)

Check for
updates

Algorithm Based on LL_CBF for Large Flows
Identification

Lei Bai'>3®_ Jianshe Zhou'-?, and Yaning Zhang!?

1 School of Literature, Capital Normal University, Beijing 100048, China
2 Research Center for Language Intelligence of China, Beijing 100048, China
3 North China Institute of Science and Technology, Langfang 065201, Hebei, China

Abstract. In order to manage large-scale network, it is very important to measure
and monitor the network traffic accurately. Identifying large flows timely and
accurately provide data support for network management and network security,
which has important meaning. Aiming at the deficiency of high false negative rate
by using traditional algorithm to detect large flows, a novel scheme called LL._CBF
is presented, which uses the policies of “separation of large flow filtering and large
flow identification” to improve the accuracy of traffic measurement. The algorithm
is improved from four aspects: large flows handled firstly, using counting bloom
filter to filtrate most small flows, using least recent used mechanism to filter small
and medium flows and pre-protect large flows, and using least elimination strategy
to identify large flows. The theoretical analysis and the simulation result indicates
that compared with the standard LRU algorithm and LRU_BF algorithm, our
algorithm can identify the large flow in the network timely and accurately, and
reduce the computing resource requirements effectively.

Keywords: Traffic measurement - Large flow - Least recent used - Least
elimination strategy

1 Introduction

Accurately measuring and monitoring network traffic is the basis for managing large-
scale networks. However, along with the rapid expansion of the Internet and the continual
emergence of new applications, network traffic presents the characteristics of high speed,
large scale and complexity, and the obvious feature is that the large amount of data gen-
erated and the high frequency of data packet arrival. This requires shorter data process-
ing time than before, which brings great challenges to the storage capacity, processing
capacity and transmission capacity of the network measurement system. Fortunately the
flow-based measurement method opens up a new way for flow monitoring. By merging
packets into the flow, the data volume is greatly compressed, making the storage, pro-
cessing and transmission of network data easier. In network traffic measurement, a series
of data packets that satisfy certain specifications are abstracted into a flow. According
to this specification, some attributes of the packets are mapped into the flow to represent
a unique identifier for the flow (flow ID). The most commonly used flow specification

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2021
Published by Springer Nature Switzerland AG 2021. All Rights Reserved

Y. Weng et al. (Eds.): TridentCom 2020, LNICST 380, pp. 146-158, 2021.
https://doi.org/10.1007/978-3-030-77428-8_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77428-8_12&domain=pdf
https://doi.org/10.1007/978-3-030-77428-8_12

Algorithm Based on LL._CBF for Large Flows Identification 147

is the 5-tuple of the packet header (source/destination IP addresses, source/destination
port numbers, and transport protocol).

Many studies show that the statistics of network flow present a strong heavy tailed
distribution. Heavy tailed distribution is a probability distribution model, which means
that in the statistical set, a small part of the elements have a very high frequency of
appearance, occupying the vast majority of the set, and most of the elements appear at a
very low frequency. This characteristic is called “the elephant and mice phenomenon”,
which means that most flows only have a small number of packets, while a small number
of flows have a large number of packets. A notable feature of large flows is that they only
account for a small part of the total traffic but generate the vast majority of the total traffic.
So, in practical applications, in most cases, we only need to master large flow information
to have an overall understanding of all network flows passing through the link which
is convenient to manage and monitor the network traffic, and plays an important role
in network traffic accounting, security detection, traffic control and other engineering
applications. Therefore, how to use limited hardware resources to realize large flow
identification has become a research hotspot in high-speed network measurement.

Traditional methods to achieve large flow identification needs to collect all packets
in the network, and then extract their flow statistics, just as many previous studies have
indicated. However, for the reason of system hardware computing speed and storage
capacity is limited, and the network traffic data scale is huge, and the message arrival
speed is extremely high, e.g. on the OC-768 (40 Gbps) backbone link, the average
packet processing time is 8 ns. So, traditional methods have some flaws. In this paper,
we propose and implement a new method called LL-CBF algorithm which use least
obsolete (LEAST) & least recent used (LRU) & count bloom filter (CBF) algorithm to
realize large flows identification.

The rest of this paper is organized as follows. Section 2 reviews related work.
Section 3 introduces the traditional method of identifying large flows. Section 4 states
the strategies used in our algorithm. In Sect. 5, we discuss how to identifying large flows
by LL-CBF algorithm. Section 6 analyzes its performance theoretically. Experimental
results on trace are presented in Sect. 7. Finally, Sect. 8 concludes the whole paper.

2 Related Work

Tatsuya Mori [1] described how to identify large flows through counting periodically
sampled packets. Their key idea is to find the threshold of per-flow packets in sampled
packets which can reliably indicate whether or not a flow is actually a large flow in not
sampled packets and that such a threshold can be obtained based on Bayes’ theorem.
Kumar et al. [2] proposed a new technique referred to as space-code Bloom filter (SCBF)
for extracting per-flow statistics of traffic in high-speed networks. Smitha Kim I [3]
proposed LRU algorithm for identifying long-term high-rate flows at a router. Zhen
Zhang [4] Used Bloom filter and LRU algorithm to realize long stream information
statistics. ANTUNES N [5] estimate the tails of flow duration and size distributions under
various sampling methods. Qingjun Xiao [6] proposed cardinality estimation solution
mechanism to estimate large flows, which allocate each flow with a virtual estimator,
and these virtual estimators share a common memory space. Aiping Zhou [7] design a
new sketch data structure to detect network-wide persistent flow.

148 L. Bai et al.

3 Classical Least Recent Used Algorithm

Least recent used (LRU) algorithm has a wide application in the computer field, such
as database cache management, page management, disk cache management, etc. The
fundamental of LRU is that always keeps the new element in the top of the cache and
keep the least recent used element in the bottom. The LRU algorithm uses information
about the pages accessed in recent past to predict the near future.

In an LRU cache every new entry is placed at the topmost position in the cache. The
entry that was the least recently used is at the bottom. This is chosen to be replaced when
anew entry has to be added and there is not enough space in the cache. This mechanism
ensures that the recently used entries remain in the cache. The objective is to store state
information for only large flows in the LRU cache. Smitha Kim I is the first to use LRU
algorithm in traffic measurement. With a cache of limited size, a flow has to arrive at the
router frequently enough to remain in the cache. Small flows are likely to be replaced
by other flows fairly soon. These flows do not pump packets fast enough to keep their
entries at the top of LRU list and hence become candidates for replacement. Large flows
are expected to retain their entries in the LRU cache for long periods of time. However,
when there are too many small flows or short-lived flows arrive at the cache suddenly,
the large flows will be replaced by the small flows. This will decrease the accuracy of
the measurement. To solve this problem we propose a new method.

4 Strategies Used in Our Algorithm

In order to solve the shortcomings of LRU algorithm that the small flows will replace
large flows frequently, we improve the LRU algorithm from four aspects to improve the
measurement accuracy.

4.1 Large Flows Handled Firstly

In order to identify large flows at the router, LRU algorithm must employ a cache which
is of a fixed pre-determined size. For the reason of the number of memory we can afford
is significantly smaller than the number of flows, when many small flows arrive at the
cache suddenly, the large flows including the large flows that already identified will be
replaced by the small flows.

To avoid this situation, we propose large flows handled firstly, which means that when
a packet arrives, algorithm will validate whether this packet is belonged to a large flow
which has been identified. If it is, then update the large flow information, if it is not, then
packet will be handled later by other module. By this way, large flows which identified
before will not be replaced by small one. By doing this can improve the measurement
accuracy.

4.2 Using Counting Bloom Filter to Filter Most Small Flow Packets

Now that flow statistics has a characteristic which most small flows have a small number
of packets, while a very few flows have a large number of packets. If we can filter out

Algorithm Based on LL._CBF for Large Flows Identification 149

the packets of most small flows before they enter LRU cache, this will be reduce the
number of flows which LRU algorithm handled, depress the probability of large flows
replaced, and then will improve the accuracy of LRU algorithm.

Counting Bloom filter for representing a set S = {x1, x3......x,,} of n elements is
described by an array of m bits, initially all set to 0. It uses k independent hash functions
with range {1,....,m}. CBF extend each unit in the standard Bloom Filter from a bit to
a counter, so that it can add and delete elements. When adding an element, CBF uses k
hash functions to map into the corresponding storage space and add 1 to the value of its
mapped position; when deleting the element, the values of the corresponding k positions
are reduced by 1.

The structure of CBF is shown in Fig. 1.

X1 X,
—— 7\
— - \
- e N
Hash, Hash, Hash,
. / |
/
\ , |
\ y, |
} Y/
B 6 1 12 | 10 7 0 113}

Fig. 1. CBF structure diagram

We use the characteristics of CBF to filter most small flows. When a packet arrives
k hash functions are used to hash the flow ID of the packet which will be map into
different positions of CBF. Since all packets belonging to the same flow will be mapped
into the same location, the value of the large flow mapping location will be larger; for
most small stream packets, the value stored in the mapping location is relatively small
because of the different spatial locations of the mapping. By this way, most small flows
can be filtered through the preset threshold nl, that is, when the value of the mapping
position of the message is greater than or equal to nl, the message will be processed by
the subsequent module. Most of the small flows are filtered out by CBF because they
contain less packets and the value of mapping position is small. Due to the huge amount
of data, there are also many small flows mapped to the same location, which leads to the
small flows being submitted to the subsequent module for processing. Therefore, further
processing of packets passing through the CBF is required.

150 L. Bai et al.

4.3 Using the LRU Mechanism to Filter Small and Medium Flows and Pre-protect
Large Flows

The LRU module is used to filter the middle and small flows passing through the CBF
module, reducing the number of flows entering the LEAST module, thereby achieving
pre-protection for large flows. The LRU maintains a cache and always keeps the flow
which records of the latest arriving packets at the top of the LRU cache, while the longest
unreachable flows are stored at the bottom of the cache queue. When a new flow reaches
the LRU module through the CBF module, the LRU will create a new flow record and
place it at the top of the cache. If the cache is full, the bottom flow will be replaced. Due
to the short duration and the low arrival rate of the small flows, they are always possible
to be replaced; while large flows tend to be stored at the top of the LRU cache because
of their long duration and frequent access to the cache. The LRU is implemented as a
doubly linked list. Each node contains an entry for flow id and the packet count. If the
flow exists in the LRU linked list, put the flow at the top of the linked list; if a new
flow arrives and the linked list is full, the bottom flow is eliminated and the new flow
is placed at the top of the linked list. In order to make the search into the linked list
easy, it is indexed by a hash table. Therefore, in addition to a small amount of additional
operations due to hash conflicts, most objects only need to perform a hash operation to
locate the flow record to which the message belongs.

However, due to the small storage space of LRU, when a large number of burst flows
arrive or no new packets arrive in a short period of time, large flow objects may be
eliminated by medium and small flows. Therefore, it is necessary to further use LEAST
module to identify large stream objects.

4.4 Using LEAST Elimination Mechanism to Identify Large Flows

The LEAST module always eliminates the smallest flow and realizes long flow identifi-
cation. If a packet arrives and its corresponding flow record is found in the LEAST table,
then the size of the packet is added to this record; if the flow record corresponding to
the packet is not in the LEAST table, then it will be mapped by the hash function To the
corresponding items of CBF, and processed by CBF and LRU modules respectively. If
the flow object passes the threshold set by CBF and LRU, a new entry will be added to
the LEAST table to record the information of the flow. When the length of the LEAST
table (the number of items stored) reaches the maximum, the smallest flow in the LEAST
table will be eliminated in order to free up storage space for the newly arrived flow.

S Identifying Large Flows by LL-CBF Algorithm

The large flow identification algorithm based on LL-CBF is composed of flow filtering
function and flow identification function. The function of flow filtering is to filter out
most of the small and medium flows information in network traffic, which is divided
into two modules: CBF filtering and LRU filtering; the role of the LEAST module is
to realize large flow detection. The pseudocode of the algorithm is described in Fig. 2
below.

Algorithm Based on LL._CBF for Large Flows Identification 151

initialize (CBF,LRU,LEAST) //nitialize CBF,LRU,LEAST
While a packet x arrives
calculate H=h(1),h(2),...,h(k) // Calculate k hash function values
if(isLargeFlows()){ //'If the large flow ID has already been identified
update(count); // Number of packets in the flow plus 1
telse{ // Unrecognized flow ID
CBF(); // Call CBF function
}
CBF(){
if (any location of CBF[h;(X)]i-1 x<n;){
//The k positions of CBF are all less than n,
add((CBF[hi(x)]i=1..k)) // CBF count plus 1
}
else /IThe k positions of CBF are all greater than or equal to n,
LRU(x); // Call LRU function
}
LRU(x){
if(find(x) or not full){

// If already in the LRU linked list, or the linked list is not full
update(count); // Number of packets in the flow plus 1
setTop(); // Put the flow node on top
if (number(count)>=n,)

LEAST(x)

§
else // Not in the linked list, and the linked list is full
eliminate (last); // Eliminate the last flow node
}
LEAST(x) {
if(find(x) or not full){
update (count); // Number of packets in the flow plus 1
}
else // Not in the linked list, and the linked list is full
obsolete (minimum); // Eliminate the smallest stream
f

Fig. 2. The pseudocode of LL-CBF algorithm

152 L. Bai et al.

! 1
1| Flow - !
! 1

Fig. 3. The structure diagram of the LL-CBF algorithm

Figure 3 shows the structure diagram of the LL-CBF algorithm.

The procedure for identifying large flows by LL-CBF algorithm is enumerated as
follows.

Step 1: First, when a packet arrives, k independent hash functions will compute k keys
according to the 5-tuple identity (source/destination IP addresses, source/destination port
numbers, and protocol).

Step 2: Secondly, validate whether this packet is belonged to a large flow. If it is,
then the counter of large flow add one, if it is not, then packet will be handled by CBF.

Step 3: CBF validate whether the k positions of CBF are all less than ny. If any of
position is less than nj, the counter of each position plus 1. Otherwise, the packet will
be handled by LRU algorithm.

Step 4: LRU algorithm will search the cache to check if that flow’s entry exists in
the cache. On a miss, the flow is added to the cache if there is space in the cache. If there
is no space in the cache, it replaces the least recently seen entry. It adds this entry in the
topmost position in the cache. On a hit, update the entry in the cache. When the count
of this flow exceeds the threshold n;, this flow will be submitted to LEAST module.

Step 5: In LEAST module, LEAST algorithm will search the cache to check if that
flow’s entry exists in the cache. If find, then the size of the packet is added to this record;
if not, it will determine whether the leap cache is full, if reaches the maximum size, the
smallest flow in the LEAST will be eliminated, if not, then a new entry will be added to
the LEAST table to record the information of the flow.

Step 6: At last, output the flows whose length is greater than the specified threshold
TH which we recorded in LEAST, and those flows are large flows.

6 Performance Evaluation

The algorithm may have false positive during the large flow recognition process. False
positive ratio (FPR) is the probability of identifying non large flows as large flows. In

Algorithm Based on LL._CBF for Large Flows Identification 153

CBEF, the length of the counter array is m, the total number of detected packets is N, and
all packets belong to n flows. When an element is inserted into the CBF, the probability
that a certain position is mapped to is 1/m, n * k mappings were performed in total. The
probability that the hash position is empty is P’

1 ko nk
P’=<1——) em (1)
m
False positive ratio P
nk nk \ K nk
P=(1-P) %(1—em> =exp(kln(1—em))

Let
[0 =k1n<1 —e%)

When f takes the minimum value

af (k)
0
ok
Then
m
k = ln2(;>

So, the minimum value of CBF FPR is

1 k
Ppin = (E) (3)

In any measurement time period, the flow rate obeys the Pareto distribution with position
parameter 1. Assuming that the total number of packets in the measurement period is M,
the LRU creates a new flow identifier every N packet on average, and eliminate a flow
at the bottom of the linked list. Suppose the size of a large flow F is exactly equal to the
threshold TH, then the probability of no large flow F in N consecutive messages obeys
the hypergeometric distribution.

() I(R) ¢
_ 1N

When M >> N, formula (1) can be approximated as (i

Therefore, the probability that the current F is eliminated is
TH\"
Piry(F =TH) = P(F = TH) l_ﬁ 5)

Since

P(F =TH) = 6/TH**!

154 L. Bai et al.

Then

0 TH\" .
PLRU(F=TH)=W l_ﬁ (6)

In which 6 is the normalized parameter.

=(ZL)

Because the algorithm search process uses hash function set, the memory cost of one
access to hash space is O(k). At the same time, the LRU linked list uses doubly linked
list, and the zipper method is used to resolve hash conflicts. The average search length
of the algorithm is O(1 + B/2), B is the filling factor.

7 Experimental Analysis

In order to verify the effectiveness of the LL_CBF algorithm, we use Trace collected
from CAIDA for simulation experiments. There are 6187376 packets and 68367 flows
in total. CBF uses k = 6 hash functions, and it’s hash space is [0.. 65535]. The original
distribution of network traffic is shown in Fig. 4. It can be seen from the figure that the
distribution statistics of the network flow present a heavy-tailed distribution.

100000
10000
[’d
3
&=1000 —>— Original Distribution
]
]
£ 100
=]
2

10

1 BRI
1 10 100 1000 10000 100000
Flow length

Fig. 4. The original distribution of network traffic

Figure 5 shows the comparison of whether the big flow is processed first. It can be
seen from the figure that the measurement accuracy of large flow handled firstly is much
higher than that of post handled. This is because the post-processing method will cause

Algorithm Based on LL._CBF for Large Flows Identification 155

100
90
80
70

260

©

550

I+

<40 | -
30 -7 77
20
10

0
128 256 512 1024 2048 4096 8192

Threshold of large flow

Large flow first

- - - - large flow after

Fig. 5. Comparison of large flow pre-processing and post-processing

the large flows to be eliminated by the small flows, thus the measurement accuracy is
reduced.

Figure 6 shows the proportion of the number of filtered flows when the CBF counter
changes. The greater the value of counter, the more flows are filtered. As the counter
value increases, most of the small flows are discarded because the value of the mapping
position is smaller than the counter.

70
60

50

—— Filter ratio

Filter ratio
w A
o o

N
o

[
o

2 4 8 16 32 64 128 256 512 1024

Counter

Fig. 6. The proportion of the number of filtered flows when the CBF counter changes

156 L. Bai et al.

Figure 7 displays the measurement error when LRU cache space changes. The larger
the cache space, the smaller the probability of the large flow being replaced and the
higher the accuracy.

100

—— Measurement error

o O

Measurement error
= N W b U o
o O O O o

o

128 256 512 1024 2048 4096 8192
Cache space

Fig. 7. Measurement error when LRU cache space changes

Figure 8 indicates the comparison of measurement accuracy between LL._CBF algo-
rithm, the LRU_BF algorithm and the standard LRU algorithm, using the same hash
function and number and cache space.

LL_CBF
---- LRU_BF
Standard LRU

128 256 512 1024 2048 4096 8192
Cache space

Fig. 8. Comparison of the accuracy of three algorithms for measuring large flow

Algorithm Based on LL._CBF for Large Flows Identification 157

Experimental results show that compared with the standard LRU algorithm and
LRU_BF algorithm, the LL._CBF algorithm proposed in this paper has higher measure-
ment accuracy, especially when the cache space is relatively small the advantage of
the LL_CBF algorithm is more obvious. This is because when the cache is small, the
standard LRU algorithm and the LRU_BF algorithm, for the cache space is full, a large
number of newly arrived small flows will eliminate the unidentified large flows in the
cache. However, the LL_CBF algorithm can filter out most of the small flows through
the filtering mechanism, while retaining the identified large flow information, reducing
the impact of the small flow on the large flow, thereby reducing the measurement error
of the algorithm.

8 Conclusion

Due to the rapid and large-scale development of the network, it is becoming more and
more difficult to completely measure network flow information online. In this paper,
based on the measurement defects of the sudden large number of small flows that lead to
the elimination of large flows and the characteristics of network heavy tail distribution,
propose a large flow detection algorithm based on LL._CBF, which will filter out most
of the small flow through filtering mechanism, and reduce the probability of small flows
entering the cache space, realize the strategy of “grasp the big and let go of the small”.
The complexity and error rate of the algorithm are analyzed, and the effectiveness of
the algorithm is verified by experimental data. The results show that compared with the
standard LRU algorithm and LRU_BF algorithm, the new algorithm can identify the
large flow in the network timely and accurately under the condition of using less storage
space, and meet the actual measurement needs.

Acknowledgment. We would like to express our appreciation for the assistance with data collec-
tion we acquire from CAIDA. This research was financially supported by “Research on key tech-
nologies and model verification of prose genre oriented text understanding (ZDI135-101)”, “Re-
search and Application of Key Technologies of Intelligent Auxiliary Reading System (ZDI135-
79)”, Capacity Building for Sci-Tech Innovation-Fundamental Scientific Research Foundation
(20530290082).

References

1. Tatsuya, M., Masato, U., Ryoichi, K.: Identifying elephant flows through periodically sampled
packets. In: Proceedings of ACM SIGCOMM/IMC 2004, pp. 115-120. ACM Press, Taormina
(2004)

2. Kumar, A., Xu,J., Wang, J., Spatschek, O., Li, L.: Space-code bloom filter for efficient per-flow
trafficmeasurement. In: Proceedings of IEEE INFOCOM 2004, Hong Kong, China, (2004)

3. Kim, S.I., Reddy, N.A.L.: Identifying long-term high-bandwidth flows at a router. In: Proceed-
ings of the 8th International Conference on High Performance Computing, Hyderabad, India,
pp. 361-371 (2001)

4. Zhang, Z., Wang, B.: Traffic measurement algorithm based on least recent used and Bloom
filter. J. Commun. 34(1), 111-120 (2013)

158 L. Bai et al.

5. Antunes, N., Pipiras, V.: Estimation of flow distributions from sampled traffic. ACM Trans.
Model. Perform. Eval. Comput. Syst. 1(3), 1-28 (2016)

6. Xiao, Q., Chen, S.: Cardinality Estimation for Elephant Flows : A Compact Solution Based on
Virtual Register Sharing. IEEE/ACM Trans. Netw. (TON) 25(6), 3738-3752 (2017)

7. Zhou, A., Zhu, C.: Detection method for network-wide persistent flow based on sketch data
structure. Comput. Appl. 39(08), 2354-2358 (2019)

