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Abstract. In cognitive navigation system, animals show an inborn ability of spa-
tial representations and correct self-positioning errors at every fired cell. Inspired
by navigation mechanism of animals, we propose a novel strategy to improve the
navigation accuracy of brain-like navigation based on UAV. Firstly, we employs
encoder-decoder structure based on Unet to solve semantic segmentation tasks.
Unet are able to encoder detailed information of images by constantly pooling
and upsampling operations with less training parameters, while it often ignores
high-level spatial information. Hence, we propose “dynamic attention with modi-
fied Unet” structure, which learns high-level information maintaining less training
parameters. Specifically, multi-scale atrous convolutions are adopted in dynamic
modules between encoder and decoder to extract features at different resolution.
Secondly, the pixels with maximum probability segmentation are extracted, and
they will be mapped to satellite map to obtain actual position coordinate of UAV.
Finally, positioning errors are corrected at each place cells in the brain-like nav-
igation of UAV. Our results show that proposed segmentation model improve
performance by 9.64% compared with conventional Unet, and the positioning
accuracy is improved by 90.52%.

Keywords: Semantic segmentation - Dynamic attention - Multi-scale atrous
convolution

1 Introduction

With the development of artificial intelligence technology, next-generation navigation
devices are endowed with self-correction abilities of positioning to fulfil the demands
of applications. The unmanned aerial vehicle (UAV) is an emerging technology where
positioning accuracy and robustness are critical for safe guidance and stable control.
Conventional UAV navigation system is dominated by the loose-coupled with Inertial
Navigation System (INS) and Global Navigation System (GPS). However, UAVs can-
not maintain high accuracy because of GPS signal of low quality when flying through
complex environments, such as urbans, canyons and electromagnetic interferences, and
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the results measured by INS will be divergent over time [1]. Thus, we need to investi-
gate a steady strategy that obtain high position accuracy without relying on traditional
measurement devices.

“Place cell” property of hippocampus is found as it have a firing rate when rodent
is at a specific place in extensive environment which inspired the proposal of brain-like
navigation strategy. Furthermore, there is a phenomenon that mammals such as rats or
primates show an inborn ability of spatial representations, and they take advantage of it
to implement space navigation [2]. More precisely, once the rodents reach at a specific
dot, the cell node on hippocampus will be activated, and the actual position information
will be recorded as reference. Also, the path integration of rats can be reset to acquire
new information when they are placed in a familiar environment, so that the accuracy of
bionic navigation can be remarkably improved by eliminating accumulated errors. Thus,
the challenge of this navigation lies in whether it can find correct scenes in “Memory”
to match current visual scenes [3].

For one thing, the typical application of scene recognition is on visual navigation.
Images captured by camera are used to compare with referenced images to obtain actual
navigation information. For another, convolutional neural networks is widely applied
in a number of classification tasks, where every image output a predicted single class
label. However, we need to focus on localization information in USV-assisted visual
navigation. Hence, semantic segmentation with the aim to assign semantic labels to
every pixel is proposed. As we all know that several network backbones with Fully
Convolutional, U-net modules have shown striking improvements over strategies based
on hand-crafted feature extraction [4]. Obviously, these modules have three drawbacks.
First, consecutive pooling operations or convolution striding operations may impede
dense prediction tasks, even though it allows deep learning model to extract feature
representations. Second, we always tend to pay more attention to capture high-level
semantic information without fusing low-level feature.

In this work, a novel semantic segmentation network combined with localization
extraction is proposed to assist brain-like navigation based on UAV. Firstly, we design
upon an elegant architecture, the so-called “U-net”, which based on encoder-decoder
structure. We modified and extend this architecture that can fuse high-level semantic
information and low-level feature effectively with few training images and “dynamic
attention” modules. We maintain a large number of feature channels in upsampling
process, which allows model to propagate information to higher resolution layers. To
improve the response capability of dense space, we add several “dynamic attention”
modules consisting of atrous convolutions with different rates between downsampling
part and upsampling part, which allows the seamless segmentation of images with dif-
ferent scales. In addition, this special attention module predict the pixels in the border
region of the image precisely.

As for the UAV-assisted brain-like navigation system, the location information corre-
sponding to the feature points on segmentation image is extracted and fed back to correct
the positioning of INS to improve the navigation accuracy. Furthermore, we endow the
positioning errors with ‘self-correction’ property termed as the navigation error cor-
rection (NEC) module so that navigation accuracy can be improved with increasing
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familiarity of the flight trajectory. Subsequently, the proposed strategy rectifies position-
ing errors periodically with low computation cost as the parameters trained in network
is very less, which is critical to meet the requirements of real time analysis.

In summary, our contributions are as follow:

— We propose a novel semantic segmentation network combined with localization
extraction which employs modified Unet as a backbone.

— Multi-scale dynamic attention modules consisting of atrous convolutions are added
between encoder-decoder structures, which propagate information to higher resolution
layers instead of focusing on low-level details. Also, the running time of our proposed
model will not increase too much.

— Cell models in biological brain-like system are mapped to actual trajectory to assist
UAV navigation.

— The actual position coordinates corresponding to pixel in segmentation images are
extracted to assist brain-like navigation.

2 Related Work

With the discovery of the role of grid-like cells, place cells and several brain cognitive
navigation cells, brain navigation technology is investigated widely, which provides a
theoretical basis to study brain-like navigation of UAVs in complex flight environments.

In practice level, a novel brain-like model is inherited from a normal brain-based
device (BBD) which helps understand how rodent cognition and behaviour work [5],
which means that we can build relationship between the spatial mapping property of
entorhinal cortex (EC) and location nodes of the actual UAV trajectory directly. It is
noted that ‘place cells’ property of hippocampus can be mapped into location nodes in
actual trajectory measured by INS, which can be seen in Fig. 1.
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Fig. 1. The schematic diagram of place cells in actual trajectory.
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Differ from traditional positioning strategy which applies integrated measurement,
we rely on semantic segmentation network combined with localization extraction to fin-
ish navigation tasks. It has been proved that the global features or contextual interactions
are vital in classifying pixels for semantic segmentation [7]. For semantic segmentation
tasks, we consider three challenges. First, consecutive pooling operations or convolu-
tion striding operations may impede dense prediction tasks, even though it allows deep
learning model to extract feature representations. Second, multi-scale images have to be
unified into the same size, as the size of weight matrix in output layer is default. Hence,
image pyramid, spatial pyramid pooling and atrous convolution methods is applied to
multi-scale inputs to capture context at several ranges [8]. Third, too much parameters is
calculated as several consecutive convolution operations, which give a pressure on GPU
memory and cannot meet the requirements of real time analysis.

3 Methods

In this section, we discuss the proposed model structure for semantic segmentation.
Then, we demonstrate that how the segmented image is used for brain-like navigation
with UAVs.

3.1 Cell Model Based on Brain-Like System

We propose a novel strategy for UAV navigation under the scheme of brain-like model,
which mainly contains three phases. In the first phase, an intelligent brain-like model is
applied it to UAV navigation tasks inspired by rodent navigation mechanism. As we all
know, ‘place cell’ and ‘head direction cell’ may have a high firing rate when rodents arrive
at a particular location. Thus, several location cell nodes can be set in advance. Inputs to
the brain-like model come from a camera, and it is used to record flight environment and
collect scene images. Then the output from brain-like model goes to semantic segmenta-
tion with aim to extract the coordinates of the centroid location of image corresponding
to the UAV. In the last phase, we establish a linear error equation based on the time series
to model the accumulated errors between two cell nodes. Furthermore, the positioning
errors accumulated at current flight can be compensated by the last error calculation, and
the error model under the current trajectory is established at the same time to achieve the
purpose of correcting the drift error in the next step. We endow the positioning errors
with ‘self-correction’ property termed as the NEC module so that navigation accuracy
can be improved with increasing familiarity with the flight trajectory.

3.2 Dynamic Attention Mechanism

The network structure is illustrated in Fig. 2. The whole structure is inherited from classi-
cal U-net, which consists of the encoder-decoder benchmark. To be concrete, an encoder
module gradually increases receptive field by reducing the size of feature maps with con-
volution operations, capturing higher semantic information. Meanwhile, a decoder mod-
ule recovers the spatial information. However, traditional U-net structure focus too much
on detailed information by constantly downsampling operations, so that it only captures
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deeper feature instead of higher spatial information. Hence, we explore the multi-scale
atrous convolutions between encoder and decoder during upsampling process, which
is denoted as “dynamic attention” module. The encoder module encodes multi-scale
spatial information with these dynamic atrous convolutions at multiple scales.

128 128
Conv3 512

— I

756 256

Input image Output image

Encoder —
Dynamic

atténtion Decoder

l mmp Conv 3x3 RelU BN

[
—_ [ Crop Concat
=]

=) Up-conv 2x2

Fig. 2. The structure of proposed segmentation model.

We set the initial feature channels as 32. It comprises of two repeated 3 x 3 con-
volutions with no-padding, each followed by a rectified linear unit (ReLU) and batch
normalization in the encoder process. In addition, 2 x 2 max pooling operations with
stride 2 are chosen for downsampling. It is noted that we double the number of feature
channels at each downsampling step. Secondly, 2 x 2 convolutions with stride 2 are
conducted for upsampling, and the feature channels are halved at each step. Thirdly, fea-
tures produced by upsampling is concatenated with the corresponding cropped low-level
features. Also, the proposed dynamic attention modules are introduced into the copy of
features produced by downsamping before cropping. Here, output_stride is denote as
the ratio of image spatial resolution to output resolution, and we adopt rate = 6, 12, 18
to the copy of features by appling strous convolution correspondingly. In addition, 1 x
1 convolution is added to reduce the feature channels and parameters. By introducing
this module, we can extract the features at different resolution. At the final layer, a 1 x
1convolution is used to map each upsampled features to the default number of classes.

3.3 Error Compensation Model

The core module for brain-like navigation with UAV is illustrated in Fig. 3. We construct
the semantic segmentation methods under the frame of brain-like system to eliminate
the accumulated errors between two place cell nodes. From the Fig. 3 we can see that
the place cell is simulated just shown as A, B, C, and D.
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Fig. 3. The structure of the NEC module.

In the actual UAV flight process, due to the drift error of the INS, the error will
linearly diverge with time in a short time, so it is necessary to model and analyze the
error divergence between two cell nodes. Therefore, the flight trajectory between the
two location cell nodes can be approximated as a linear motion for simplify. Then, a
linear error equation with time series is established under the scheme of the navigation.
The positioning errors at current flight can be compensated by the last flight, and the
error model under the current trajectory is established at the same time to achieve the
purpose of correcting the drift error in the next step, which can be seen in (1) and (2).
In each process of compensating the current trajectory error, it is necessary to adjust the
coefficient value of the linear function to achieve self-correction compensation for the
erTor.

error(i) = k * (trjre(i) — trjiNs (i) + b (D

trjins (i + 1) = error(i) 4 trjins (i) (@)

Where error (i) represents flight error function, which can be simplify as linear motion; &,
b, represent coefficients of linear function; trjref (i), 1rjiNs (i) represent the reference and
INS trajectory of the i-th flight, respectively; trjins (i + 1) represents the INS trajectory
of the i 4 1-th flight.

Gradually, we endow the positioning errors with ‘self-correction’ property and nav-
igation accuracy can be improved with increasing familiarity with the flight trajectory,
just like the work mechanism of path integrator of rats in brain-like system.

4 Training

In this section, we discuss the training details of our proposed segmentation model. Our
implementation is built on Pytorch.

The proposed segmentation model is evaluated on PASCAL VOC2012 semantic seg-
mentation benchmark, which contains 21 classes. It is noted that the origin dataset covers
1464 samples for training, 1449 for validation and 1456 pictures for test, respectively.
One background class and 20 object classes is calculated.
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Initialization. The features encoded are downsampled by a factor of 2 and then con-
catenated with the corresponding decoded features. We set initial feature channels as 32
with two repeated 3 x 3 convolutions (no-padding) and a rectified linear unit (ReLU). In
addition, 2 x 2 max pooling operation with stride 2 is chosen for downsampling. Also,
each modified module on top of basic structure of Unet all includes batch normalization
to reconstruct parameters. Basically, we set batch size = 8, and the batch normalization
parameters are trained with decay = 0.9997. Accordingly, we set learning rate as simple
0.001 and use a momentum (0.9), which can combine more trained samples to update
in the current optimization step.

Dynamic Attention. The core of dynamic attention modules is multi-scale atrous con-
volutions, which are added between downsamling and upsampling to capture higher
spatial information. The characteristic of atrous convolution is that it can modify the fil-
ter’s field-of-view and control the dense of feature response adaptively. Based on some
evaluation discussed in [8], the output_stride = 16 sacrifices some accuracy to obtain
faster calculation speed compared with output_stride = 8 since the inter-mediate feature
maps are spatially four times smaller. However, it has been verified that 16 output_stride
strikes the best trade-off between speed and precision. In addition, the performance when
setting output_stride = 1 is equal to that without any operations for features. Thus, we
set the output_stride = 6, 12, 18, and all output of atrous convolution operations are
concatenated. Meanwhile, we apply 1 x 1 convolution after concatenation to reduce
the number of feature channels (e.g. 512 or 1024), which can make the training easier.
We apply 1 x 1 convolution before the finally output to fuse all feature and match the
target number of classes. The reason why we call this multi-scale module as “dynamic
attention” is that it can be added between encoder and decoder to increase the sensitiv-
ity to high-level spatial information and overcome the defect of being only sensitive to
detailed features with Unet. Also, the whole training parameters will not increase even
adding this module.

5 Experiment Evaluation

To evaluate the proposed semantic segmentation-assisted brain-like navigation, two
specific experiment is proceeded for validation.

5.1 Experiment 1

In experiment 1, the trajectory of UAV is shown in Fig. 4 and the start coordinate is
32.0302, 118.8792(deg). The length of the trajectory is approximately 10 km. From
the Fig. 4 we can see that four location cell nodes corresponding to specific scenes
are marked, which can be used as ground truth. The performance of segmentation can
be verified at every location cell node. In order to improve the segmentation accuracy,
we modify the training set by adding some specific scene images captured by camera
equipped with UAV, and the specific images at each location node are used for validation.
In order to verify the effectiveness of proposed model, different flight motions including
long straights, turning and sudden accelerations are all performed.



A Novel Brain-Like Navigation 535

Firstly, we verify the performance of semantic segmentation. The dataset for valida-
tion is VOC2012 which has been mentioned before. Figure 5 represents the compared
segmentation results on validation set between the proposed multi-scale dynamic atten-
tion model with modified Unet network backbone and the conventional Unet. Figure 6
represents visualization results on val set with proposed segmentation model.

Fig. 4. (1) The trajectory of UAV; (2) The material object of UAV.

The results demonstrate that the detail of images is segmented more comprehen-
sive by applying multi-scale atrous convolution operations. The performance of dif-
ferent models dealing with segemention is shown in Table 1. Unet with 32 employing
the proposed multi-scale dynamic attention (multi-scale atrous convolutions), attains
the performance of 85.91% on the validation set. We notice that decreasing the initial
feature channels of Unet and adding multi-scale atrous convolutions between encoder
and decoder inevitably improve the performance by 9.64%. Furthermore, this proposed
model performs better than RetNet-101 banckmark with less training parameters. As
we all know that conventional Unet is effective to deal with medical images, thanks to
atrous convolution, this proposed model also obtains better segmentation results.

Table 1. The results of different segmentation methods. Unet with 32 refers to the initial feature
channels of Unet model is 32; Unet with 64 refers to the initial feature channels of Unet mdoel is
64.

Backbone Dynamic module (multi-scale atrous convolution) Decoder mIOU
Unet with32 |/ v 85.91%
Unet with 64 v 77.62%
ResNet-101 v 84.7%

In order to verify the navigation accuracy with semantic segmentation, we conduct
an actual flight experiment. All images captured at each location node during flight
are recorded for validation. The experiment system is conducted on a hybrid MEMS-
INS/GPS platform, where an Ublox NEO-M8T GPS receiver with a STIM202 and
1521L integrated IMU are connected to a data acquisition module running Windows
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Image (a) h (b)

Fig. 5. (a) Segmentation performance based on the proposed multi-scale dynamic attention model
with modified Unet; (b) Performance based on conventional Unet.

Fig. 6. Visualization results on val set.

10 operation system. A NovAtel ProPaké6 receiver is used for reference offline. The
sampling frequency of INS is set as 200 Hz. The experimental setup is shown in Fig. 7,
and specific parameters of sensors are given in Table 2.

As the flying height of the UAV is very high, the proportion of target features in
the image will be reduced, which will cause some difficulties in segmentation. Thus, we
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scale the size of input image proportionally at the expense of resolution. The visualization
results at location node are shown in Fig. 8. As we all know that each pixel is categorized
as one class with the highest probability output, and each pixel will be masked in the
meantime, which makes up the outline of the final target object. Hence, the pixels with
maximum probability segmentation are extracted, and the actual location on the map is
calculated as the current position coordinate of UAV. Precisely, we select the pixel block
corresponding to the maximum probability output as the referenced location, and this
location will be mapped to satellite map to obtain actual position coordinate, which also
shown in Fig. 8.

Fig. 7. The experimental setup based on experiment 2.

Table 2. The specific parameters of sensors.

Gyroscope (STIM202) | Bias 0.5°/hr
Scale factor 200 ppm
Random walk 0.2°//hr
Accelerometer (1521L) | Calibration error | 0.5-1%
GPS (Ublox NEO-MST) | Position accuracy | 2.5 m
Velocity accuracy | 0.05 m/s

Time accuracy 60 ns

GPS (NovAtel ProPak6) | Position accuracy | lcm + 1 ppm

Velocity accuracy | 0.03 m/s

Time accuracy 20 ns

Subsequently, in order to improve positioning accuracy and evaluate the fault-tolerant
of UAVs, we verify the performance of proposed NEC module with designed segmenta-
tion model. As we discussed before, NEC module corrects accumulated errors by itera-
tive compensation at each flight process. Hence, we conduct three flight experiment, the
flight trajectory is shown in Fig. 9(a), flight altitude is 38.4 m, and the flight trajectory of
UAV is measured by a NovAtel ProPak6 receiver, which is used for absolute reference.
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Fig. 8. The visualization results at location node.

Two-dimensional trajectory corresponding to Fig. 8 is shown in Fig. 9(b), and three place
cells are marked in results. The Root Mean Square (RMS) results of position errors are
shown in Table 3. From the results shown in Fig. 9(b) we can see that the positioning
error can be compensated at current flight after the navigation error was compensated
last flight, and the whole trajectory is closer to reference trajectory. From the Table 3 we
can see that the RMS errors decrease from 206.44 m to 1.93 m at the third flight, which
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are improved by 90.52%. Eventually, INS cumulative drift error re-accumulates from 0
after correction at each node by segmentation, so the INS can maintain high accuracy
for a certain period of time after correction calculation. Eventually,.
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Fig. 9. (a) Flight trajectory; (b) The compensated results at each node with NEC module.

Table 3. The RMS of position errors

NEC module The RMS of position errors (m)
The first flight 206.44
The second flight | 20.36
The third flight 1.93

6 Conclusions

In this work, with the aim to improve brain-like navigation accuracy of UAV, our pro-
posed model “dynamic attention with modified Unet” employs the encoder-decoder
where dynamic attention is used to capture rich spatial information without increasing
extra much training parameters. Precisely, multi-scale atrous convolutions, as the core of
dynamic modules are adopted between encoder and decoder to extract features at differ-
ent resolution. The pixels with maximum probability segmentation are extracted, and the
actual location on the map is calculated as current position coordinate of UAV. Finally,
our results show that proposed segmentation model sets a start-of-art performance on
VOC2012 datasets compared with conventional Unet, and the final navigation accuracy
is improved by NEC module combined with maximum probability of pixel extraction.
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