation Precision. Figure 3 shows the
distribution of PSPP values of all crafted malware samples of CuckooTrace
across the 5 models. In the figure, we use the shorthand PP instead of PSPP in
the y-axis and we refer to the index of each sample in x-axis. The true prediction
of each malware sample is fb(x′) = 1, while the evasive prediction is fb(x′) = 0
(i.e., adversarial malware sample is misclassified as benign). The red line in the
middle represents the threshold τ that decides whether the adversarial sample
has more positive perturbations or more negative ones. In almost all the plots,
we notice the occurrence of a significant number of low-correlation adversarial
malware samples (PP (x′) < τ) that evaded the classifier (purple circles below
the red line). Once again, these findings suggest that the evasion attack results
in a high number of negative perturbations. However, despite the low number of
positive perturbations for these samples, the evasion is still successful. This result
goes along with our previous finding that high evasion aggregate accuracy can
have low correlation with performed perturbations. Thus, even for a successful
evasion the perturbations at the feature-level can apparently be ineffective.



Explanation-Guided Diagnosis of Machine Learning Evasion Attacks 221

It is noteworthy that Fig. 3 exhibits an unusual behavior. Some crafted sam-
ples with a true prediction fb(x′) = 1 (yellow circles) appear to have high Pertur-
bation Precision, PP (x′) > τ , despite the failure to flip the model’s prediction
from 1 to 0. This is especially true for models: LR, DT, ET and RF. On one
hand, this observation suggests that even a small number of negative perturba-
tions (PP (x′) < τ) may affect the outcome of the evasion. On the other hand, it
suggests potential limitations of Black-Box ML explanation methods in terms of
accuracy and stability between different runs. More discussion is provided about
this in Sect. 5.

Fig. 3. Distribution of Perturbation Precision (PSPP) values of each adversarial sample
across models on CuckooTrace. (Color figure online)

Correlation Analysis Across Domains and Model Architectures. While
our results so far strongly suggest the importance of post-evasion correlation
analysis for an in-depth assessment of an evasion attack strategy, we also observe
that HCR and APE values vary across studied domains (malware, image),
model architectures, and feature representations (static, dynamic). This varia-
tion speaks to the sensitivity of different domains, models, and feature values to
adversarial feature perturbations with implications on robustness and depend-
ability in the face of individual feature perturbation. In fact, ML models trained
on EMBER (LGBM and DNN) showed acceptably low rate of negative per-
turbations (i.e., APE = 6% on average) and a high rate of samples with highly
correlated perturbations (i.e., HCR = 96% on average). This suggests that static
features of Windows PE malware are more sensitive to a feature perturbation
considering the higher rate of negative perturbations on dynamic features in
CuckooTrace. In terms of comparison between different domains and different
ML models, despite the high evasion rate at sample-level, almost all ML models
showed some robustness at the level of a single feature perturbation. Most impor-
tantly, RF on CuckooTrace showed the highest robustness since more than 60%



222 A. Amich and B. Eshete

of the overall feature perturbations are negative which suggest that they did not
contribute to the misclassification decision. ET on CuckooTrace (APE = 54%)
and CNN on MNIST (APE = 49%) showed lower robustness than RF, but
higher than the other models.

Summary. Our results suggest that aggregate evasion accuracy is inadequate
to assess the efficacy of perturbation attack strategy. Our findings also validate
that explanation-guided correlation analysis plays a crucial role in diagnosing
aggregate evasion rates to winnow high-correlation adversarial samples from low-
correlation ones for precise feature-level assessment of evasion accuracy.

Fig. 4. Example for explanation-guided feature perturbations on MNIST sample.
(Color figure online)

4.4 Case Study

The correlation analysis results showed that, while an evasion strategy may result
in an evasive adversarial sample, at the granularity of feature perturbations it
may produce a considerable number of negative perturbations. In other words,
the correlation analysis can be leveraged towards more accurate evasion strategy
that significantly minimizes negative perturbations. In the following, we explore
the potential of explanation methods to guide a more effective evasion strategy.

Explanation-Guided Evasion Strategy. In this case study, we demon-
strate how a defender leverages ML explanation methods to examine pre-
perturbation predictions before making feature manipulations. In particular, the
pre-perturbation feature directions reveal positive features that significantly con-
tribute to the true prediction (pink pixels in Fig. 4). Intuitively, positive features
are strong candidates for perturbations, while negative features (blue pixels in
Fig. 4) need not be perturbed since they are already directed away from the
true label. Neutral features (white pixels in Fig. 4) are also not candidates for
perturbations since they have no effect on the original label decision. We note
that in this case study we consider all positive features (i.e., pink pixels) as
candidates for perturbation regardless of the color intensity that represents its
explanation weight. In Fig. 4, some positive pixels (wi > 0) with a low expla-
nation weight (wi ∼ 0) are almost neutral (i.e., closer to the white color) but
still perturbed since they are directed to the true label. Using the same experi-
mental setup, we enhance the evasion strategies used on the three datasets with
explanation-guided pre-perturbation feature selection. Then, we measure changes
to post-evasion accuracy, HCR, and APE.



Explanation-Guided Diagnosis of Machine Learning Evasion Attacks 223

Impact of Explanation-Guided Evasion. Table 4 suggests an overall
improvement not only in aggregate evasion accuracy, but also in the correlation
strength between evasion explanations and feature perturbations. Comparing the
“Post-Evasion Accuracy” columns of Tables 2 and 4, using explanation-guided
evasion strategy post-evasion accuracy drops for all studied models, with an
average per-model drop of 13.4% (which translates to the same percentage of
improvement in aggregate evasion accuracy). Interestingly, in 4 out of the 5 mod-
els in CuckooTrace, post-evasion accuracy drops to zero, with up to 21% drop
in post-evasion accuracy for models such as LR. We note that the eventual com-
plete evasion in almost all models in CuckooTrace is most likely attributed to the
binary nature of the features, where the explanation-guided feature selection fil-
ters out negative features and leaves only positive features that are flipped with
just one perturbation. Comparing the HCR columns of Tables 4 and 3, we notice
an increase in HCR for all studied models. On average, HCR increased by 27%
per-model, which shows the positive utility of the pre-perturbation explanations
that guided the evasion strategy to perturb positive features instead of negative
ones. Again, comparing the APE columns of Tables 4 and 3, we notice a signifi-
cant drop in APE, with an average per-model decrease of 20%, which indicates
a decrease in the number of negative perturbations. Better performance in terms
of post-evasion accuracy is also observed for all studied target models.

Table 4. Post-evasion accuracy, HCR, and APE using explanation-guided evasion.

Dataset Model Post-evasion accuracy HCR APE

CuckooTrace MLP 0% 92.03% 14.22%

CuckooTrace LR 0% 96.25% 6%

CuckooTrace RF 0% 48.53% 51.31%

CuckooTrace DT 1.41% 98.84% 3.41%

CuckooTrace ET 0% 48.11% 1.21%

EMBER LGBM 27.16% 99.58% 2.69%

EMBER DNN 11.7% 97.8% 2.71%

MNIST CNN 24.67% 64.5% 43.4%

We note that although we perturb only positive features, in the APE column
of Table 4 all values are still non-zero. Ideally, the explanation method would
guide the perturbation strategy to perform only positive perturbations and make
no mistaken perturbations. Nevertheless, we still observe a minimal percentage
of negative perturbations due to the inherent limitations of the accuracy and sta-
bility of explanations by LIME and SHAP, which is also substantiated by recent
studies [15,50] that evaluated LIME and SHAP among other ML explanation
methods. We will expand on limitations of ML explainers in Sect. 5.



224 A. Amich and B. Eshete

Summary. An explanation-guided feature selection strategy leads to more effec-
tive evasion results both in terms of aggregate evasion accuracy and effectiveness
at the level of each feature manipulation.

5 Discussion and Limitations

Recent studies [15,50] have systematically compared the performance of ML
explanation methods especially on security systems. In addition to general eval-
uation criteria (e.g., explanation accuracy and sparsity), Warnecke et al. [50]
focused on other security-relevant evaluation metrics (e.g., stability, efficiency,
and robustness). Fan et al. [15] also proposed a similar framework that led to
the same evaluation results. Next, we highlight limitations of LIME [39] and
SHAP [33] based on accuracy (degree to which relevant features are captured
in an explanation), stability (how much explanations vary between runs), and
robustness (the extent to which explanations and prediction are coupled).

Limitations of Explanation Methods. While LIME and SHAP produce
more accurate results compared with other black-box explanation methods (e.g.,
DeepLIFT [44], LEMNA [23]), the accuracy of the explanation may vary across
different ML model architectures (e.g., MLP, RF, DT, etc.), and across different
ML tasks/datasets (e.g., CuckooTrace, EMBER, and MNIST). For instance, the
inherent linearity of LIME’s approximator could negatively influence its accuracy
and stability in explaining predictions of complex models such as RF and ET.
More importantly, like all learning-based methods, LIME and SHAP are sensitive
to non-determinism (e.g., random initialization, stochastic optimization) which
affect their stability between different runs. In other words, it is likely to observe
a slight variation in the output of multiple runs performed by the same expla-
nation method using the same input data. In fact, we observed that the average
difference between Shapley values (i.e., feature importance weights) returned by
SHAP is around 1% over 100 runs on the same MNIST sample. Such variation
in ML explanation outputs might partly explain some of the unexpected results
of our explanation-guided analysis that we noted in Sect. 4.3.

Vulnerability of Explanation Methods. Another issue worth considering
is robustness of ML explanation methods against adversarial attacks. Studies
[19,25,53] have demonstrated that the explanation results are sensitive to small
systematic feature perturbations that preserve the predicted label. Such attacks
can potentially alter the explanation results, which might in effect influence
our explanation-guided analysis. Consequently, our analysis may produce less
precise results for correlation metrics such as HCR and APE. Considering the
utility of ML explanations we demonstrated in this work, we hope that our
framework can be instantiated for adversarial perturbations performed in the
problem-space. We note, however, that there needs to be careful consideration in
mapping the units of adversarial perturbations in problem space manipulations
(e.g., the organ transplant notions proposed in [37]) to the metrics we proposed
in Sect. 3. Finally, vulnerability to adversarial attacks is a broader problem in
ML, and progress in defense strategies will inspire defense for ML explanation
methods.



Explanation-Guided Diagnosis of Machine Learning Evasion Attacks 225

6 Related Work

Comparing how evasion is assessed, our approach is complementary to prior
work which rely on aggregate evasion accuracy. Next, we shed light on prior work
focusing on evasion of image classification and malware/intrusion detection.

Image Classification. Several evasion methods have been proposed for image
classification tasks. Some of the most notable ones are: Fast Gradient Sign
Method (FGSM) [20], Basic Iterative Method (BIM) [30], Projected Gradient
Descent (PGD) method [34], and Carlini & Wagner (CW) method [11].

Windows Malware. Kolosnjaji et al. [27] proposed a gradient-based attack
against MalConv [38] by appending bytes (in the range 2KB-10KB) to the over-
lay of a PE. As a follow-up to [27], Demetrio et al. [13] extended the adversarial
sample crafting method by demonstrating the feasibility of evasion by manipu-
lating 58 bytes in the DOS header of PE. Suciu et al. [49] explored FGSM [20] to
craft adversarial samples against MalConv [27] by padding adversarial payloads
between sections in a PE if there is space to perform padding.

Hu and Tan [26] train a substitute model using a GAN to fit a black-box
malware detector trained on API call traces. Other works utilize reinforcement
learning (RL) to evade malware classifiers. For instance, Anderson et al. [8] aim
to limit perturbations to a select set of transformations that are guaranteed
to preserve semantic integrity of a sample using RL. Additionally, Apruzzese et
al. [9] generate realistic attack samples that evade botnet detectors through deep
RL. The generated samples can be used for adversarial learning. Rosenberg et
al. [41] adopt the Jacobian-based feature augmentation method introduced in
[36] to synthesize training examples to inject fake API calls to PEs at runt-time.
Using the augmented dataset, they locally train a substitute model to evade a
target RNN black-box malware detector based on API call features.

Android Malware. Like [26], Grosse et al. [21] demonstrate evasion by adding
API calls to malicious Android APKs. Yang et al. [52] explore semantic analysis
of malicious APKs with the goal of increasing resilience of Android malware
detectors against evasion attacks. Recently, Pierazzi et al. [37] take a promising
step towards formalization of the mapping between feature space and problem
space on Android malware detector.

PDF Malware. Srndic et al. [48] demonstrate vulnerabilities of deployed PDF
malware detectors using constrained manipulation with semantic preservation.
Xu et al. [51] use genetic algorithms to manipulate ASTs of malicious PDFs to
generate adversarial variants while preserving document structure (syntax).

Explanation Methods. In a black-box setting, LIME [39], Anchors [40], SHAP
[33], and [22] are among black-box explanation methods that use local approxi-
mation. Other methods (e.g., [17,32]) use input perturbation by monitoring pre-
diction deltas. DeepLIFT [44] explains feature importance with respect to a refer-
ence output, while white-box explanation techniques (e.g., [45–47]) use gradient-
based feature importance estimation. Recent studies [15,19,25,50] explore the



226 A. Amich and B. Eshete

utility of explanation methods across criteria such as accuracy, stability, and
robustness of explanations. A more recent interesting application is the use of
SHAP signatures to detect adversarial examples in DNNs [16].

In summary, prior work typically rely on comparing pre-perturbation accu-
racy and post-perturbation accuracy to evaluate ML evasion attacks, which lacks
deeper diagnosis of the attack’s success. We propose complementary suite of met-
rics to map a single feature perturbation to its contribution to evasion.

7 Conclusion

We introduced the first explanation-guided methodology for the diagnosis of
ML evasion attacks. To do so, we use feature importance-based ML explanation
methods to enable high-fidelity correlation analysis between pre-evasion pertur-
bations and post-evasion prediction explanations. To systematize the analysis,
we proposed and evaluated a novel suite of metrics. Using image classification
and malware detection as representative ML tasks, we demonstrated the utility
of the methodology across diverse ML model architectures and feature repre-
sentations. Through a case study we additionally confirm that our methodology
enables evasion attack improvement via pre-evasion feature direction analysis.

Acknowledgements. We thank our shepherd Giovanni Apruzzese and the anony-
mous reviewers for their insightful feedback that immensely improved this paper.

References

1. CNET freeware site (2020). https://download.cnet.com/s/software/windows/?
licenseType=Free

2. Cuckoo sandbox (2020). https://cuckoosandbox.org
3. LIEF project (2020). https://github.com/lief-project/LIEF
4. Virus share (2020). https://virusshare.com
5. Virus total (2020). https://www.virustotal.com/gui/home/upload
6. Ali, A., Eshete, B.: Best-effort adversarial approximation of black-box malware

classifiers. In: Park, N., Sun, K., Foresti, S., Butler, K., Saxena, N. (eds.)
SecureComm 2020. LNICST, vol. 335, pp. 318–338. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-63086-7 18

7. Anderson, H.S., Roth, P.: EMBER: an open dataset for training static PE malware
machine learning models. ArXiv e-prints (2018)

8. Anderson, H.S., Kharkar, A., Filar, B., Evans, D., Roth, P.: Learning to evade
static PE machine learning malware models via reinforcement learning. CoRR
arXiv:1801.08917 (2018)

9. Apruzzese, G., Andreolini, M., Marchetti, M., Venturi, A., Colajanni, M.: Deep
reinforcement adversarial learning against botnet evasion attacks. IEEE Trans.
Netw. Serv. Manage. 17, 1975–1987 (2020)

10. Biggio, B., Roli, F.: Wild patterns: ten years after the rise of adversarial machine
learning. Pattern Recogn. 84, 317–331 (2018)

11. Carlini, N., Wagner, D.A.: Towards evaluating the robustness of neural networks.
In: IEEE SP, pp. 39–57 (2017)

https://download.cnet.com/s/software/windows/?licenseType=Free
https://download.cnet.com/s/software/windows/?licenseType=Free
https://cuckoosandbox.org
https://github.com/lief-project/LIEF
https://virusshare.com
https://www.virustotal.com/gui/home/upload
https://doi.org/10.1007/978-3-030-63086-7_18
http://arxiv.org/abs/1801.08917


Explanation-Guided Diagnosis of Machine Learning Evasion Attacks 227

12. Dahl, G.E., Yu, D., Deng, L., Acero, A.: Context-dependent pre-trained deep neural
networks for large-vocabulary speech recognition. IEEE Trans. Audio Speech Lang.
Process. 20(1), 30–42 (2012)

13. Demetrio, L., Biggio, B., Lagorio, G., Roli, F., Armando, A.: Explaining vulner-
abilities of deep learning to adversarial malware binaries. In: Proceedings of the
Third Italian Conference on Cyber Security (2019)

14. Demontis, A., et al.: Yes, machine learning can be more secure! A case study on
android malware detection. IEEE TDSC 16(4), 711–724 (2019)

15. Fan, M., Wei, W., Xie, X., Liu, Y., Guan, X., Liu, T.: Can we trust your expla-
nations? Sanity checks for interpreters in android malware analysis. IEEE Trans.
Inf. Forensics Secur. 16, 838–853 (2021)

16. Fidel, G., Bitton, R., Shabtai, A.: When explainability meets adversarial learning:
Detecting adversarial examples using SHAP signatures. In: IEEE IJCNN, pp. 1–8
(2020)

17. Fong, R.C., Vedaldi, A.: Interpretable explanations of black boxes by meaningful
perturbation. In: IEEE ICCV, pp. 3449–3457 (2017)

18. Gao, F., et al.: DeepCC: a novel deep learning-based framework for cancer molec-
ular subtype classification. Oncogenesis 8(9), 1–12 (2019)

19. Ghorbani, A., Abid, A., Zou, J.: Interpretation of neural networks is fragile. In:
AAAI, vol. 33 (2017)

20. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. In: ICLR (2015)

21. Grosse, K., Papernot, N., Manoharan, P., Backes, M., McDaniel, P.: Adversarial
examples for malware detection. In: Foley, S.N., Gollmann, D., Snekkenes, E. (eds.)
ESORICS 2017. LNCS, vol. 10493, pp. 62–79. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-66399-9 4

22. Guidotti, R., Monreale, A., Ruggieri, S., Pedreschi, D., Turini, F., Gian-
notti, F.: Local rule-based explanations of black box decision systems. CoRR
arXiv:1805.10820 (2018)

23. Guo, W., Mu, D., Xu, J., Su, P., Wang, G., Xing, X.: LEMNA: explaining deep
learning based security applications. In: ACM SIGSAC CCS, pp. 364–379 (2018)

24. Han, D., et al.: Practical traffic-space adversarial attacks on learning-based nidss.
CoRR arXiv:2005.07519 (2020)

25. Heo, J., Joo, S., Moon, T.: Fooling neural network interpretations via adversarial
model manipulation (2019)

26. Hu, W., Tan, Y.: Generating adversarial malware examples for black-box attacks
based on GAN. CoRR arXiv:1702.05983 (2017)

27. Kolosnjaji, B., et al.: Adversarial malware binaries: evading deep learning for mal-
ware detection in executables. In: EUSIPCO, pp. 533–537 (2018)

28. Kreuk, F., Barak, A., Aviv-Reuven, S., Baruch, M., Pinkas, B., Keshet, J.: Deceiv-
ing end-to-end deep learning malware detectors using adversarial examples (2018)

29. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. Commun. ACM 60(6), 84–90 (2017)

30. Kurakin, A., Goodfellow, I.J., Bengio, S.: Adversarial machine learning at scale.
CoRR arXiv:1611.01236 (2016)

31. LeCun, Y., Cortes, C., Burges, C.J.: The MNIST database of handwritten digits
(2020). http://yann.lecun.com/exdb/mnist/

32. Li, J., Monroe, W., Jurafsky, D.: Understanding neural networks through repre-
sentation erasure. CoRR arXiv:1612.08220 (2016)

33. Lundberg, S.M., Lee, S.: A unified approach to interpreting model predictions. In:
NeurIPS, pp. 4765–4774 (2017)

https://doi.org/10.1007/978-3-319-66399-9_4
https://doi.org/10.1007/978-3-319-66399-9_4
http://arxiv.org/abs/1805.10820
http://arxiv.org/abs/2005.07519
http://arxiv.org/abs/1702.05983
http://arxiv.org/abs/1611.01236
http://yann.lecun.com/exdb/mnist/
http://arxiv.org/abs/1612.08220


228 A. Amich and B. Eshete

34. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning
models resistant to adversarial attacks. CoRR arXiv:1706.06083 (2017)

35. Papernot, N., McDaniel, P.D., Goodfellow, I.J.: Transferability in machine learn-
ing: from phenomena to black-box attacks using adversarial samples. CoRR
arXiv:1605.07277 (2016)

36. Papernot, N., McDaniel, P.D., Goodfellow, I.J., Jha, S., Celik, Z.B., Swami, A.:
Practical black-box attacks against deep learning systems using adversarial exam-
ples. CoRR arXiv:1602.02697 (2016)

37. Pierazzi, F., Pendlebury, F., Cortellazzi, J., Cavallaro, L.: Intriguing properties of
adversarial ML attacks in the problem space. In: IEEE SP (2020)

38. Raff, E., Barker, J., Sylvester, J., Brandon, R., Catanzaro, B., Nicholas, C.K.:
Malware detection by eating a whole EXE. In: AAAI Workshops, pp. 268–276
(2018)

39. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should I trust you?”: explaining the
predictions of any classifier. In: ACM SIGKDD, pp. 1135–1144 (2016)

40. Ribeiro, M.T., Singh, S., Guestrin, C.: Anchors: high-precision model-agnostic
explanations. In: AAAI, pp. 1527–1535 (2018)

41. Rosenberg, I., Shabtai, A., Rokach, L., Elovici, Y.: Generic black-box end-to-end
attack against state of the art API call based malware classifiers. In: Bailey, M.,
Holz, T., Stamatogiannakis, M., Ioannidis, S. (eds.) RAID 2018. LNCS, vol. 11050,
pp. 490–510. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00470-
5 23

42. Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.K.: Deep reinforcement learning
framework for autonomous driving. CoRR arXiv:1704.02532 (2017)

43. Shapley, L.: A value for n-person games (1953)
44. Shrikumar, A., Greenside, P., Kundaje, A.: Learning important features through

propagating activation differences. In: ICML, pp. 3145–3153 (2017)
45. Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks:

visualising image classification models and saliency maps. In: ICLR Workshop
Track Proceedings (2014)

46. Smilkov, D., Thorat, N., Kim, B., Viégas, F.B., Wattenberg, M.: SmoothGrad:
removing noise by adding noise. CoRR arXiv:1706.03825 (2017)

47. Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M.A.: Striving for sim-
plicity: the all convolutional net. In: ICLR Workshop Track Proceedings (2015)

48. Srndic, N., Laskov, P.: Practical evasion of a learning-based classifier: a case study.
In: IEEE SP, pp. 197–211 (2014)

49. Suciu, O., Coull, S.E., Johns, J.: Exploring adversarial examples in malware detec-
tion. In: IEEE SP Workshops, pp. 8–14 (2019)

50. Warnecke, A., Arp, D., Wressnegger, C., Rieck, K.: Evaluating explanation meth-
ods for deep learning in security. In: IEEE EuroSP, pp. 158–174 (2020)

51. Xu, W., Qi, Y., Evans, D.: Automatically evading classifiers: a case study on PDF
malware classifiers. In: NDSS (2016)

52. Yang, W., Kong, D., Xie, T., Gunter, C.A.: Malware detection in adversarial set-
tings: exploiting feature evolutions and confusions in android apps. In: ACSAC,
pp. 288–302 (2017)

53. Zhang, X., Wang, N., Shen, H., Ji, S., Luo, X., Wang, T.: Interpretable deep
learning under fire. In: USENIX Security, pp. 1659–1676 (2020)

http://arxiv.org/abs/1706.06083
http://arxiv.org/abs/1605.07277
http://arxiv.org/abs/1602.02697
https://doi.org/10.1007/978-3-030-00470-5_23
https://doi.org/10.1007/978-3-030-00470-5_23
http://arxiv.org/abs/1704.02532
http://arxiv.org/abs/1706.03825

	Explanation-Guided Diagnosis of Machine Learning Evasion Attacks
	1 Introduction
	2 Background: ML Evasion and Explanation Methods
	2.1 ML Evasion Attacks
	2.2 ML Explanation Methods

	3 Explanation-Guided Evasion Diagnosis Framework
	3.1 Overview
	3.2 Post-Evasion Feature Direction
	3.3 Sample-Level Analysis
	3.4 Evasion Dataset-Level Analysis

	4 Evaluation
	4.1 Datasets
	4.2 Models and Setup
	4.3 Correlation Analysis Results
	4.4 Case Study

	5 Discussion and Limitations
	6 Related Work
	7 Conclusion
	References




