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Abstract. The applicability of characteristics of local magnetic fields for more
precise determination of localization of subjects and/or objects in indoor environ-
ments, such as railway stations, airports, exhibition halls, showrooms, or shopping
centers, is considered. An investigation has been carried out to find out whether
and how low-cost magnetic field sensors and mobile robot platforms can be used
to create maps that improve the accuracy and robustness of later navigation with
smartphones or other devices.
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1 Introduction

While the outdoor location of objects has been determined a long ago by a combination
of satellite navigation and inertial sensors, precise positioning inside buildings remains
a subject of active research. In laboratories for measurement and sensor technologies,
cost-effective sensors are being studied to reduce or prevent the inevitable drift of inertial
navigation.

The naturally occurring geomagnetic field is partlymassive distorted in buildings [1].
The distortion is caused by the construction materials and furnishing used [2, 3]. These
disturbances of the magnetic flux density �B are locally clearly expressed and largely
stationary. They can, therefore, be used as a characteristic for position determination [4,
5]. Pre-calibrated magnetic field sensors measure these characteristics and use them in
the navigation process [6, 7].

The data provided by the sensors is made available to the user in the form of a map
[8]. The described project examines how these maps can be produced using mobile
robots. Special attention is paid to bringing together several separately created maps so
that either a swarm of robots can be deployed or a single robot can create the maps in
multiple runs.
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2 Methodology

For the given problem, map creation was split into two parallel sub-processes. The
position of the robot is determined by the fusion of inertial sensors, i.e. acceleration and
rotation rate sensors, with odometry data and the distance data from a depth-sensing
camera. The algorithm used is a particle filter that enables simultaneous localization and
mapping (SLAM), providing as output data the position and a two-dimensional raster
map of the environment. The magnetic field map is calculated using this position and
the measurements from commercially available magnetic field sensors.

Themap generation processmust take into account the uncertainty of the position due
to environmental influences and noisy sensors. Themagnetic field sensors are susceptible
to interferences which can cause a high degree of uncertainty. Since the data from
the sensor are discrete and are on trajectory traveled by the robot, interpolation, and
extrapolation of these datamust be performed. The task ofmappingwith limited amounts
of data is represented in Fig. 1 as an example of the considered two-dimensional case.

Fig. 1. Prediction of the magnetic flux density �B in unknown areas based on distributed
measurements.

For the prediction of these values for the map generation and the processing of the
associated uncertainty in the form of covariance, the appropriateness of the Gaussian
processes was investigated.
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2.1 Gaussian Processes Regression and Interpolation

We use a Gaussian process (GP) to describe distribution over functions. A Gaussian
process is a collection of random variables, any finite number of which have a joint
Gaussian distribution.

Gaussian processes [9, 10] are considered as a generalization of the multivariate
Gaussian distribution. They can be applied for the estimation of continuous and smooth
functions that describe measured data.

Let m(x) and be the mean function and covariance function of a real
process f (x). A Gaussian process is completely specified by these two functions and it
can be written as

(1)

Themean function can be taken zero for notational simplicity. In our case, the random
variables represent the value of the function f (x) at location x.

A special case of the Gaussian Process Regression (GPR), used in the present work,
is known in geostatistics as Kriging. Besides, Gaussian processes can be applied to a
variety ofmachine learning problems, interpolationwith splines, classification problems,
or data prediction. An illustrative example of regression in the case of one, two, and three
measurements are shown in Fig. 2.

Fig. 2. Principle of Gaussian process regression for a) one measurement, b) two measurements
and c) three measurements (adopted from [9])

Measurement points are shown in black, while the grey shaded area gives an inter-
pretation of the so-called 95% confidence interval (twice the standard uncertainty of the
estimated function) based on the measured values y1, y2, . . . , yn.
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In theGPRapplied here, themodel functions f (x) are considered/assumed to describe
the realizations of a stochastic process whose covariance function is given a
priori. They are determined by n given uncertain measurements y1, y2, . . . , yn, observed
at the points x1, x2, . . . , xn. So, the model of the stochastic process can be represented
as follows:

(2)

The error ε(ε1, ε2, . . . , εn) corresponds to white noise. As the measurement- and the
a priori models are normally distributed, the estimated a posteriori model will be also
normally distributed.

2.2 Selection of the Covariance Function

The selection of a specific covariance function depends on the domain of available
knowledge about the underlying process: in the considered case it is related to the
behavior of the magnetic field in closed spaces. The problem of the inference requires
estimating the parameters of this covariance function using the measurements. Here the
parameters are referred to as the so-called hyperparameters; the type of the covariance
function is defined a priori in the form of model knowledge. One of the most popular

Fig. 3. Influence of the hyperparameters lRBF on the estimation of the covariance function
(adapted from [9])
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covariance functions is a stationary exponential distribution (the so-called radial basis
function RBF) of the form

(3)

where the hyperparameters σ 2
RBF and lRBF express the scale and granularity (bandwidth)

of the function.
In Fig. 3 an example of the influence of the hyperparameter lRBF , on the estimated

function together with the confidence interval is represented.
The estimation of the hyperparameters on a database is done in the optimal sense by

determining the maximum a posteriori probability.
The use of Gaussian processes not only allows the integration of all uncertainties

occurring in the mapping but allows the subsequent merging of the created maps based
on the estimated accuracy. This is possible by recalculating the map with all measure-
ments or by merging several interpolated maps with weighted arithmetic mean based on
covariance recorded at arbitrary times and with any sensors.

3 Experimental Set-up

The basic structure for recording the measurement runs consists of a central host PC on
which a ROS kernel runs. Usually, a small Linux netbook is used for this, which sets up
a W-LAN network. The individual ROS applications can now be started and monitored
from a separate stationary PC. Since it is not necessary to use two separate PCs for this,
only one PC was used in the setup pursued here. The magnetic field sensor is connected
to the host PC via USB and a breakout board. Both the Turtelbot used and the gamepad
required for control are connected to the host PC via USB.

3.1 Hardware

Turtelbot. A mobile robot system of the type Turtlebot was used for the testing. The
middleware was the Robot Operating System (ROS) [11], which allows easy driver
connection. The ROS is an open-source software environment that provides developers
with various libraries and tools to facilitate the development of applications in robotics.
Thus, manufacturers distributed numerous hardware elements for which there are device
drivers under ROS.

A Turtlebot is a small robot platform in the low price segment. The robot is mostly
used for feasibility studies and research purposes because of its flexibility and easy
access. It consists of a flat mobile carrying platform, the Kobuki of Yujin Robot, a
Kinect of Microsoft as well as a structure that provides space for laptops, other sensors,
or constructions.

Inertial Measurement Unit (IMU). The localization of the system was implemented
using a g-mapping SLAM algorithm [12]. The three-axis-MEMS magnetic field sensor
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HMC5883L is used to record the magnetic field; it can be found, for instance, in smart-
phones. Besides, a complete IMU consisting of a three-axis rotation rate sensor and
three-axis acceleration sensor is integrated into the chip. By the calculated position of
the system, the IMU allows to obtain the projection of the three-dimensional magnetic
fieldmeasurement into a global coordinate system and thus, to determine the flux density
components �B = (BX ,BY ,BZ )T .

There is another advantage of the IMU: depending on the application, part of the data
processing, and the signal processing can be transferred from the IMU to an ATmega328
microcontroller. The resolution of themagnetic field sensor is 0.5μTwith ameasurement
range of ±800μT and a deviation of 0.2μT.

Figure 4 shows the robot used and the experimental setup with a computer and
magnetic field IMU sensor.

Fig. 4. Mobile robot platform (left) and experimental setup combined with magnetic field sensor
IMU (right).

For later tests, additional floor markings were made in order to have clues for assess-
ing the position recognition of the turtle bot in the event of multiple measurement runs.
Since it was necessary to start measurements from an identical starting point for some
series ofmeasurements, a starting field that could be attached to the groundwas designed.

3.2 Software

To estimate the parameters of a Gaussian process, complex optimization methods are
needed, which usually require O

(
n3

)
operations. As there are hundreds to thousands of

measured values at disposal, approximate methods were used to interpolate themagnetic
field; the constructed function is known as a measurement function of the magnetic field.
Gaussian noise was a priori assumed in the measurement function, the covariance was
fixed a priori by the Matérn-function; the latter is a generalized version of RBF and
contains an additional hyperparameter for determination of smoothness [13, 14]. The
calculation was performed offline in the batch process, i.e. for the entire data set after
the measured values were recorded. The input data are magnetometer measurements �B
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along with the position, orientation, and covariance matrix determined by the SLAM
algorithm.

Data Preprocessing. The magnetic flux density �B = (BX ,BY ,BZ )T was measured in
x, y, and z direction. To clean up the signal of measurement noise and single outliers, for
the time being, it was smoothed by a median filter of 5th order. Since the magnetic field
cannot change very quickly due to the limited speed of the Turtlebot, the measurements
were subsequently smoothed by moving average filter after rejecting outliers with a
median filter of 5th order.

The size of the kernel varies between measurements and must be periodically
adjusted. For a large part of the experimental measurements, in case the investigated
magnetic field is very irregular, a kernel of size n ≈ 100 was chosen. In areas where
there is a homogeneous magnetic field and there are only separate regions in which the
magnetic field strongly fluctuates, the filter kernel has to be reduced in size, so as not to
completely remove the measurements.

The IMU and the odometry of the Turtelbot use different sampling frequencies, and
the measurements have to be put into correspondence, i.e. to be synchronized, even
though they already have a common timestamp by ROS [15].

A magnetic flux density �B and a time t should be assigned to a point in the x, y plane:

�B = �B(xm, ym, tm), (4)

where xm, ym represent the points where the Turtlebot was at the time tm.
For the assignment and adaptation to the different sampling times, the measurements

of the individual topicswith a common new sampling time are linearly interpolated. Then
they are shifted so that all themeasurements are completely synchronous.However, since
the position of the magnetic field sensor was centered in the Turtlebot and thus, shifted
to the IMU, the position had to be additionally corrected.

A layout regarding the positioning of the magnetic field sensor on the Turtlebot can
be found in Fig. 5. In this case

ϕsens = arctan

(
xdist
ydist

)
, dsens =

√
x2dist + y2dist, (5)

The corrected pair of values x̄ and ȳ is calculated using the relationships

x̃ = x + cos(ϕ + ϕsens)dsens
ỹ = y + sin(ϕ + ϕsens)dsens,� (6)

where ϕ represents the current orientation of the Turtlebot.
To determine the angle ϕ for each position of the Turtlebot, the orientation of

the latter is evaluated using quaternions. For the computation of the three Euler
angles (Roll �,Pitch�,Yaw�) from the quaternions (q1, q2, q3, q4) the following
relationships are used:

(7)
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Fig. 5. The distance of the magnetic field sensor to the center of the Turtlebots

The angle ϕ corresponds to the pitch angle �. For greater clarity further on in
this work, the coordinates of the magnetic field sensor are denoted by x and y instead
x̃ and ỹ.

With these transformations, it is possible to map the magnetic field measurements
in the localization frame of the robot. These data are fused with the robot localization
based on laser scan data and odometry. To get the robot trajectory we employ a classical
particle filter-based localization and mapping algorithm (SLAM), based on [12]. This
not only results in a trajectory driven by the robot but also in an uncertainty estimation
of the actual position, which is expressed with the covariance matrix

σ 2
max = max

([
σ 2
x,x σ 2

x,y

σ 2
y,x σ 2

y,y

])

(8)

An exemplary result for the trajectory is shown in Fig. 6. The associated uncertainty
is visualized with an ellipse based on the actual covariance.

Mapping. To create a magnetic field map from the driven path, different interpolation
methods exist. Matlab offers the function griddata for the interpolation of functions
f (x, y) via a previously defined grid. The method used here is based on Delaunay trian-
gulation, i.e. triangles are formed between pairs of points in space. These triangles are
chosen to avoid long thin triangles. Since the triangles cover the entire grid and do not
overlap, a value can be assigned to each point on the grid.

Multimap Data Fusion. To generate a map from several series of measurements, a
fusion of the measured values is necessary. These can be performed either by running
an environment multiple times with a single robot only or by running simultaneously
more robots in the environment In the case of interpolation with Gaussian processes
this fusion is easily realized. All measurements with an associated uncertainty can be
added to the Gaussian process as training data. The resulting interpolation is already
weighted and based on a distribution function. It makes no difference whether the same
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Fig. 6. Base data for data fusion of several maps, showing coordinates and associated magnetic
field measurements and their estimated uncertainty.

point is traversed several times during measurement, or whether several measurements
are fused. The consequence in both cases is that inaccuracies or measurement errors are
less weighted in the resulting map.

In the case of classical interpolation, such an approach would not lead to the correct
result, since each value enters the result with the same weight.

To fuse severalmaps according to their uncertainty, an uncertainty valueσ is assigned
to each geometric point P̃, in addition to a value zmag which expresses the magnetic field
strength at the positions x and y. This is depicted in Fig. 7 and follows the equation

P̃map = P̃map
(
x, y, zmag, σ

)
. (9)

To associate appropriate weights to the individual measured values, an engineering
approach is used.

It is assumed that the measurement of the magnetic field at the location P̃ is highly
uncertain especially when the positional covariance is particularly great. A measured
value has, therefore, a large influence on the result, only in case, the Turtlebot was there
with a high degree of certainty.

For this purpose, the maximum value

σ 2
max = max

([
σ 2
x,x σ 2

x,y

σ 2
y,x σ 2

y,y

])

(10)

of the already known covariance matrix from the SLAM algorithm of the localization,
a module is used.

Thus, a very small σmax stands for very good position detection, i.e. for very accurate
measurement of the magnetic field. Several N maps Pmap,i with i from 1 to N are now
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Fig. 7. Base data for data fusion of several maps, showing coordinates and associated magnetic
field measurements and their estimated uncertainty.

calculated to form a map Pmap, using the following equation:

Pmap(x, y) =
N∑

i=1

(
zi(x, y)

σ 2
i (x, y)

)

/

(
1

σ 2
max(x, y)

)
. (11)

It shows that a value of 0 is not permitted for the uncertainties. In a real process this
indeed never occurs. Nevertheless, such a measurement can be skipped, so that at this
point the map is showing a gap in the measurements.

If measurements that tightly cover the entire area in space are available, the map
fusion can be performed using a weighted average. The advantage of this map fusion
compared to the Gaussian processes is the lower computational load. However, the
acquisition of the measured data with sufficient density is a fundamental problem: for
this purpose, an intelligent interpolation and extrapolation of themeasured values cannot
be ruled out [16].

4 Experimental Results

In this section, selected experiments are presented and the results obtained from them
are briefly discussed.

4.1 Mapping Procedure - Approach

Since the magnetic flux density �B is a vector field �B(x, y) = (
Bx,By,Bz

)T
, but only one

scalar can be interpolated over x and y, some considerations have to be made.
It is conceivable to interpolate every one of the measured components of �B. In

the further course the measured values of Bx are described with MBx (x, y). Similarly,
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the description of By and Bz . A two-dimensional interpolation of MBx (x, y) results in
MI ,Bx (x, y)

(12)

From these three interpolated maps, it is now possible to generate a map of the
absolute valueMI ,abs(Bx,By,Bz)(x, y). For this, however, it is necessary to refer the values
to a global coordinate system. Since the Turtlebot can only rotate around the z-axis, the
necessary transformation results

MBy (x, y) = R(ϕ) · M̄Bx (x, y). (13)

Here, R is the rotation matrix as a function of the orientation angle ϕ of the Turtlebot:

R =
⎡

⎣
cos(ϕ) −sin(ϕ) 0
sin(ϕ) cos(ϕ) 0

0 0 1

⎤

⎦ (14)

The absolute value for Bx,By and Bz is given by

MI ,abs(Bx,By,Bz)(x, y) =
√
MI ,Bx (x, y)

2 + MI ,By (x, y)
2 + MI ,Bz (x, y)

2 (15)

4.2 Experimental Runs

Experimental runs in several environments have proven small to little influence of the
magnetic field vector Bz for the sensitivity of the overall field strength. This is due
to the considered scenarios, where the robot is mainly operating in industrial or home
environments, where the ceiling is too far away to have any influence, and commonplace
objects rather extend to the floor and thus permit to drive under. Therefore, the vertical
magnetic component can be omitted, which significantly speeds up the interpolation and
combination of the measured data. The overall field strength for Bx and By is given by

MI ,abs(Bx,By)(x, y) =
√
MI ,Bx (x, y)

2 + MI ,By (x, y)
2 (16)

In an initial study, the suitability of Gaussian processes for interpolating measured
data was examined. For comparison, we applied the classical two-dimensional linear
interpolation.Although the latter cannot be used for covariance indication and evaluation,
the computation time is several orders of magnitude smaller.

However, it quickly becomes clear what qualitative advantage can be achieved by
interpolation and prediction with Gaussian processes. Figure 8(a) shows the linear inter-
polation based on the trajectory traveled, which is plotted in black. The result of the GP
for the same record is shown in Fig. 8(b).

Magnetic maps were recorded based on several test runs in different areas of the
university. Figure 9 illustrates the qualitative results for a small area of a laboratory.
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Fig. 8. Created map of the horizontal flow density



296 S. Hensel et al.

Fig. 9. Illustrative map of the horizontal flow of the laboratory for measuring and sensor
technology

5 Conclusions

The investigation shows that the Gaussian regression is fundamentally suitable for pro-
ducing a complete and usable map (of continuous features) from individual measure-
ments. The maps created have a good degree of detail. The advantages compared to less
expensive methods lie in the simple integration of new measurements, the availability
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of a quality measure in the form of a covariance matrix, and, based thereon, natural inte-
gration into stochastic localization methods. The modeling also allows the introduction
of boundary conditions and model knowledge. However, all this is at the expense of
extensive calculations.

Themaps were created with a resolution of 5 cm, the potential for a positioning accu-
racy is within a few decimeters to meters, which is already sufficient for the continuous
improvement and drift correction of inertial sensors.
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