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Abstract. One of the recent notions of privacy protection is Differential
Privacy (DP) with potential application in several personal data protec-
tion settings. DP acts as an intermediate layer between a private dataset
and data analysts introducing privacy by injecting noise into the results
of queries. Key to DP is the role of ε – a parameter that controls the
magnitude of injected noise and, therefore, the trade-off between utility
and privacy. Choosing proper ε value is a key challenge and a non-trivial
task, as there is no straightforward way to assess the level of privacy loss
associated with a given ε value. In this study, we measure the privacy
loss imposed by a given ε through an adversarial model that exploits
auxiliary information. We define the adversarial model and the privacy
loss based on a differencing attack and the success probability of such
an attack, respectively. Then, we restrict the probability of a successful
differencing attack by tuning the ε. The result is an approach for set-
ting ε based on the probability of a successful differencing attack and,
hence, privacy leak. Our evaluation finds that setting ε based on some
of the approaches presented in related work does not seem to offer ade-
quate protection against the adversarial model introduced in this paper.
Furthermore, our analysis shows that the ε selected by our proposed app-
roach provides privacy protection for the adversary model in this paper
and the adversary models in the related work.

Keywords: Differential privacy · Parameter tuning · Differencing
attack

1 Introduction

Differential privacy (DP) has changed the very notion of how privacy preserva-
tion is being achieved. As such, it has been embraced by industry, governments,
and the scientific community. At the core of DP mechanisms, lies the parameter
ε, which regulates the amount of noise added to results. ε takes positive values,
and as it increases the magnitude of the noise decreases, resulting in less private
and more accurate outcomes. ε is, hence, the knob that controls the trade-off
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between utility and privacy. In a typical data publishing scenario, data owners
desire high privacy and data analysts look for accurate results. Most of the times
it is a owner/curator’s task to set ε. It is usually straightforward to calculate the
error bound that a given value of ε introduces on the data analyst side. However,
understanding the role of ε in relation to the formal DP is challenging. After
more than a decade since DP’s introduction, the literature of DP is sparse in
the area of understanding and setting ε. US Census Bureau emphasizes on this
very issue for publishing 2020 census data under DP protection [6]. The main
objective of this paper is to better support the data owner by defining a more
intuitive way of sensing privacy leakages due to inappropriate ε selection. Only
a few studies have moved initial steps towards this direction [7,11,13,15].

[13,15] propose interpretations of ε by studying the probability of privacy
leak events within a differencing attack scenario. In such a scenario, there is an
analyst with permission to investigate a private dataset through various aggre-
gate query submissions. This analyst is an adversary, who performs DA (Differ-
encing Attack) to discover the binary secret bit of participants of the dataset. A
DA consists of submitting two aggregate queries aiming at the secret bit. The
first query addresses a subset of the dataset, while the second addresses the same
subset in addition to the target person. The difference between the two query
answers can reveal the target person’s secret bit. [13,15] assume that the dataset
is public (also known by the adversary) except for the secret bits. [13] focuses on
the cases where all the participants but one have the secret bit set to 1 (i.e., the
privacy leak happens when the identity of the person with secret bit 0 is learnt
by the adversary), while [15] targets scenarios where every participant has the
secret bit set to either 0 or 1. [15] also assumes that the secret bit set to 1 is
more critical than 0, e.g., as being positive to HIV+.

In this paper, we study the role of differencing attacks in a scenario similar to
the ones in [13,15], where the privacy threat is the leakage of participants’ binary
secret bit. However, in contrast to [13,15], we have two different assumptions: (a)
an identical level of importance for both values of secret bit and (b) less public
knowledge about the dataset. As a solution, we propose to tune ε according to the
probability PSDA of successfully performing (where SDA stands for Successful
Differencing Attack) a differencing attack on the dataset to be protected.

Hereby, our contributions are:

– the introduction of PSDA, a metric to measure a privacy leakage of a differ-
encing attack under DP protection.

– a method to compute PSDA for different values of ε and three query types:
count, sum, and average queries.

– an experimental comparison of PSDA with [13,15]. Our attack strategy per-
forms as successful as [13] for average queries, and more successful in sum
queries. Our approach achieves the same recall as [15] in detecting the secret
when it is 1, and higher accuracy than [15] in detecting both secrets values.

The paper is organized as follows. Section 2 presents a case study that moti-
vates this research. In Sect. 3, we introduce related work. Section 4 provides nec-
essary background knowledge about DP. In Sect. 5, we elaborate on PSDA and
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the method to compute it for three different aggregate queries. Section 6 provides
practical application of PSDA on real data. Section 7 compares the values for ε
calculated by our method with state of the art methods. In the end, we present
some final remarks and conclusion in Sects. 8 and 9 respectively.

2 Case Study

xyz.abc is an Internet Protocol Television (IPTV) company. xyz.abc users can
watch on-air TV programs, choosing between a selection of channels from differ-
ent European countries. xyz.abc stores users’ demographics and viewership data,
i.e., whether a user watches a specific channel or not. Table 1 shows a snippet of
the xyz.abc dataset. Among viewers from Austria (AT), Alice, identified by the
hash ID 3f1fb1c6, is the only English-speaking woman. This data is analyzed
by xyz.abc data scientists to showcase to their stakeholders (e.g., advertisement
companies) their analytic capabilities. Examples of analyses on viewers’ data
are aggregate queries such as count, sum, and average, which can be used to
compute the market shares of the channels or program ratings.

Even if interested in aggregation queries, xyz.abc is worried about privacy
leaks. Bob, an xyz.abc employee and acquaintance of Alice, wants to learn more
about her by checking her records in the xyz.abc dataset. From discovering what
Alice watches, Bob may obtain information about her political orientation by
checking if she watches Channel 1, a conservative news channel. Setting up
mechanisms to forbid queries about one specific user (as Alice) and allowing
only for aggregate queries does not solve the problem. In this dataset, Alice is
in a minority and she is vulnerable to differencing attack. Bob can perform such
an attack by submitting two aggregate queries:1

Qc
1. SELECT COUNT(HashID) FROM dataset

WHERE Gender = ‘F’ AND Channel 1 = 1
Qc

2. SELECT COUNT(HashID) FROM dataset WHERE Gender = ‘F’
AND Channel 1 = 1 AND (Language <> ‘EN’ OR Country <> ‘AT’).

The difference between the two queries exposes that Alice watched
Channel 1, since the result of Qc

1 − Qc
2 is 1. Even banning count queries is

not enough, as Bob may decide to attack using other aggregate operators. For
example, he could exploit his knowledge about the Alice’s age:

Qs
1. SELECT SUM(Age) FROM dataset WHERE Gender = ‘F’ AND Channel 1 = 1

Qs
2. SELECT SUM(Age) FROM dataset WHERE Gender = ‘F’ AND Channel 1 = 1

AND (Language <> ‘EN’ OR Country <> ‘AT’).

1 One may consider querying directly for Alice’s record as
SELECT COUNT(HashID) FROM dataset
WHERE Gender = ‘female’ AND CHANNEL 1 = 1 AND
Language = ‘English’ AND Location = ‘Austria’.
A Protected dataset may, however, not allow querying over a subset smaller than
some threshold. The result is that most differecing attack scenarios in the literature
only consider two queries.
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Table 1. IPTV dataset of viewer ship. The provided row belongs to Alice. Channel i is
a binary attribute that indicates whether a user has watched the corresponding channel
in a given time window or not.

HashID Age Gender Language Country Device Channel 1 Channel 2 . . .

. . . . . . F DE AT . . . . . . . . . . . .

. . . . . . M DE AT . . . . . . . . . . . .

. . . . . . F DE AT . . . . . . . . . . . .

3f1fb1c6 43 F EN AT Screen 1 0 . . .

. . . . . . M DE AT . . . . . . . . . . . .

...
...

...
...

...
...

...
...

...

Qs
1 − Qs

2 equals to Alice’s age if Alice has watched Channel 1. For discovering
Alice’s secret, it suffices that the adversary finds out whether Q1 − Q2 �= 0
or not regardless of the query type. One solution to neutralize the differencing
attack is to release approximate results of the queries by noise addition, e.g.,
by using DP. Exploiting the approximate results, the adversary can not make
a certain decision about the target person’s secret. However, the adversary can
have a guess and calculate the correctness probability of such a guess. Hence, the
added noise has to be sufficiently large—ε has to be adjusted accordingly—to
prevent an adversary from guessing the secret better than guessing randomly.

3 Related Work

Since DP was introduced, most of the research has focused on algorithm design
and implementation of DP mechanisms [1,5,9,16,18–20]. Little attention has
been dedicated so far to methods and solutions to set the parameter ε. Whilst
there have been attempts in explaining DP to non-technical audience such as
[22], to date, there are only four thorough studies on this topic [7,11,13,15].

In [22], the increase of probability of a harmful event in general is explained
in terms of ε. In this study as well as [13], and [15], however, the probability of
a leakage is investigated for a given ε and a specific attack scenario providing
probabilities more attuned for these scenarios.

Lee, et al. [13] calculate an upper bound for ε to protect people’s secret bit in a
dataset. All members have the secret bit value set to 1 except for one individual,
whose secret bit is 0. Their threat model assumes that the adversary knows
every attribute about every individual, except for the binary secret attribute.
The privacy leak happens when the adversary can infer with probability higher
than a threshold value who is the person with secret 0. A proper value for ε
does not allow the adversary to grow his/her success probability beyond such a
threshold. Our method shares the idea of defining privacy loss as the probability
of a successful attack while relaxing the assumptions on adversarial knowledge
and presence of only one secret attribute value set to 0.
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In [15], leakage happens when the adversary infers whether the data of a
person contributes into the result of a query or not. This translates to secret
bit set to 1 when that person’s data is a factor in the query’s output and 0
otherwise. To guess the secret bit, the adversary model utilizes the Neyman-
Pearson hypothesis testing. It assumes that the risk of the secret equals to one is
higher than the case where it is zero. This assumption is aligned with Neyman-
Pearson criterion which aims to maximize the true detection rate by putting
a constrain on false alarm rate and is valid in many disease-related scenarios.
However, it does not apply to the cases where both secret values have the same
significance, such as protecting participants’ political beliefs (being left or right).
In contrast, our proposed approach treats both values of secret equally.

In [7], Hsu et al. propose a solution based on economics for setting ε. They
consider the case, where sensitive datasets are associated to a given amount
of budget. Participants are compensated from that budget in case of privacy
leakages. By assessing the risks of participating and calculating the expected cost
for each participants, they calculate the upper bound for ε given the available
budget, the desired accuracy, and the number of participants.

[11] takes a different approach for monetizing privacy. Here, data analysts
provide privacy as a premium service to data owners. Data owners pay the
analysts for their desired level of privacy, and each individual specifies a desired
privacy level. Considering users’ preferences and the analyst’s requested accuracy
level, the proposed mechanism calculates the differentially private query answers.

4 Preliminaries

In this section, we present the foundations on DP.

Differential Privacy. Let D be a dataset with size n ≥ 1 records, where each
record represents an individual and every column is an attribute. Neighboring
datasets are defined as two datasets D and D′ that have the same attributes and
differ in one record, i.e., |D − D′| = 1. Let D be the set of datasets. Formally,
a query Q : D → R processes a dataset and outputs a real answer. M is a
randomized function that obfuscates the result of Q. Formally, a mechanism M
is ε-differentially private if the inequality:

P (M(D) ∈ S) ≤ eε · P (M(D′) ∈ S) (1)

holds for every S ⊆ range(Q) and for every pair of neighboring datasets. ε
provides the mean to quantify the imposed privacy.

Composition Theorem. The composition theorem states that if multiple dif-
ferentially private mechanisms access a dataset, the union of the outputs of these
mechanisms is differentially private, and the privacy guarantee is the summa-
tion of the ε’s of the applied mechanisms. Formally, if there are n mechanisms
M1,M2, . . . ,Mn with ε equal to ε1, . . . , εn respectively, the set of all these
mechanisms M = (M1, . . . ,Mn) is

∑n
i=1 εi-differentially private.
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Laplace Mechanism and Global Sensitivity. One common way to build a
differentially private mechanism is to add random noise drawn from a Laplace
distribution with parameter ΔQ

ε to the query’s result [4]. ΔQ is the global
sensitivity of the query Q and is defined as:

ΔQ = max
∀D,D′∈D:|D−D′|=1

|Q(D) − Q(D′)|. (2)

In this paper, we consider three different queries: count, sum, and average queries.
In count queries, e.g., Qc

1 in Sect. 2, ΔQ is 1 because adding (or removing)
a record in (from) a dataset can change the result at most by one.

In sum queries, ΔQ is the maximum value of the attribute, provided that
the range of such an attribute is known. Datasets usually have several numerical
attributes, each with its own range. One can either calculate ΔQ for each attribute
separately, or normalize the attribute values between zero and one and consider
ΔQ = 1. In the following, we consider the latter case without loss of generality.
Applying DP to sum queries on normalized data is similar to the count query case:
it adds random noise drawn from lap(1ε ) to the real query result.

To compute differentially-private average queries, one naive solution is to
compute the ratio between noisy sum and noisy count values. According to
composition theorem, for this solution, the allocated ε for average query needs
to be divided between sum and count causing noisier result than adding noise
once according to full allocated ε. Alternatively, Algorithm 2.3 in [14] introduces
the division of noisy sum by true count as a differentially private average with
higher accuracy compared to the former solution for the same level of privacy.
As shown in Algorithm 2.3 in [14], this division is not differentially private unless
the result is restricted to the range of the attribute [amin, amax].

Adding noise according to the global sensitivity of average query is another
solution to compute differentially private average. To determine the average
global sensitivity, we need to investigate the impact of adding (or removing) a
value to (or from) a dataset. Let m be the average of the list (a1, . . . , ak, . . . , an)
where ai ∈ [amin, amax]. Adding a new element an+1 (in the range [amin, amax] )
or removing an element ak, changes m by:

an+1 − m

n + 1
(3)

or −ak − m

n − 1
(4)

respectively. The global sensitivity is the maximum of the Eq. 3 and Eq. 4
values. For these two equations, the denominator is smallest when either n = 1
or n − 1 = 1. As mentioned earlier, we assume that datasets contain at least
one record, n ≥ 1. The maximum value of Eq. 3 happens where n = 1 and
an+1 = amax and m = amin. For Eq. 4, the maximum value happens when
n − 1 = 1 and ak = amax and m = amax+amin

2 . Therefore, the global sensitivity
of average is amax−amin

2 . The noise drawn from lap(amax−amin

2ε ) is excessive
for the accuracy of average and unnecessarily large since when the dataset size
is sufficiently large, the contribution of a value in the average is considerably
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smaller than lap(amax−amin

2 ). For instance, the size of the dataset introduced
in Sect. 2 can be 100 to 1000 or even larger. Thus, in this paper, to compute
differentially private average, we consider Algorithm 2.3 in [14].

5 Our Approach to Interpreting ε

An ideal value for ε should minimize the privacy risks whilst reducing the noise
introduced into the results of queries to ensure as adequate as possible answers.
In the case of differencing attacks, this happens when an adversary cannot make
a guess about the individuals’ binary secret better than a random guess, i.e.,
success probability equal to 0.5. Our goal is, therefore, to find the largest value
of ε that restricts the success of a differencing attack to 0.5. In the following,
we first discuss assumptions on the adversary’s prior knowledge for initiating a
differencing attack. Next, we define PSDA as the success probability of such an
attack and calculate the approximation of PSDA. Finally, we use PSDA to set ε.

5.1 The Adversary’s Prior Knowledge

DP literature often considers the worst case when it comes to the adversary’s
knowledge about a dataset, i.e., s/he is aware of all the records and attributes
in the dataset, except for the secret bit of a target person. This is not a real-
istic assumption in real-world datasets with hundreds of thousand of records.
Although the attack defined in [13] highly depends on this worst case scenario,
for the differencing attack in this paper, the adversary needs to be aware of
enough auxiliary information to successfully formulating Q1 and Q2 as exempli-
fied in Sect. 2. This information may be easily gathered from knowing the true
result of only one histogram query over the dataset. This point is worth empha-
sizing as being focused on worst case scenario may mislead data owners about
the safety of their datasets. If a data owner presumes none of the subsets of the
dataset with full amounts of detail are publicly accessible, s/he may believe that
the attacks introduced in [13,15] are ineffective. However, there can be other
attacks relying on less knowledge than all of the records or every attribute of
the dataset.

To conduct a successful attack, the adversary needs to compute d, which is
the difference of the true values of Q1 and Q2, i.e., Q1 − Q2, when the target
person’s secret is not zero. According to the person’s secret, Q1 − Q2 is either 0
or d. d varies according to the query type. For count queries, d is constant and
equals to 1. In sum and average queries, d varies and depends on the data. Let
a be the value of the attribute A of the target user. d equals a in the case of sum
queries. For average, d is either a−Q2(D)

n+1 or a−Q1(D)
n−1 (as in Eq. 3 and Eq. 4).

Once the adversary defines Q1 and Q2 and calculates d, s/he interacts with
the DP-protected dataset to receive noisy results of Q1 and Q2. For this interac-
tion, the adversary is granted a fixed privacy budget ε. In this paper, we assume
the adversary uses up the whole allocated privacy budget to perform a differenc-
ing attack. According to the composition theorem, the ε should be split between
Q1 and Q2. We assume the ε is divided equally between the two queries.
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Finally, we assume that the parameter b of the Laplace distribution employed
by the DP mechanism is also public information. As shown in Sect. 4, b equals to
ΔQ
ε . There are many possibilities that this information becomes available for the

adversary. To give insights on how to interpret the noisy results, DP based query
systems often release the accuracy of the results, which are calculated according
to the distribution used to generate the injected noise [4,5]. The reported accu-
racy along with the allocated ε can be used by the adversary to calculate b = ΔQ

ε .
Moreover, since most DP libraries and tools are open source, the mechanisms’
implementations can be assumed to be publicly available.

5.2 Guessing the Secret

In this section, we discuss how to perform the differencing attack in a DP frame-
work. In contrast to the attack described in Sect. 2, here the adversary receives
M1(D) and M2(D), which are noisy versions of Q1 and Q2. S/he knows that:

Q1(D) − Q2(D) ∈ {0, d}. (5)

As explained in Sect. 4, M1(D) = Q1(D) + ν1 and M2(D) = Q2(D) + ν2,
where ν1 and ν2 are random samples drawn from lap(2ΔQ

ε ). The number two
in the numerator comes from splitting the ε between the two queries. Hence, to
infer the secret, the adversary takes the difference of the observations:

M1(D) − M2(D) = Q1(D) + ν1 − (Q2(D) + ν2). (6)

By taking Eq. 5 into account, Eq. 6 simplifies to either Eq. 7 or Eq. 8.

M1(D) − M2(D) = ν1 − ν2 + 0 = Δν + 0 (7)
M1(D) − M2(D) = ν1 − ν2 + d = Δν + d (8)

The adversary knows M1(D) and M2(D), but not the values of ν1, ν2, or even
Δν. However, s/he knows the probability density of Δν as it is a linear combina-
tion of two Laplace distributions [10] with parameters 2Δf

ε and μ = 0. Therefore,
the adversary investigates which of the occurrences of Eq. 7 and Eq. 8 are more
likely using the distribution of Δν. Let the pdfΔν be the probability density
function of Δν. The adversary’s guess for the secret bit of the target person is:

guess =

⎧
⎪⎨

⎪⎩

1, if pdfΔν(M1(D) − M2(D) − 0) <

pdfΔν(M1(D) − M2(D) − d)
0, otherwise.

(9)

The attack strategy explained above is applicable for count and sum queries
but it requires slight changes for average queries. As mentioned in Sect. 5.1, to
calculate d for the average query, in addition to the target person’s attribute
value a, the adversary requires some information about the dataset, e.g., the
true result of either Q1 or Q2. As Q1 is a more general query than Q2, we
assume without loss of generality Q1 is public and known to the adversary.
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Algorithm 1. Performs the differencing attack and guesses the target person’s
secret bit for given ε, DP results, and true result of either Q1 or Q2 if available
1: function guess secret( M1, M2, ε, ΔQ, d,Q1or2 = 0, n = 0)
2: guess ← 0
3: if Q1or2! = 0 then

4: compute the pdflap of lap(ΔQ
ε )

5: if M1! = 0 then
6: ΔM ← M1 − Q1or2
7: else
8: ΔM ← Q1or2 − M2

9: if n == 0 and pdflap(ΔM − d) ≥ pdflap(ΔM − 0) then
10: guess ← 1

11: if n! = 0 and pdflap((n − 1) × (ΔM − d)) ≥ pdflap(n × (ΔM − 0)) then
12: guess ← 1

13: else
14: compute the pdf of Δν which is lap( 2ΔQ

ε ) − lap( 2ΔQ
ε )

15: ΔM ← M1 − M2
16: if pdfΔν(ΔM − d) ≥ pdfΔν(ΔM − 0) then
17: guess ← 1

18: return guess

Therefore, s/he only queries for Q2 without the need to divide the allocated
ε. In this case, Eq. 7 and Eq. 8 become Q1(D) − M2(D) = 0 − ν

n and Q1(D) −
M2(D) = a−Q1(D)

n−1 − ν
n−1 respectively. Using pdfν , which is basically the pdf

of a Laplace distribution, the adversary makes a guess for the secret bit of the
target person by comparing

pdfν(n × (Q1(D) − M2(D) − 0)) (10)

and

pdfν((n − 1) × (Q1(D) − M2(D) − a − Q1(D)
n − 1

)). (11)

If Q1 equals to a, it is not possible to guess the secret bit with probability
more than 0.5 (even in case of no noise addition) as adding or removing a value to
the dataset equal to the average does not affect the average. The same happens
when the noisy average falls out of [amin, amax] and the mechanism used for
average returns amin or amax (see Sect. 4). Without the trace of added noise,
the adversary can only guess randomly.

Algorithm 1 shows GUESS SECRET. When the adversary is aware of the
true result of either Q1 or Q2, the input Q1or2 equals to that true result. Depend-
ing on the known query, the corresponding M is set to zero.

5.3 The Definition of PSDA

In this section, we define PSDA—a metric for the probability of a successful
differencing attack. Let Z be a random variable:

Z = αA + βB, (12)

where α and β are real numbers and A and B are two random variables. When
the attack bases on the difference between the two queries, A and B are sampled
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from lap(2ΔQ
ε ), and α and β are set to one and minus one, respectively. When

Q1’s real value is known (e.g., for the average query), α becomes zero and B is
a Laplace distribution with parameter ΔQ

ε .
The probability density function of Z is pdfZ(Z; ε,ΔQ). pdfZ is a function

of Z defined based on ε and ΔQ. For an elaborate calculation of pdfZ , we refer
to Theorem 2 in [17]. Let g be a step function defined as:

g(y) =

{
1, if y ≥ 0
0, if y < 0

(13)

The binary random variable X describes whether the guess from Eq. 9 is correct
or not. X takes 1 if guess = secret and 0 otherwise. Using equations Eq. 7, Eq. 8,
and Eq. 9, X is defined as the XNOR between guess and actual secret:

X = 1 − |g(pdfZ(ΔM; ε,ΔQ) − pdfZ(ΔM − d; ε,ΔQ)) − secret| (14)

We define PSDA as the probability parameter of the binary random variable X.
As the probability parameter of any binary random variable with zero and one
values is its expected value, it follows that PSDA = P (X = 1) = E[X].

When the adversary guesses the target person’s secret, s/he knows that the
guess is correct with probability PSDA. Intuitively, this translates to a scenario
where the adversary owns a biased coin with probability PSDA. Given a guess,
s/he tosses the coin and decides whether such a guess is correct based on the
outcome. With a heavily unbiased coin, the adversary’s becomes more confident
about the guess. Therefore, the risk of target person’s secret leakage increases.

5.4 The Estimation of PSDA

The calculation of PSDA is not trivial because X, defined in Eq. 14, is a random
variable defined as a combination of other two random variables. Therefore,
we provide a method to calculate the approximated PSDA called P̂SDA. Let us
assume that secret is known. To estimate P̂SDA with a tight confidence interval,
the adversary needs to sample X for a sufficiently large number of times. This
means that the adversary has to resubmit the queries many times, which would
require way more budget than the one that is usually allowed.

Therefore, we take a different approach and simulate the interaction with the
DP mechanism: we run this simulation long enough to assess P̂SDA. Since our
attack is designed without dependencies on the underlying data, there are no
direct interactions with the dataset D. Furthermore, in this work, it is assumed
that the adversary has sufficient computational resources to run the simulation
with enough iterations.

As shown in Algorithm 2, for each iteration, a random independent value is
assigned as the secret bit secret and two random samples are drawn from lap(2Δf

ε )
as ν1 and ν2 (or just a single sample from lap(Δf

ε ) in case of non-zero Q1or2). The
adversarymakes a guess guessbased on this potential observation ν1−ν2+secret×
d. In real interaction with DP mechanism, the adversary’s guess would be based
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Algorithm 2. Estimates PSDA with confidence interval no bigger than CI for
α confidence level
1: function estimate PSDA(ε, ΔQ, d, Q1or2 = 0, n = 0)
2: initialize CI and α
3: initialize QIdx based on Q1or2 � QIdx is 1 if Q1 is provided and 2 otherwise
4: itr ← 0
5: successes ← 0
6: while true do
7: itr ← itr + 1
8: secret ← faircoinflip � secret is 1 if coin flips Head and 0 otherwise
9: if QIdx == 0 then

10: ν1 and ν2 ← random samples from lap( 2ΔQ
ε )

11: M1 ← ν1 + secret × d
12: M2 ← ν2

13: if QIdx == 1 then

14: ν2 ← random sample from lap(ΔQ
ε )

15: M1 ← 0
16: if n == 0 then
17: M2 ← Q1or2 + ν2 − secret × d
18: else
19: M2 ← Q1or2 +

ν2
n−secret − secret × d

20: if QIdx == 2 then

21: ν1 ← random sample from lap(
ΔQ

ε )

22: if n == 0 then
23: M1 ← Q1or2 + ν1 + secret × d
24: else
25: M1 ← Q1or2 +

ν1
n+secret + secret × d

26: M2 ← 0

27: guess ← GUESS SECRET (M1, M1, ε, ΔQ, d, Q1or2)
28: if guess == secret then
29: successes ← successes + 1

30: PSA, CIa, CIb ← binomial fitting(itr, sucess, α)
31: if CIb − CIa ≤ CI then
32: return PSDA

on M1(D) − M2(D). In the simulation, it is not possible to interact with the
dataset. Thus, as M1(D) − M2(D) is equal to ν1 − ν2 + secret × d, we use the
latter. Finally, if guess equals to secret, this iteration is counted as a success. We
calculate P̂SDA by counting the successes and fit a binomial distribution to this
number. The parameter of the fitted distribution is P̂SDA.

For binomial fitting, we use the Clopper-Pearson method [2]. This method
takes three inputs: the number of iterations, the number of successful guesses,
and the confidence level for the fit as α. It outputs the binomial mean along with
a lower bound CIa and an upper bound CIb. The estimated mean falls in the
interval defined by CIa and CIb with probability of 1 − α. In Algorithm 2, the
whole procedure iterates until the interval for the estimated binomial fit agrees
with the defined CI which is the length of the interval [CIa, CIb].

5.5 Setting ε

An ideal value for ε should not allow PSDA to exceed 0.5. This can be formulated
as Eq. 15. As we use an approximation for PSDA, the equality in Eq. 15 turns
to an inequality in Eq. 16 where δ is a sufficiently small number ensuring the
closeness of the approximation of PSDA to its true value.
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Algorithm 3. Calculates the biggest possible ε for given PSDA for the given
dataset D, querytype, and upper bound for tolerable PSDA

1: function set ε( D, query type, target PSDA = 0.5)
2: based on query type, calculate ΔQ
3: based on query type and D, calculate d
4: decide on QIdx, Q1or2, and n
5: εb ← upper bound on ε
6: while εb > 0 do
7: if target PSDA −δ ≤ ESTIMATEP PSDA (εb, ΔQ, d, QIdx, Q1or2, n) ≤ target PSDA

+δ then
8: return εb

9: else
10: εb ← decreaseεb

maximize ε

subject to : PSDA = 0.5
(15)

maximize ε

subject to : |PSDA − 0.5| ≤ δ
(16)

Algorithm 3 provides a method for setting ε for different query types. The
function set ε takes the most tolerable value for P̂SDA (in this paper 0.5) as
target PSDA, along with the dataset and query type. Given that the provided
attack strategy aims at a specific individual, we need to identify and protect
individuals that are at highest risk of exposure to protect the dataset. Therefore,
at Line 3 of Algorithm 3, the calculation of d can be based on such an individual.
One conservative way to initialize d is to set it to the maximum possible value
ΔQ. At Line 4, the data owner needs to decide on whether adversary has access to
the true result of Q1 or Q2. Finally, the algorithm starts with a sufficiently large
ε. It explores for an upper bound by decreasing ε at every step and investigating
whether the current ε provides the given PSDA or not. The algorithm stops when
the condition in Eq. 16 is met when |P̂SDA- target PSDA| ≤ δ.

6 Evaluations

In this Section, we illustrate the relation between PSDA and ε for the case study
described in Sect. 2. The dataset used for this section is from a real IPTV
provider. A considerable number of individuals in this dataset are vulnerable
to be isolated with two queries due to the wide range of features and viewer-
ship captured by the company. However, for privacy concerns, throughout this
section, we focus on an imaginary case of Alice. The results elaborated in this
section are generated based on the Algorithm 2 with ε in the range [0.01, 20]
with step 0.01. We set the inputs to the function ESTIMATE PSDA i.e., d,
Q1or2 and n according to the query type. δ in Eq. 16 is set to 0.01. Finally, for
the Clopper-Pearson method, we set α = 0.01 and CI = 0.02 as in [2].

It is worth noting that the purpose of the IPTV case study is to contextu-
alize the problem. Therefore, none of the evaluation in this section is anyway
dependent on the IPTV dataset.
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Fig. 1. PSDA for (a) count and (b) sum queries for different values of ε (Color figure
online)

Count Queries. To guess Alice’s secret using a count query, Bob runs Qc
1 and

Qc
2 as described in Sect. 2. Blue line in Fig. 1a represents how ε changes according

to PSDA. As ε grows, Bob can correctly guess the Alice’s secret with higher
probability. When the real value of Qc

1 is known (e.g., it is publicly available),
the adversary has a higher chance in guessing the secret as shown by magenta
line in Fig. 1a. To set ε for count query, once the data owner decides on publicity
of Qc

1 or Qc
2 and tolerable PSDA, ε can be selected.

Sum Queries. Figure 1b represents the case where the attacker is aware of
the exact value of a queryable attribute of the target individual and exploits
it to reveal a secret. The attacker decides to use a sum query for the attack.
He submits the two queries Qs

1 and Qs
2, as defined in Sect. 2. Differently from

the count case, the attribute used in aggregations affects the leakage of the
secret. The larger the attribute value, the more vulnerable the secret. Figure 1b,
considers various hypothetical values of the age attribute. The red, blue, and
green lines indicate the age of 20, 43 (Alice’s real age), and 1212 consecutively.
It should be noted that the age of 121 is the maximum present in the dataset.
Note that for normalized data (i.e., fitted between 0 and 1), the corresponding
graph behaves exactly like the one shown for count query. Like in the count case,
it can happen that the adversary knows the real value of one of the two queries.
Magenta line in Fig. 1b depicts how the adversary success probability varies due
to the auxiliary information.

An important question raises here: what should the criteria for setting ε for
sum query be? Some may prefer to set ε based on the worst case, treating sum
queries like count queries. However, this approach may add more noise than
needed. For instance, in the dataset in Sect. 2, users with maximum age values
are not at the risk of isolation with two queries. Hence, data owners may set the
ε value based on those users’ having the potential of being isolated.
2 Many users tend to select the year 1900 as their birth year. Whilst this is unlikely

to be the actual birth year of an user, we assume that this entry is still worthy of
hiding, as it exposes an habit of the target person.
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Average Queries. Let us assume that count and sum queries are not available.
Hence, an adversary may exploit average queries, e.g., Bob wants to discover the
secret of Alice through the following two queries Qa

1 and Qa
2 :

Qa
1 . SELECT AVG(Age) FROM dataset WHERE Gender = ‘female’ AND Channel 1

= 1
Qa

2 . SELECT AVG(Age) FROM dataset WHERE Gender = ‘female’ AND
Channel 1 = 1 AND (Language <> ‘English’ OR Location <> ‘Austria’).

To perform the attack with average query, the adversary needs to know the value
of the queryable attribute associated to the target individual (Alice’s age), the
size of the dataset (i.e., the real value of Qc

1 or Qc
2 as defined in Sect. 2), and

the real value of Qa
1 or Qa

2 . Qc
1 and Qa

1 are both generic queries. It is possible
for an adversary to collect the required information from the company reports
or announcements. Therefore, we assume the adversary knows Qa

1 ’s true result.
Unlike the case of sum queries, where the magnitude of individual value (e.g.

age) plays an important role in the secret leakage, here the distance between the
individual value and the average value influences the leakage. The size of the
dataset is another factor that may affect the secret disclosure. Figure 2a depicts
PSDA for three different ages and three different dataset sizes. We consider two
hypothetical Alice’s ages, 20 and 121, in addition to her true age, 43. As dataset
sizes, we consider 13, 1320 and 16959 by limiting the average query to the number
of users (including Alice) watched Channel 1 in 1 h, 6 h, and 24 h consequentially.
The average value of age is 50 in every case.

Figure 2a shows that the larger the distance of the true age from mean
value, the higher the probability of a successful attack. As expected, due to the
employed mechanism to release noisy averages in this paper, the size of dataset
has a minor impact on the results. To simplify comparison of the PSDA and ε
for all three query types, Fig. 2b shows how Alice, 43 year old, is vulnerable to
differencing attack in terms of PSDA through her age. As shown in the figure, it
is clear that privacy loss is different depending on the query type.

7 Comparison with Related Work

In this section, we qualitatively and quantitatively compare PSDA with [13,15].

Comparing PSDA with Lee et al., 2011. To compare PSDA with Lee et al.
[13], we shorty summarize the notions and assumptions taken in the latter. The
dataset S includes two columns: the ID and a numerical attribute (|S| = n).
S is fully known to the adversary. However, there is another dataset S′, which
is hidden from the adversary (S′ ⊂ S and |S| = |S′| + 1). The adversary’s
objective is to ascertain who is excluded in S′. Therefore, the absence from S′

is the secret to be protected. The adversary assigns a uniform prior ( 1
n ) to all

the n possible subsets S′
i (i = 1, ..., n) of S such that |S| = |S′

i| + 1. Then, s/he
submits an aggregate query over S′ and receives a noisy result. Based on the
observed result, s/he calculates the posterior belief distribution over the all S′

is.
The S′

i with the highest posterior probability is selected as the potential S′.
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Fig. 2. (a) PSDA for average query and different values of ε. (b) Alice’s secret leakage
in term of PSDA by different queries and different values of ε.

Fig. 3. Comparing two adversarial models for (a) sum and (b) average queries. (Color
figure online)

Consequently, the missing person is revealed. [13] suggests ε shall be selected
according to restricting the adversary’s posterior belief when the missing person
owns the maximum value among all the members.

The blue lines in Fig. 3 illustrate how the adversary’s posterior belief of the S′

depends on ε. The oscillations are due to the stochastic nature of the DP mech-
anism chosen by [13]. Resubmitting the query for the same value of ε results
in a different posterior belief distribution. The green lines in Fig. 3 show the
upper bound provided by [13]. The tightness of the upper bound depends to the
distribution of data. Due to the different scenarios, we take few steps to prop-
erly compare PSDA and [13]. First, we build a scenario where both methods can
be used. Such a scenario is similar to the running example, with the additional
constraint that Alice’s secret is zero, i.e., she is the only female subscriber that
did not watch Channel 1. We draw 120 random samples from the normal dis-
tribution N (74.5, 9), in the range [0, 121] to serve as ages of individuals in S.
The selected numbers and distribution are based on the real viewership of a ran-
domly chosen channel for a randomly chosen period. We consider the maximum
value from the sampled data as Alice’s age since [13] suggests to set ε based on
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Fig. 4. Comparison with [15]: accuracy, recall, and precision for count queries.

protecting the secret of a participant with the maximum value. Second, we need
incorporate the prior of [13] into the adversary model of PSDA. PSDA equals to
Pr(guess = secret) while the probability of adversarial success in [13] equals to
Pr(guess = secret|secret = 0) and Pr(secret = 0) = 1

n , where n is the size of
the dataset. One can calculate the former probability based on PSDA by using
a probability tree diagram. Third, the adversary in [13] knows the attributes of
the users in the dataset, excluding the secret. This translates to the case where
the actual value of Qs

1 or Qa
1 is known in the current study. Thus, both adver-

saries submit only one query to carry out the attack. As a consequence, we can
construct an attack following our procedure for both sum and average queries
based on the same assumptions as made by [13].

Figure 3a shows the comparison for the sum query. We plot both the posterior
belief and the upper bound of [13] as described in their article. Our method
outperforms [13] in gaining knowledge about the secret as it offers a higher
probability of guessing the secret for any given ε. Note that in contrast to the
previous plots, this plot starts close to 0, the prior probability is 1

120 ≈ 0.0083.
For the average query, both adversaries perform similarly, as shown in

Fig. 3b. Note that the shown upper bound does not indicate that the adversary
of [13] outperforms the one of our model. [13] suggests using the adversary’s
posterior belief (blue lines in Fig. 3) to set ε when the upper bound is not tight,
which occurs when the dataset does not contain outliers that significantly devi-
ate from the average. The solution in [13] can not provide a value for ε in case
of count queries as the size of S′ is given.

Choosing ε based on the upper bound proposed in [13] may not protect
against all adversarial models. As shown in Fig. 3a, our adversary may leak
information from data protected by that mechanism. Also, the gaps between
the blue and green lines in Fig. 3 indicate that the upper bound is not tight.
Therefore, we may end up adding more noise than necessary.

Comparing PSDA with Liu et al., 2019. Liu et al. [15] use hypothesis testing
to guess the secret, i.e., a value that is either zero or one. To compare our
method with [15], we implemented their attack model. Such a model requires
the adversary to be aware of ε, ΔQ, Q2, and a parameter α ∈ [0, 1]. α controls
the false alarm rate in their hypothesis testing. For αs close to one, the attack
model in [15] is more prone to guess the secret to be one than zero and vice-versa.
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Figure 4 plots the accuracy, recall, and precision of the attack models of [15]
and our approach for three values of α. We run both attack models for 10000
times to guess the randomly generated secret for the count query. For a fair
comparison, both adversaries submit only one query, as [15] assumes that the
true value of Q2 is public. As illustrated in Fig. 4, the two approaches perform
similarly in detecting where secret = 1 for α = 0.5 (they have similar recall).
However, our attack model achieves higher accuracy and precision than [15] in
detecting the two values of secret for α = 0.5. Note that in [15], one can tune
αs to either slightly outperform our approach in terms of recall (α = 0.999)) or
perform similarly in terms of precision (α = 0.0001). In those cases, however,
our approach outperforms [15]’s approach in the two other metrics. This may be
a consequence of [15]’s goal of “only” protecting the cases where the secret is 1.

8 Discussion

In this section we discuss the application of PSDA, we elaborate on other possible
attacks, and future works.

Application of PSDA. The notion presented in this paper can be used in many
interactive data analysis settings that provide DP guarantees [1,5,8,9,16,18,19].
These settings are mostly offered as a library or programming platform that
facilitates data curators to build a private interface for interacting with the data
without privacy violations (e.g., due to the wrong implementations). However,
to benefit from the privacy preservation of these packages, the data curator still
needs to determine a good value for ε. The discussion here relies on PINQ [16]
a LINQ based platform designed for differentially private interactive analysis
of a dataset, to exemplify the challenges arising from this choice and how our
contribution can help address these.

PINQ supports major aggregation queries like count, sum, average, and
median. It also contains differentially private implementations of operations like
select, where, and groupby. The count and sum queries used in this paper follow
the same algorithms. For average queries we use the algorithm from [14], as [14]
shows that the PINQ average operator does not satisfy ε-differential privacy.

One of the access policy provided by PINQ is fixed budget access, which
allows the data curator to decide on the value of ε as a fixed budget for the
user. Then it is up to the user to distribute this budget among the aggregations
and operations of his/her interest. PINQ follows the composition theorem and it
does not allow the analyst to run a query with ε exceeding the allocated budget.
In terms of PSDA, a fixed budget setup of PINQ is as secure as its weakest
aggregation, which, looking at the plots in Fig. 2b, is the count queries. As a
result, the maximum budget should be allocated by focusing on the count query.

Other Threats. We discuss two other threats from the scenario in Sect. 2. We
did not consider differencing attacks with more than two queries, as we focused
on attacks aiming at isolating the target person with one or two queries. The
cases with one or two queries are the ones where differencing attacks are the most
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successful. According to the composition theorem (Sect. 4), asking more queries
results in noisier answers, as the available budget is shared among the queries.
Also, the linear combination of two Laplace distributions (both centered at the
same mean value) is flatter than the two distributions themselves [17]. As the
number of distributions increases, the result becomes flatter and closer to the
uniform distribution. This makes it hard to make a decision with higher success.
Thus, if an adversary can isolate a person with multiple queries, it is better to
merge these queries to only one query (or two queries, in case the dataset may
have a restriction on querying minorities). Even though this query may require
a complex condition, it has no effect on the privacy budget consumption [16]. As
a consequence, setting ε based on differencing attacks with one or two queries
protects also against differencing attacks with three or more queries.

Selecting ε with our proposed method is enough to protect the dataset against
linear reconstruction attacks. A linear reconstruction attack is an attack for
reconstructing a private dataset (fully or partially) by running several aggregate
queries on the dataset. According to [3], a linear reconstruction attack’s success
depends on three parameters: 1) the number of participants in the dataset n,
2) the number of released noisy aggregates m, and 3) the error bound added to
the aggregate queries E. This attack works in two settings: in one setting, m
is exponential in n, and the error E is linear in n. In the second setting, m is
polynomial in n, and the error E is on the order of

√
n.

In the DP setting, according to the composition theorem, the noise order
depends only on m, and not n. If we equally distribute the budget among the
queries, m and E are linearly related. For a fixed and sufficiently large n and
a given ε, the adversary cannot achieve a successful reconstruction attack. As
explained in Sect. 2 Footnote (See Footnote 1), we assume that the protected
dataset does not allow querying over a subset smaller than some threshold.
Hence, provided that such a threshold is large enough to mitigate a reconstruc-
tion attack, the differencing attack is a more relevant threat than the reconstruc-
tion attack.

Future Work. In the DP literature there is a huge misalignment between meth-
ods to set DP parameters and design of novel mechanisms and their application
in different use cases [21]. To fill this gap, we started analysing base mechanisms,
such as count, sum, and average. The next step of our research is to extend our
framework to other widely used mechanisms such as median or histograms. Our
final goal is to develop a general framework that covers a large amount of queries.

For the mechanisms which employ distributions beyond Laplace distribution,
the introduced attack strategy in Sect. 5.2 can be adapted to any symmetric dis-
tribution for which the formula for a linear combination is calculable. Exploring
the effect of different distributions on PSDA is another direction for future work.

To mitigate the adversarial threat introduced in this paper, one possible
solution is to add fake users with similar features to the users vulnerable to
differencing attacks using techniques such as k-anonymity [12]. Investigating
how such a method will impact PSDA can be another direction to extend the
current study.
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9 Conclusions

For DP to be trusted, we need to investigate transparent approaches for setting
ε. The PSDA (the probability of successful differencing attack) approach pre-
sented in this paper—whilst limited to three query types and exhibiting certain
underlying assumptions—presents an important step in this direction.

Our findings show that, for a given value for ε, the probability of a privacy
leak varies depending on the query type and the target person’s data. Further-
more, comparison of our method with the methods of [13,15] shows that the
privacy loss of a given value of ε differs for different adversarial models. Our
proposed adversary carries out equal or more successful attacks than the adver-
saries proposed in [13] and [15]. Moreover, our method is designed to work in
more generic scenarios than the ones considered by [13]. Hence, to the best of
our knowledge, our PSDA provides a more general approach for choosing an
appropriate ε than either of these related works.
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