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Abstract. Social and information networks such as Facebook, Twit-
ter, and Weibo have become the main social platforms for the public
to share and exchange information, where we can easily access friends’
activities and are in turn be influenced by them. Consequently, the anal-
ysis and modeling of user retweet behavior prediction have important
application value in such aspects as information dissemination, public
opinion monitoring, and product recommendation. Most of the existing
solutions for user retweeting behavior prediction are usually based on
network topology maps of information dissemination or design various
hand-crafted rules to extract user-specific and network-specific features.
However, these methods are very complex or heavily dependent on the
knowledge of domain experts. Inspired by the successful use of neural
networks in representation learning, we design a framework UserRBPM
to explore potential driving factors and predictable signals in user retweet
behavior. We use the graph embedding technology to extract the struc-
tural attributes of the ego-network, consider the drivers of social influ-
ence from the spatial and temporal levels, and use the graph convolu-
tional network and the graph attention mechanism to learn its potential
social representation and predictive signals. Experimental results show
that our proposed UserRBPM framework can significantly improve pre-
diction performance and express social influence better than traditional
feature engineering-based approaches.

Keywords: Social networks · Retweet behavior prediction · Graph
convolution · Graph attention · Representation learning

1 Introduction

Due to their convenient capability to share real-time information, social media
sites (e.g., Weibo, Facebook, and Twitter) have grown rapidly in recent years.
They have become the main platforms for the public to share and exchange
information, and to a great extent meet the social needs of users. Under normal
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circumstances, online social networks will record a large amount of information
generated by people through interactive activities, including various user behav-
ior data. User behaviors (also called actions) in online social networks contain
posting messages, purchasing products, retweeting information, and establishing
friendships, etc. By analyzing the distribution and causality of these behaviors,
we can evaluate the influence between the initiator and the communicator of
the behavior, as well, we can predict people’s behaviors on social networks and
deepen our understanding and understanding of human social behavior [18]. Till
now, there is little doubt that the large amount of data generated by users’ inter-
action provides an opportunity to study user behavior patterns, and the analysis
and modeling of retweet behavior prediction have become a research hotspot.
In addition to analyzing the retweeting behavior itself, retweeting can also help
with a variety of tasks such as information spreading prediction [30], popularity
prediction [38], and precision marketing [2].

Previous researches investigated the problem of user retweet behavior predic-
tion from different points of view. On the first approach, some researchers build
retweet behavior prediction models through network topology maps of informa-
tion dissemination. Matsubara et al. [15] studied the dynamics of information
diffusion in social media by extending an analysis model for information dis-
semination from the classic ‘Susceptible-Infected’ (SI) model. Wang et al. [26]
proposed an improved SIR model, which used the mean field theory to study the
dynamic behavior in uniform and heterogeneous network models. Their exper-
iment showed that the existence of the network would influence information
communication. This kind of research method studied retweeting behavior by
modeling the propagation path of the message from a global perspective. The
other approach is the machine learning method based on feature engineering. Liu
et al. [13] proposed a retweeting behavior prediction model based on fuzzy theory
and neural network algorithm, which can effectively predict the user’s retweeting
behavior and dynamically perceive the changes in hotspot topics. This research
method relies on the knowledge of domain experts, and the process of feature
selection may take a long time. However, in many online applications such as per-
sonalized recommendation [29,31] and advertising [2], it is critical to effectively
analyze the social influence of each individual and further predict the retweeting
behavior of users.

In this paper, we focus on user-level social influence. We aim to predict the
action statuses of the target user according to the action statuses of her near
neighbors and her local structural information. For example, in social networks,
a person’s behavior will be affected by her neighbors. As shown in Fig. 1, for the
central user u, if some friends (red node) around her posted a microblog and other
friends (white node) did not post it, whether the action statuses of user u will
be affected by the surrounding friends and forward this tweet can be regarded
as a user retweeting behavior prediction problem. The social influence hidden
behind the retweeting behavior not only depends on the number of active users,
but may also be related to the local network structure formed by “active” users.
The problem mentioned above are common in practical applications, such as
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presidential elections [3], innovation adoption [21], and e-commerce [11]. There-
fore, it has inspired many research work on user-level influence models, most of
which [9,34] consider complicated handcrafted features, which require extensive
knowledge of specific domains.

Fig. 1. A motivating example of user retweet behavior prediction. (Color figure online)

The recently proposed graph convolution networks(GCN) [4,12] is currently
the best choice for graph data learning tasks. Inspired by the successful appli-
cation of neural networks in representation learning [20,33], we designed an
end-to-end framework UserRBPM to explore potential driving factors and pre-
dictive signals in user retweeting behaviors. We expect deep learning frameworks
to have better expressive capability and prediction performance. The designed
solution is to represent both influence driving factors and network structures
into a latent space, and then use graph neural networks to effectively extract
spatial features for learning, and further construct a user retweet behavior pre-
diction model. We demonstrate the effectiveness and efficiency of our proposed
framework on Weibo social networks. We compare UserRBPM with several con-
ventional methods, and experiment results show that the UserRBPM framework
can significantly improve the prediction performance.

The main contributions of this work can be summarized as follows:

• We designed an end-to-end learning framework UserRBPM to explore poten-
tial driving factors and predictive signals in user retweeting behaviors.

• We convert the retweeting behavior prediction into a binary graph classifica-
tion, which is more operable and comprehensible.

• Experiment results demonstrate that the UserRBPM framework can achieve
better prediction performance than existing methods.

Organization. The rest of this paper is organized as follows. Section 2 sum-
marizes related work. Section 3 formulates the user retweet behavior prediction
problem. We detail the proposed framework in Sect. 4. In Sect. 5 and Sect. 6, we
conduct extensive experiments and analyze the results. Finally, we conclude our
work in Sect. 7.
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2 Related Work

In this section, we categorize and summarize prior work on user retweet behavior
prediction and graph representation learning.

2.1 User Retweet Behavior Prediction

Many studies on user retweet behavior in social networks are based on the anal-
ysis and modeling of the dynamics in the process of information dissemination.
Currently, researches on user behavior prediction in social networks take pri-
marily two approaches. On the first approach, Yuan et al. [32] investigated the
dynamics of friend relationships through online social interaction, and thus pro-
posed a model to predict repliers or retweeters according to a particular tweet
posted at a certain time in online social networks. Tang et al. [22] studied the
conformity phenomenon of user behavior in social networks, and proposed a
probabilistic model called Confluence to predict user behavior. This model can
distinguish and quantify the effects of the different types of conformity. Zhang
et al. [37] proposed three metrics: user enthusiasm, user engine, and user dura-
tion, to describe the user retweet behavior in the message spreading process, and
studied the relationship between these three metrics and the influence obtained
by the user retweet behavior.

The other approach is the machine learning method based on feature engi-
neering, which solved the problem of user behavior analysis and prediction by
manually formulating rules to extract the basic features of users and network
structural features. Luo et al. [14] explored features: followers status, retweet his-
tory, followers interests, and followers active time with a learning-to-rank frame-
work to discover who would retweet a tweet poster on Twitter. Zhang et al. [34]
analyzed the influence of the number of active neighbors of a user on retweeting
behavior, proposed two instantiation functions based on structural diversity and
pairwise influence, and applied a classifier based on logistic regression to predict
users’ retweet behaviors. Jiang et al. [9] pointed out that the retweeting predic-
tion is a sing-type setting problem. By analyzing the basic influence factors of
retweet behavior in Weibo, the sing-type collaborative filtering method is used
to measure users’ personal preference and social influence for the purpose of
predicting retweet behavior.

2.2 Graph Representation Learning

Graph representation learning has emerged as a powerful technique for solving
real-world problems. Various downstream graph learning tasks have benefit from
its recent developments, such as node classification [7], similarity search [35], and
graph classification [19,36]. The primary challenge in this field is to find a way
to represent or encode the structure of graphs so that it can be easily exploited
by machine learning models. Traditional machine learning approaches relied on
user-defined heuristics to extract features encoding structural information about
a graph (e.g., degree statistics or kernel functions). However, recent years, have
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seen a surge in approaches for automatically learning to encode graph struc-
ture into low-dimensional embedding using techniques based on deep learning
and nonlinear dimension reduction. Chen et al. [5] exploited graph attention
networks(GAT) to learn user node representation by spreading information in
heterogeneous graphs, and then leveraged limited labels of users to build end-
to-end semi-supervised user profiling predictor. Zhang et al. [33] introduced the
problem of heterogeneous graph representation learning and proposed a het-
erogeneous graph neural networks model HetGNN. Extensive experiments on
various graph mining tasks, i.e., link prediction, recommendation, and node clas-
sification, demonstrated that HetGNN can outperform state-of-the-art methods.

3 Problem Formulation

In this section, we introduce necessary definitions and then formulate the prob-
lem of user retweet behavior prediction.

Definition 1. Ego network
The ego network model is one of the important tools for studying human social
behavior and social networks. Compared with the global network version, the
research version of the ego network pays more attention to individual users, and
it is in line with the needs of personalized services in actual application systems.
The research version of this paper can also be extended to other scenarios that
include network relationships.

r-neighbors Let G = (V,E) denote a social network, where V is a set of
users nodes and E ⊆ V ×V is a set of relationships between users. We use vi ∈ V
to represent a user and eij ∈ E to represent a relationship between vi and vj .
In this work, we consider undirected relationships. For a user u, its r-neighbors
nodes are defined as Γ r

u = {v : d(u, v) ≤ r}, where d(u, v) is the shortest path
distance (in terms of the number of hops) between u and v in the network G,
r ≥ 1 is a tunable integer parameter to control the scale of the ego network.

r-ego network The r-ego network of user u is the subnetwork induced by
Γ r

u , denoted by Gr
u.

Definition 2. Social action
In sociology, social action is an act which takes into account the actions and
reactions of individuals. Users in social networks perform social actions, such
as retweeting behaviors, citation behaviors. At each time stamp t, we observe a
binary action status of user u, st

u ∈ {0, 1}, where st
u = 1 indicates user u has

performed this action before or on the timestamp t, and st
u = 0 indicates that

the user has not performed this action yet.
In this paper, our research motivation of user retweeting behavior prediction

problem can be vividly illustrated by Fig. 1. For a user u in her 2-ego network
(i.e., r = 2), if some users retweet a microblog m before or on the timestamp
t, they are considered to be active. We can observe the action statuses of u’s
neighbors, such as st

v1
= 1, st

v2
= 1, and st

v5
= 0. Moreover, the set of active

neighbors of user u is represented by ψt
u = {v1, v2, v3, v4, v6}. As shown in Fig. 1,



618 H. Guo et al.

we study whether the action statuses of user u will be influenced by the surround-
ing friends and forward this microblog. Next, we will formalize the problem of
user retweet behavior prediction.

Problem 1. User retweet behavior prediction [34]
User retweet behavior prediction models the probability of u′s action states
conditioned on her r-ego network and the action states of her r-neighbors. More
formally, given Gr

u and St
u = {st

v : v ∈ Γ r
u \{u}}, it can be concluded that the

user retweet behavior prediction formula of user u after a given time interval Δt
is as follows:

Av = P
(
st+Δt

u | Gr
u, St

u

)
(1)

Practically, Av denotes the predicted social action status of user u. Suppose
we have N instances, and each instance is a 3-tuple (u, a, t), where u is a user, a is
a social action and t is a timestamp. For such a 3-tuple (u, a, t), we also know u′s
r-ego network Gr

u, the action states of u′s r-neighbors St
u, and u′s future action

states at t + Δt, i.e., st+Δt
u . We then formulate user retweet behavior prediction

as a binary graph classification problem which can be solved by minimizing the
following negative log likelihood objective w.r.t model parameter θ:

L(θ) = −
n∑

i=1

log
(
Pθ

(
st+Δt

u | Gr
u, St

u

))
(2)

4 Model Framework

In this paper, we formally propose the UserRBPM to address the user retweet
behavior prediction problem. The framework is based on graph neural networks
to parameterize the probability in Eq. (2) and automatically detect the potential
driving factors and predictive signals of user retweet behavior prediction. As
shown in Fig. 2, UserRBPM is consisted of pre-trained network embedding layer,
input layer, GCN/GAT layer and output layer.

Fig. 2. Our proposed framework of UserRBPM (User Retweet Behavior Prediction
Model).
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4.1 Sampling Near Neighbors

Given a user u, the most straightforward way to extract its r-ego network is
to perform a Breadth-First-Search (BFS) starting from user u. However, for
different users, r-ego network scale (regarding the number of nodes) may vary
greatly. Meanwhile, the size of user u′s r-ego network can be very large due to
small-world property in social networks [27]. In real-world application scenarios,
when sampling neighbor nodes of an ego user node, the problem that may arise
is that each node has a different number of neighbors. Specifically, due to the
small-world phenomenon in social networks, the size of user u′s r-ego network
may be relatively very large or small. In addition, these different sizes of data
are not suitable for most deep learning models.

In order to address the above problem, we select to perform random walk
with restart (RWR) [23] from the original r-ego network to fix the sample size.
Inspired by [1,24] which suggest that people are more susceptible to be influenced
by active neighbors than inactive ones, we start a random walk on Gr

u from user
u or its active neighbors. The walk iteratively travels to its neighborhood with a
probability proportional to the weight of each edge. In addition, the walk returns
back to the starting vertex u with a positive probability at each step. In this
way, a fixed size of number of vertices can be collected, denoted by �Γ

r

u with∣
∣
∣�Γ

r

u

∣
∣
∣ = n. We then regard the sub-network �G

r

u induced by �Γ
r

u as a proxy of the

r-ego network Gr
u, and denote �S

t

u = {st
v : v ∈ �Γ

r

u \{u}} to be the action statuses
of u′s sampled neighbors. When we use RWR, the starting node can be ego user
or its active neighbors. The purpose of setting as described above is to make the
starting node in the sequence obtained by walking as much as possible to keep
in touch with surrounding neighbors, instead of being relatively single, so as to
support the purpose of people being more susceptible to be influenced of active
neighbors.

4.2 Graph Neural Networks Model

We design an effective graph neural networks model to incorporate both the
structural properties in �G

r

u and action statuses in �S
t

u, learned a hidden embed-
ding vector for each ego user, then used to predict the action statuses of the
ego user in the next time period st+Δt

v . As shown in Fig. 2, the graph neural
networks model includes embedding layer, instance normalization layer, input
layer, graph neural networks layer, and output layer.

Embedding Layer. For graph structure data such as social networks, we
want to learn the users’ social representation from users’ relationship network
data, that is, our main purpose is to discover network structural property and
encode them into low-dimensional latent space. More formally, network embed-
ding learns an embedding matrix X ∈ Rd×|V |, with each column corresponding
to the representation of a vertex (user) in the network G. In our scheme, we
learn a low-dimensional dense real number vector xv ∈ Rd for each node v in
the network, where d � N . The process of network representation learning can
be unsupervised or semi-supervised.
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In social networks, when considering the structural information, we can take
the triadic closure, patterns characteristic of strong ties in social networks. As
shown in Fig. 3, there will be such a case: The figure on the left contains a triadic
closure. For the green node, it is equivalent to a different tree structure on the
right (there is no triadic closure) after two neighborhood aggregations, which
ignore the structural information of triadic closure. Therefore, there is a need
for a method of graph representation learning that can adapt to different local
structures.

Fig. 3. Computational tree of a triadic closure graph. (Color figure online)

In our work, we utilize the GraLSP model [10] for graph representation learn-
ing, which explicitly incorporates local structural patterns into the neighborhood
aggregation through random anonymous walks. Specifically, the framework cap-
tures the local structural patterns via random anonymous walks, and then these
walk sequences are fed into the feature aggregation, where various mechanisms
are designed to address the impact of structural features, including adaptive
receptive radius, attention, and amplification. In addition, GraLSP can capture
similarities between structures and are optimized jointly with near objectives of
node. The process of GraLSP model for graph representation learning is shown
in Fig. 2(b). In the case of making full use of the structural model, the GraLSP
can outperform competitors in various prediction tasks in multiple datasets.

Instance Normalization Layer. In the training process of UserRBPM model,
we applied Instance Normalization (IN) [25] to prevent overfitting, which is a
regularization technique that loosens the model and allows for greater gener-
alization. And for such tasks that focus on each sample, the information from
each sample is very important. Therefore, we adopt such a technique in the task
of retweet behavior prediction. After original data is normalized, the indicators
are between [0, 1], which is suitable for comprehensive comparative analysis.
Furthermore, it helps to speed up learning and also reduces overfitting.

Input Layer. As claimed in Fig. 2(d), the input layer constructs a feature vec-
tor for each user. The feature vector considered in our work consists of three
parts: 1) the normalized low-dimensional embedding comes from the up-stream
instance normalization layer; 2) two binary variables are also considered. The
first variable represents the user’s action statuses, and the second variable rep-
resents whether the user is an ego user; 3) the input layer also includes other
personalized vertex features, such as spatial-level features (e.g., social roles) and
temporal-level features (e.g., similarity, exposure, retweet rate.)
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GCN Layer. The recently developed GCN [6] is a successful attempt to general-
ize the convolutional neural networks used in Euclidean space to graph structure
data modeling. The GCN model naturally integrates the connection mode and
feature attributes of graph structure data, and it is much better than many
state-of-the-art methods on benchmarks. Graph Convolutional Network (GCN)
is a semi-supervised learning algorithm for graph structure data, which can effec-
tively extract spatial features for machine learning on such a network topology.
Simultaneously, it can perform end-to-end learning of node feature information
and structure information, which is one of the best choices for graph data learn-
ing tasks at present.

Graph Attention Networks. Essentially, both GCN and GAT are aggrega-
tion operations that aggregate the characteristics of neighbor nodes into the
central node. GCN uses the Laplacian matrix to perform graph convolution
operations, while GAT introduces the attention mechanism into GCN, which
can add weight to the influence of neighboring nodes, thereby differentiating
the influence of neighboring nodes. GAT assigns different weights to each node,
paying attention to those nodes with greater effects, while ignoring some nodes
with smaller effects. To a certain extent, the performance ability of GAT will be
stronger, because the correlation between node features will be better integrated
into the model.

Output Layer. In the output layer, each node corresponds to a two-
dimensional representation, which is used to represent the user’s behavior state
(retweet/unretweet, cite/uncite, etc.). By comparing the representation of the
ego user with groud truth, we then optimize the log-likelihood loss.

5 Experiment Setup

In this subsection, we first introduce the construction process and statistical
characteristics of the dataset. Then, we present the existing representative meth-
ods and evaluation metrics. Finally, we introduce the implementation details of
the UserRBPM framework.

5.1 Dataset Presentation and Processing

Presentation to Raw Datasets. We use real-world datasets to quantitatively
and qualitatively evaluate the proposed UserRBPM framework. We used the
Weibo dataset in the work of Tang et al. [17,34] and Wu et al. [28] also used the
Weibo dataset in the work, and then we performed data preprocessing according
to our research question. The microblogging network used in our research work
is to crawl data from Sina Weibo. Particularly, when user u1 follows user u2, u2’s
activities (such as tweet and retweet) will be visible to u1. User u1 can choose
to tweet or retweet by user u2. User u1 is called the follower of user u2 and user
u2 is called the followee of user u1.
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The Generation and Processing of Samples. In the problem of retweeting
behavior prediction, since we can directly learn from the microblogs record which
users have retweeted the microblogs, the extraction process of positive samples
is relatively simple. Thus, for a user v who is affected by others, he performs a
social action a at a certain timestamp t, and then we generate a positive sample.
Compared with the extraction of positive samples, it is impossible to directly
know from the microblogs records which users saw the message but did not
retweet the microblogs. Therefore, the extraction method of negative samples is
much more complicated.

For our research scenarios, there are two data imbalance problems. The first
one comes from the number of active neighbors. As Zhang et al. [34] observed,
structural features are significantly related to user retweeting behavior when the
ego user has a relatively large number of active neighbors. For example, in the
Weibo dataset, 80% of users have only one active neighbor and users with more
than 3 active neighbors account for only 8.57%. Therefore, the model will be
controlled by observation samples with few active neighbors. To illustrate the
superiority of our proposed model in capturing local structural information, we
established a balanced sub-dataset Edata (as shown in Table 1.) for fair data
analysis and further training-test scheme. Specifically, we filter out samples in
which the followers or followees did not have Weibo content. In addition, we only
considered samples in which ego users have at least 3 active neighbors.

Table 1. Statistics of sub-dataset Edata.

Edataset #Users #Follow-relationships #Oroginal-microblogs #Retweet #Ego Users

Weibo 1,500,290 20,297,550 274,150 15,755,810 151,300

The second problem is imbalanced labels. For instance, in our Weibo data
set, the ratio between positive instances and negative instances is about 1:300.
To address this problem, the most direct way is to select a relatively balanced
dataset, that is, set the ratio of positive samples and negative samples to 1:3. In
addition, we also used the global random downsampling method and microblog
granularity-based down-sampling method to process imbalanced datasets. Among
them, when we use the global random down-sampling method, the number of
microblogs involved in the negative samples in the obtained dataset is small, and
there is a case where only positive samples of the same microblog are not sam-
pled to their corresponding negative samples. The down-sampling method based
on microblog granularity can try its best to ensure that the number of positive and
negative samples of the same microblog is also the same.

The Features of Our Design. We made detailed data observation and ana-
lyzed how the characteristics of users at the spatial and temporal levels influence
retweeting behavior in addition to the structural attributes of social networks. To
visualize the observation results, we design several statistical information, which
respectively represent spatial-level features and temporal-level features. These
characteristics can be regarded as user node features. In our work, the spatial-
level features are specifically analyzed in terms of social roles. We studied the
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influence of social roles played by different users on the prediction performance
of retweeting behavior. Inspired by the previous research work of Wu et al. [28],
we divide users into three groups according to their network attributes: opin-
ion leaders (OpnLdr), structural hole spanners (StrHole)) and ordinary users
(OrdUsr). A detailed analysis of users’ social roles and behaviors is shown in
Table 2. For the temporal-level feature, we mainly analyzed the content of the
messages posted by users. The features of our design are shown in Table 3.

Table 2. The statistics of social roles and relation statuses.

Social role OrdUsr OpnLdr StrHole Sum

Retweet Behavior 6,617,440(42%) 3,623,836(23%) 5,514,534(35%) 15,755,810

Original Post 68,537(25%) 123,367(45%) 82,245(30%) 274,150

Sum 1,125,217(75%) 150,029(10%) 225,043(15%) 1,500,290

Table 3. List of features used in our work.

Spatial-level features Social role Opinion leader (OpnLdr)

Social role Structure hole (StrHole)

Social role Ordinary users (OrdUsr)

Temporal-level features The TF-IDF similarity between ego user and its
followees’
post content (Similarity)

The number of microblogs posted by the
followees (Exposure)

The retweet rate of ego users to their followees
(Retweet rate)

Handcrafted ego-network
features [22]

The number/ratio of active neighbors

Density of subnetwork induced by active
neighbors

Connected of components formed by active
neighbors

5.2 Comparison Methods

In order to verify the effectiveness of our proposed framework, we compared the
prediction performance of UserRBPM in this paper with existing representative
methods. Firstly, we compared UserRBPM with previous retweeting behavior pre-
dictionmethodswhich usually extract rule-based features. Secondly, by comparing
the GraLSP method with other network embedding methods, it is verified that
the local structure information plays a more important role in the prediction of
forwarding behavior than the global information. The comparison method is as
follows:

• Hand-crafted features + Logistic Regression(LR): We use logistic to train
the classification model. The features we constructed manually include two
categories: one is the user node features designed in our work, including
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spatial-level and temporal-level features; the other is the ego network fea-
tures designed by Qiu et al. [17].

• Hand-crafted features + Support Vector Machine(SVM): We also use SVM as
the classification model. The model use the same features as Logistic Regres-
sion.

• DeepWalk: DeepWalk [16] is a network embedding method that learns a social
representation of a network by truncated random walks to obtain the struc-
tural information of each vertex.

• Node2vec: Node2vec [8] designs a biased random walks that can trade off
between homophily and structural equivalence of the network.

• Our Proposed Method: In our proposed UserRBPM framework, we use
GraLSP to extract the structural attributes of the r-ego network, design the
user node features at the spatial-level and temporal-level, and finally apply
GCN and GAT to learn latent predictive signals.

In order to quantitatively evaluate our proposed framework, we use the four
popular metrics to evaluate the performance of retweeting behavior prediction.
Specifically, we evaluate the performance of the UserRBPM in terms of Area
Under Curve (AUC), Precision, Recall, and F1-Score.

5.3 Implementation Details

There are two stages for training our UserRBPM framework. In the first stage,
we pretrain each module of UserRBPM, and in the second stage, we integrate
the three modules of UserRBPM for fine-tuning.

Stage I: Pretrain of Each Module. For our framework, UserRBPM, we
first perform a random walk with a restart probability of 0.8 and set the size
of the sampled sub-network to be 30. For the embedding layer, the embedding
dimension of the GraLSP model is set to three dimensions of 32, 64, and 128,
and train GraLSP for 1000 epochs. Then we choose to use a three-layer GCN
or GAT network structure, the first and second GCN/GAT layers both contain
128 hidden units, while the third layer (output layer) contains 2 hidden units for
binary prediction. In particular, for UserRBPM with multi-head graph attention,
both the first and second layers consist of K = 8 attention heads, and each
attention head computes 16 hidden units (total 8 × 16 = 128 hidden units).
The network is optimized by the Adam optimizer with the learning rate of 0.1,
weight decay 5e-4, and dropout rate of 0.2. To evaluate the model performance
and prevent information leakage, we performed five-fold cross-validation on our
datasets. Specifically, we select 75% instances for training, 12.5% instances for
validation, and 12.5% instances for test. In addition, the mini-batch size is set
to be 1024 in our experiments.

Stage II: Global Fine-Tuning. In the global fine-tuning stage, if the dimen-
sion of embedding layer is set too large, the training process will be too slow,
while a small setting will affect the performance of our model. After fine-tuning
the model, we found that the model performance is relatively stable when the
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embedding dimension is set to 64. Then, we fix the parameters of pre-trained
embedding module, and train the GCN/GAT layer with Adam optimizer for
1000 epochs, with the learning rate of 0.001. As the larger learning rate can
make the model learn faster, thereby accelerating the convergence speed, but
the performance of the model will be affected to some extent. Therefore, we set
a relatively large learning rate at the beginning, and then gradually decrease
with the training. Finally, we choose the best model by stopping using the loss
on the validation sets as early as possible.

6 Experiment Results

6.1 Prediction Performance Analysis

Overall Performance Analysis. To verify the influence of the structural
attributes of users’ ego network and user nodes characteristics (extracted from
the spatial and temporal level) on the prediction performance in social networks,
as well as the interaction between features at different levels, we made the fol-
lowing comparison. As shown in Table 4, showing the prediction performance of
different models.

Table 4. Prediction performance of different methods for retweeting behavior (%).

Methods Precision Recall F1-score AUC

Spatial-& Temporal-level&
Handcrafted features + LR (ST& HC+LR)

69.74 71.58 70.65 77.27

Spatial-& Temporal-level&
Handcrafted features + SVM (ST& HC+LR)

68.38 69.15 68.76 78.01

DeepWalk+ST+GAT 78.21 78.46 78.28 82.81

DeepWalk+ST& HC+GAT 79.68 80.24 79.96 82.75

Node2vec+ST+GAT 78.54 81.50 79.99 82.53

Node2vec+ST& HC+GAT 79.88 81.25 80.55 82.96

Our Method(UserRBPM) 81.97 82.58 82.27 83.21

Based on the analysis of four evaluation metrics used in our work, the per-
formance of UserRBPM is better than the above-mentioned benchmark meth-
ods, which demonstrate that the effectiveness of our proposed framework. From
the comparison among DeepWalk+ST&HC+GAT, Node2vec+ST&HC+GAT,
and UserRBPM, we can observe that the GraLSP model we leverage in the
embedding layer can indeed capture local structural patterns and significantly
outperforms the first two methods in the experiment, confirming the GraLSP
can indeed capture local structural patterns in retweeting behavior prediction.
Meanwhile, from the comparison among ST&HC+LR, ST&HC+SVM, and User-
RBPM, we notice that UserRBPM achieve an improvement of 13.59% in terms
of precision. Such improvement verifies that the end-to-end learning framework
UserRBPM can effectively detect potential driving factors and predictive signals
in retweeting behavior prediction.
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Comparing the first four methods with UserRBPM, it can be shown that
the model which taking hand-crafted features as input hardly represent inter-
action effects, while network embedding technology can effectively extract high-
dimensional structural attributes. Figure 4 shows that ST&HC+LR is notably
better than HC+LR for retweeting behavior prediction. It reveals that users’
spatial-level features and temporal-level features are the potential driving fac-
tors of retweeting behavior in social networks. Additionally, we observe that
ST&HC+LR performs 4.42% better than HC+LR in terms of precision, verify-
ing that the spatial-level and temporal-level features we designed have improved
the prediction performance to a certain extent.

Fig. 4. Analysis results of different features.

Prediction Performance of Different Sampling Strategies. We use three
sampling methods to obtain different training models. Among them, the directly
sampling method (DSM) represents that we directly extract relatively bal-
anced samples based on the ratio of the original positive and negative sam-
ples, that is, the ratio between positive and negative samples is set to 1:3.
The number of positive samples and negative samples in completely random
down-sampling (CRDM) and our down-sampling method (ODM) is the same.
Experiment results are illustrated in Fig. 5. Compare to the completely random
down-sampling method, the model trained with the samples obtained by our
down-sampling method has better prediction performance. The better the pre-
diction effect of the model obtained by the training data training, the more it
shows that the dataset has universal significance and the learned model has a
stronger generalization ability. In the original imbalanced datasets, the direct
extraction of positive and negative samples with a ratio of 1:3 is simple, but
the difference in the number of microblogs covered by the positive and negative
samples is ignored. Therefore, the down-sampling method based on microblog



UserRBPM 627

granularity is more suitable for the user retweeting behavior prediction problem
that we researched.

Fig. 5. Prediction performance of different sampling strategies.

Comparative Analysis of GCN and GAT. Table 5 is the prediction perfor-
mance of two variants of graph deep learning, that is, the experimental results of
using GCN and GAT to build models, respectively. In the application scenarios
of our work, we observe that the performance of GCN in models constructed by
different graph embedding technologies is generally worse than that of GAT. We
attribute its disadvantage to the homophily assumption of GCN. This homophily
exists in many real networks, but in our research scenario, different neighbor
nodes may have different importance. Therefore, GAT is introduced to assign
different weights to different neighboring nodes.

Table 5. Prediction performance of variants of UserRBPM (%).

Methods Precision Recall F1-score AUC

DeepWalk+ST& HC+GCN 77.49 79.28 78.37 74.89

DeepWalk+ST& HC+GAT 79.68 80.24 79.96 82.75

Node2vec+ST& HC+GCN 78.56 80.07 79.31 79.64

Node2vec+ST& HC+GAT 79.88 81.25 80.55 82.96

UserRBPM GCN 80.82 80.58 80.70 82.23

UserRBPM GAT 81.97 82.58 82.27 83.21

Besides, we wanted to avoid using hand-crafted features and make User-
RBPM a pure end-to-end learning framework, so we compared the prediction
performance with additional vertex features and no additional vertex features.
Comparison results of prediction performance with/without vertex features, we
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observed that UserRBPM GAT with hand-c rafted vertex features outperforms
UserRBPM GAT without hand-crafted vertex features by 1.48% in terms of pre-
cision, 0.81% in terms of recall, 1.15% in terms of F1-score, and 1.29% in terms
of AUC. Experiment results demonstrate that, in addition to the pre-trained
network embedding, we can still obtain comparable performance even without
considering hand-crafted features.

6.2 Parameter Sensitivity Analysis

In addition, we consider parameter sensitivity in our work. We analyzed several
hyper-parameters in the model and tested how different hyper-parameter choices
affect the prediction performance.

Robustness Analysis. To verify the robustness of the UserRBPM framework,
we changed the proportion of training set, validation set and test set and then
redo the experiments. The results in Fig. 6 show that the model is effective under
limited training data size. Even with small size of training set (20%–40%), our
model can still have an acceptable and steady performance.

Fig. 6. Prediction performance with different training and test data size.

Effect of Instance Normalization. As mentioned in Sect. 4, this paper studied
the technique used to accelerate model learning called Instance Normalization
(IN). This technique provides benefits to improve the classification performance.
For instance, it can learn faster while maintaining or even increasing accuracy.
Moreover, it also partially serves as a parameter tuning method. Therefore, we
applied IN and obtained a boost in both performance and generalization. Figure 7
shows that the changes in the training loss of UserRBPM-GAT with/without IN
layer during training. We can see that when there is an instance normalization
layer, as the number of epochs increases, the training loss first drops rapidly and
then remain stable. Instance normalization significantly avoids overfitting and
makes the training process more stable.
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Fig. 7. The effect of instance normalization.

However, as shown in Fig. 8, we observe that the model without IN layer
takes about 1011 s per epoch during the training process, while the model with
IN layer takes about 1892 s per epoch. It was calculated that the model with
IN layer increased the training time for each epoch by about 87% compared to
the model without IN layer. Yet, we believe it is worthwhile to apply IN, as the
additional training time is compensated with a faster learning rate (it requires
less number of epochs to reach the same level of precision) and can ultimately
achieve higher testing precision.

Fig. 8. Time overhead during each epoch.
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7 Conclusion

In this work, we focus on user-level social influence in social networks and for-
mulate the user retweet behavior prediction problem from a deep learning per-
spective. Unlike previous work that built a prediction model of retweet behavior
based on network topology maps of information dissemination or conventional
feature engineering-based approaches, we proposed UserRBPM framework to
predict the action status of a user given the action statuses of her near neigh-
bors and her local structural information. Experiments on a large-scale real-world
dataset have shown that the UserRBPM significantly outperforms baselines with
hand-crafted features in user retweet behavior prediction. This work explores the
potential driving factors and predictable signals in user retweet behavior in hope
that the deep learning framework has better expressive ability and prediction
performance.

For future researches, the experimental dataset related to this research field
still contains rich social dynamics that deserve further exploring. We can study
user behavior in a semi-supervised manner, develop a generic solution based on
heterogeneous graph learning, and then extend it to many network mining tasks,
such as link prediction, social recommendation, similarity search, etc. Through
such a learning scheme, we can leverage both unsupervised information and
limited labels of users to build the predictor, and verify the effectiveness and
rationality of user behavior analysis on real-world datasets.
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