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Abstract. Nowadays, one of the most powerful side channel attacks (SCA) is pro-
filed attack. Machine learning algorithms, for example support vector machine,
are currently used for improving the effectiveness of the attack. One issue when
using SVM-based profiled attack is extracting points of interest, or features from
power traces. So far, studies in SCA domain have selected the points of interest
(POIs) from the raw power trace for the classifiers. Our work proposes a novel
method for finding POIs that based on the combining variational mode decompo-
sition (VMD) and Gram-Schmidt orthogonalization (GSO). That is, VMD is used
to decompose the power traces into sub-signals (modes) of different frequencies
and POIs selection process based on GSO is conducted on these sub-signals. As
a result, the selected POIs are used for SVM classifier to conduct profiled attack.
This attack method outperforms other profiled attacks in the same attack scenario.
Experiments were performed on a trace data set collected from the Atmega8515
smart card run on the side channel evaluation board Sakura-G/W and the data set
of DPA contest v4 to verify the effectiveness of our method in reducing number
of power traces for the attacks, especially with noisy power traces.

Keywords: Profiled attack - Side channel attack - Support machine learning -
Variational mode decomposition

1 Introduction

Side channel attack (SCA) is one of the most powerful cryptoanalysis technique for
revealing secret key or sensitive information stored on cryptographic devices. The con-
ducting of SCA is based on the analyzing of unintended side channel leakages observed
from the devices during cryptographic algorithms run on. There are so many forms of
the observed leakages, but the time of operation, the power consumption of the devices,
or electromagnetic radiation are the most common uses. SCAs based on the power con-
sumption are known as the power analysis attacks first proposed by Kocher et al. in the
late 1990s [1]. These attacks rely on the physical nature that the instantaneous power
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consumption of a cryptographic device depends on the data being processed and the
operation being executed. This dependency can be used to expose the data that con-
tains the secret key of a cryptographic device. Depending on the knowledge of attacker
about the device under attack as well as the statistical method of analysis and extraction
of information from the power consumption traces, SCAs are classified into two main
classes: non-profiled attacks and profiled attacks. DPA [1], CPA [2], Mutual Information
Analysis (MIA) [3] attacks belong to the first class. These are considered as effective
attack methods when the attacker has only an attack device and information of its imple-
mentation. The profiled attacks are used when the attacker has the same device as the
attack device with full control over. By this device, the attacker is able to accurately
characterize the power consumption of the device so that the attack efficiency is much
higher than non-profiled attacks in the term of the needed number of power consumption
measurements for revealing the secret key successfully.

So far, there is a lot of attention on profiled attack in SCA research community. The
first one is called template attack, as proposed in [4] by Chari et al., which relies on an
assumption that power consumption characteristic follows multivariate Gaussian distri-
bution. However, in general, this assumption might be not met, so that machine learning
(ML) techniques are introduced for profiled attacks. Consequently, several works have
applied machine learning techniques to profiled SCA attacks [5, 6]. These works all
indicate that ML based profiled attacks are more efficient and SVM is commonly used
as ML algorithm. ML based profiled attacks relax the need for probability distributions
of side channel leakage traces but still require specific extraction techniques to identify
points of interest (POIs) on the traces or feature selection in ML domain. In SCA, POIs
are time sample points from the power traces that correspond to the calculation of the
sensitive variables being targeted and their values change according to those variables
[7]. The POIs selection, as input features to machine learning algorithms is critical for
two main reasons as follows: (1) the power traces are usually acquired by a measurement
equipment with high sampling rates and so consist of a large amount of time samples.
However, often only a relatively small range of these time samples is informative or
statistically dependent on a sensitive target variable; (2) power traces are considered
as highly multi-dimensional data that results in the curse of dimensionality issues with
ML algorithms. That is, computational and runtime complexity for them to solve a task
increase. Therefore, POIs selection is critical to the effectiveness of the profiled attacks.
The more precisely the POIs are selected, the better the ability to characterize the power
consumption of a profiled device, resulting in increasing attack efficiency and vice versa.
Our work focuses on a method for finding POIs for SVM-based profiled attacks.

Some studies in the side channel community focus on methods of finding POIs for
profiled attacks, which can be classified into four classes: filter methods, dimensionality
reduction method, wrapper and hybrid methods, and ML based methods. In filter meth-
ods, POIs selection process operates on the base of computation of some sample-wise
statistics, whose aim is to quantify a sort of signal strength. The signal-strength estimates
are derived from classical SCA distinguishers computed under the right key hypothesis,
such as the Difference of Means [4] or Correlation Power Analysis (CPA) [8]. Other
deployed estimates are the Sum of Squared Differences [9], the Signal-to-Noise Ratio
[10, 11], and the Sum of Squared t-differences, corresponding to the t-test [9]. Once
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the chosen signal-strength estimate is computed, all time samples for which the sig-
nal strength is higher than a certain threshold are selected as POIs. Of these, the POIs
selection method based on CPA estimates is the most common use.

Principal component analysis (PCA), as dimensionality reduction method, is another
technique for POIs selection. The time samples on traces have the maximize the vari-
ability in the projection space of PCA are remained as POIs. So far, the effectiveness of
PCA-based profiled attack is not clear and selecting the number of retained components
as well as the threshold of determination in PCA process is also not an easy task [12].

Profiled attacks, as presented in [13], use the wrapper method for finding of POls.
In the wrapper method, subsets of time samples on the power traces are evaluated by
the prediction performance of a classifier and the subset has the best performance is
selected as POIs. To reduce the number of subsets of the wrapper, hybrid method is
used. That is, candidate features are first selected by a filter then furthered refined by
an accuracy wrapper. As claimed in [13], wrapper and hybrid methods gave slightly
better results. The issue with this approach is that computational complexity and search
space increase exponentially as the length of trace increases. Because of the capability of
ML algorithms in determining the most informative features from raw data inputs, ML
algorithms can be used to finding POIs of power trace. In the first work in this approach
[14], SVM has been trained and the sample points of trace which correspond to highly
absolute value of weights are selected as POIs. This method is also called normal-based
feature selection and strongly recommended by authors in [14].

As our knowledge, there are only few works on finding POIs with noisy traces.
Furthermore, there have been no more studies on feature engineering in the machine
learning domain as applied to profiled attacks. For noisy traces, the authors in [7] claim
that the goodness of POIs selections depends significantly on the noise level: as noise
level increases the goodness of POIs selection decreases, while at the same noise level,
CPA estimation based POIs selection method is the best. This drawback of the POIs
selection method is confirmed by the authors in [13] regarding the wrapper and hybrid
method. Inspired by the success of VMD [15] in feature engineering in machine domain,
in this work, we propose the method of combining VMD and GSO to find the POIs of
power traces. That is, VMD is used to decompose a trace into sub-signals, or modes and
POIs are selected from these modes by using GSO as the filer feature selection method.
Then, the selected POIs are used for SVM-based profiled attack. We denote SVMymp
for our proposed attack. To demonstrate the efficiency of our proposed attack method,
we compare our method with two other SVM-based profiled attacks using the SVM
classifier. The first attack uses CPA as the POIs selection method as in [5], so called
SVMCcpa and is currently considered to be the best method, and the second one uses a
normal-based feature selection method as in [14], so called SVMng. We also investigate
the effectiveness of our method with noisy power traces, which often happens in the real
attack scenarios.

Our contributions are follows. Firstly, we investigate the ability of combining VMD
and GSO for finding POIs of the power traces. Secondly, we propose an SVM-based pro-
filed attack method that uses our POISs selection method. This is a different approach for
conducting profiled attack and it is efficient for noisy power traces. The remainder of the
paper is structured as follows. In Sect. 2, we describe the background to this research:
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the profiled attacks, variational mode decomposition and Gram-Schmidt Orthogonal-
ization and SVM. In Sect. 3, we present our proposed SVM-based profiled attack. The
experiments and their results are presented in Sect. 4. Finally, the conclusions of our
research are presented in Sect. 5.

2 Background

2.1 Profiled Attack

For profiled attack, the attacker must have a device with full control over that is similar
the attack device. This device is called profiling device and used for leakage information
characterization by the attacker. In this work, an attack device that runs a block cipher
is used for our attack scenario and leakage is in the form of power consumption. The
implementation of profiled attack consists of two phases: profiling phase on profiled
device and attack phase on attack device.

In the profiling phase, a dataset of N, profiling traces is acquired from the pro-
filed device. The dataset is seen as the realization of the random variable S, =
{(x1 yZ1)s e s (pr, ZNp) }~Pr[X V4 ]Nl’, where x; are the traces obtained from the device
processing the respective intermediate values z; = ¢ (P, K). Based on S),, amodel is built
to characterize the side channel leakage of the cryptographic device for each hypothetical
value z;. This can be modeled as F(X|Z) : X — P(Z).

In the attack phase, a dataset of N, attack traces are acquired from the target device.
The dataset is seen as a realization of S, £ (k, {(x1 sP1)s ey (xNa,pN“)}) such that
k € K, and for all i € [1,N,], piPr[P] A x,-Pr[X v Z = ¢(pi, k)]. Subsequently, a
prediction vector is computed for each attack trace, based on a previously built model:
yi = F(x;),Vi € [1,N,]. A score, for example the probability, is assigned to each
trace for each intermediate value hypothesis z;, withj €. The j-value of y; describes
the probability of z; according to the model when the attack trace is x;. These scores
are combined over all the attack traces to output a likelihood for each key hypothesis
and the candidate with the highest likelihood is predicted to be the correct key. The
maximum likelihood score can be used for prediction. For every key hypothesis k € K,
this likelihood score is defined by Eq. (1) with the key assigned the highest score predicted
as being the most likely.

Na
ds, (k] £ [ [ yilzid where zi = @(pi. k) (1)
i=1

2.2 Variational Mode Decomposition (VMD)

VMD is a method used to decompose a real valued signal into narrowband sub-signals,
also known as intrinsic mode functions (IMFs) or simply VMD modes [15] by Eq. (2).
In that x(¢) is the orginal signal and u (#) = Ay (t)cos(¢x(¢)), called the k™ mode, is
the amplitude-modulation and frequency-modulation signal where A (¢) is the slowly
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varying, positive envelope and ¢ (¢) is the phase. Each mode has a central frequency f
that its instantaneous frequency ¢’ (k) varies around.

K
x(f) = Z ug () (2)
k=1

The finding simultaneously a set of modes and their central frequencies by VMD is
done by solving the optimization problem given by expression (3). This is the constrained
minimization process of sum of all mode’s bandwidth. The bandwidth of each mode is
estimated by 3 steps: compute the analytic signal of each mode by using Hilbert transform
S0 its spectrum is positive; multiply the analytic signal with a complex exponential for
shifting its frequency spectrum to baseband; compute the squared 2-norm of the gradient
of the baseband signal.

2
2 } 3)

The solution for (3) provides the optimal point of an unconstrainted augmented
Lagrangian given by (4) where « is the penalty factor and A(¢) is Lagrangian multiplier.
This optimization could be solved by using the alternate direction method of multipliers
algorithm [16]. All modes of x(¢) are computed in frequency domain by (5) and (6) at
each iteration of algorithm until the condition (7) is met.
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After the convergence of this optimization, the inverse Fourier transform is applied
to (5) to obtain the waveform of each mode. Because of the combination of Wiener
filtering, Hilbert transform and ADMM in VMD, VMD modes are highly accurate in
describing the different components of the original signal and robust to noise.
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2.3 SVM Method

SVM algorithms [17] is used to construct classifiers. The basic form of SVM is the
binary classifier which can classify two class by the largest-margin separating hyperplane
between them. Let Dy, = {(xi,yi) V X; € RN,yi e{—1,+1},i=1,2, .., M} represent
a training set, where x; is a training vector, and y; is the label of x;. The training vector x is
mapped into feature space by the nonlinear function ¢(.). Consequently, the maximum
margin of a binary-class SVM classifier is a constrained optimization problem as follows:

M
%@G lol? +C 3 a-), styi(@ p@) +b) = 1—&,& >0,

i=1 )
i=1,2,....M
where @ € RV, b € R, and C > 0 is the penalty parameter which evaluates the
trade-off between training error and margin size, and &; is the training error of x;. After
the Lagrange multiplier is introduced, the optimization problem in (8) is simplified as
follows:

M M
aiyiyiK (xi, x;) — Zlai, s.t. _Zloliyi =0,0<w; <C, ©)
i= i=
i=1,2,....M

S

N
N[—
M=
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-
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where «; are Lagrange multipliers and the kernel function is K (xi, xj) = ¢x)o (xj).
The kernel function maintains the reasonable computational complexity of SVM in
feature space. The common kernel functions are linear kernel and RBF kernel.

KLinear (xi, xj) = g

Krpr = (xi,xj) =exp (10)

where y is the hyperparameter in (10) and the notation ||.|| represents the L> norm
between two vectors.

For consideration of training time and accuracy, the one-against-one strategy can
be used to train an SVM classifier for each pair of possible classes. In order to use the
maximum likelihood estimation to recover the secret key, an attacker is more interested
in the probability of an instance x; belonging to the class ¢. Accordingly, we give the
posterior conditional probability Pgyys (x; V ¢) of each instance [18].

2.4 GSO-Based Feature Selection

As mentioned above, the finding of POIs on the power trace is also known as the feature
selection in ML domain. In this paper, Gram-Schmidt orthogonalization based feature
selection method is used to select the POIs of the traces. This method is in the form of
filter method, independent of the advance classifiers and is effective in ranking he features
contained in the traces based on criteria computed directly from the traces. Indeed, this
method allows the features to be determined without weighting all of features in the
traces. It ranks features based on the correlation between features and the output target
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of a prediction model or the pre-assigned label of features. Let xy = [xx1, Xk2, - . -, xn 1t

be the k™ feature vector of N instances, y = [y1 s V2 ooy yN]T be the output target and
Q is the number of features. This results in (N, Q) matrix feature data set. To define
the relation between each feature and output target, the correlation is calculated by (11)
[19].

(x.y)
llxe -yl

cos(ay) =

(1)

In formula (1), x; is a column vector containing N values of the k™ feature in all (0]
features, oy is the angle of vectors x; and y. If they are perpendicular to each other, the
cosine of o equals 0 meaning there is no correlation between them, whereas when the
angle between them becomes smaller, this correlation increases and the maximum value
is 1 when they are completely correlated.

The GSO-based feature selection process uses the formula (11) to quantify the degree
to which features are related to the output target. The first selected feature is the most
correlated input features with the output target by the cosine calculation. The next features
are selected according to the iteration process as follows until all input features are
ranked, or until a stopping condition is met [19]: (1) the rest input features and output
target are projected on the subspace orthogonal to the selected feature; (2) the cosine
calculations are done on this subspace for all projected features and target output to find
out the most correlated feature. This feature is added to selected feature list.

3 Proposed Method

In this part, we present our proposed SVM-based profiled attack that uses the combination
of VMD and GSO for POIs selection of power traces.

3.1 SVM-Based Profiled Attack

The proposed SVM-based profiled attack, as shown in Fig. 1, is carried out in two phases:
a profiling phase and an attack phase. In the profiling phase, power traces are collected
from the profiled device while it is executing a cryptographic algorithm to form a trace
data set. This trace data set is labeled according to the Hamming weight of targeted value

of the algorithm that needs to be profiled Zi, . .., Z,,. Usually these targeted values are
taken at the output of the S-box. Because, they are 8-bit values that result in 9 Hamming
weight classes from 0 to 8 denoted as cg, c1, . . ., cg. This labeled set of traces is fed to the

feature extraction and selection block for mapping traces into feature space and the best
features are selected. These selected features are considered as POIs of the power trace in
feature space that should describe the statistical dependency of the Hamming weight of
the targeted value Z; with the power consumption. In the final step of the profiled phase,
POIs of all traces are used to train SVM to model the power consumption characteristic
of the profiled device. For training SVM classifier, its parameters are selected as follows:
the kernel function is RBF, the penalty factor and width of kernel of RBF are optimized
by Grey wolf optimization algorithm as presented in [20].
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During the attack phase, unlabeled traces collected from the attack device are fed
into the feature extraction and selection block to select POIs and they are next classified
by the trained SVM model to determine the probabilities of the traces for classes ¢; €
{0, 1, ... 8}. Finally, we compute the log likelihood for each hypothesis value of the key
byte that is used by attack device as follows:

Ny Ng
logLy = log [ | Psvm (xilei) =) _ log Psvu (xilci) (12)
i=1 i=l1

where k is a hypothesis key byte value, c; = Hammingweight(Sbox(p;, k)), p; is the
plaintext associated with trace x;, and the number of attack traces is N,. The key k. that
maximizes the log likelihood in (13) is predicted to be the correct key.

k¢ = argmax logLy, (13)
keK

Profiling phase

Key Intermediate values
Zl
) our ¢ P
Plaintext ~ N\ /
A
g I Trace dataset labelled c; Feature extra?ction and -
S-box (e {0.1....8)) selection —1 Training SVM
¢, =Hamming weight(z;) by VMD and GSO
7'y
Measuring
powertraces_ __ __ __ __ __ __ __ __ __
Attack phase
Attack trace Feature extraction and Maximum Correct key
dataset > selection »| Trained SVM Y S likechood {+—>
(unlabelled) by VMD and GSO estimation
Class
probability

Fig. 1. SVM-based profiled attacks framework.

3.2 Feature Extraction and Selection

Features or POIs selection is critical to the effectiveness of the profiled attacks. The
more precisely the features are selected, the better the ability to characterize the power
consumption of a profiled device, resulting in increasing attack efficiency and vice versa.
This section presents a new method for finding features of power traces for SVM-based
profiled attack. First, power trace characteristics are discovered as follows:

The power trace collected during the operation of a cryptographic device describes
its power consumption. It consists of many components in which dynamic power dissi-
pation is the most important [10]. This component depends on the processed data of the
circuit and is useful information leakage for power analysis attack. The dynamic power
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dissipation mainly caused by the switching activity of logic gates in a circuit which
is controlled by the operating clock frequency so the dynamic power consumption is
driven by the clock frequency of circuit. Therefore, in spectrum of power trace, it is
expected that the clock frequency component has significant magnitude compared to the
other components. The information leakage is nearly in the form of a both amplitude
and frequency modulation signal and the central frequency of its spectrum is the clock
frequency. Generally, in a device, the different parts of its circuit are controlled by dif-
ferent operating frequencies through the clock division system, so the dynamic power
dissipation is the combination of some amplitude - frequency modulation signals with
different center frequencies. So, if it is possible to separate the dynamic power dissipa-
tion to the amplitude - frequency modulation signals with different center frequencies,
one of these signals contains significant information leakage related to target circuit part
while the other does not.

As a result, the feature extraction process from power traces should ensure: (1) the
remaining features contain the most important information of the trace which is the
dynamic power dissipation caused by the targeted circuit; (2) it could remove the other
components of power traces; (3) it could reduce noise in the power traces. Fortunately,
these requirements can be fulfilled by using VMD method because VMD decomposes
a trace into different components and it is robust to the efects of sampling and noise.

In our proposed method, VMD is used for extracting features from power traces.
VMD decomposes the signal into sub-signals, called VMD mode in this paper, which
are amplitude-modulated frequency modulated signals so each mode contains a specific
frequency spectrum with different center frequency. So, the VMD mode which center
frequency relates to clock frequency could be use as feature of the power trace. Indeed,
VMD can discover signal changes more accurately so that features of power traces can
be recognized more accurately. Moreover, VMD is robust to noise thanks to the use of
Wiener filter technique. Thus, VMD should be useful for using noisy traces.

Unfortunately, VMD mode still contains redundant features which not related to
target variable that has been profiled. Therefore, they must be eliminated for increasing
the generalization capability of the classifier and reducing the volume of training data.
The elimination of redundant features is known as the feature selection. In previous
related works, all features that is higher than a certain threshold are selected. In this
paper, we recommend using GSO to selection feature of selected VMD mode.

VMD
VMD Mode GSO Index of
powar™] (for power traces Determinati ™ tor POIs selection)| ™ selected
ower decomposition) etermination (for POIs selection)
traces POIs

Fig. 2. Feature selection procedure of power trace.

To sum up, there are three phases in the proposed features extraction and selection
method as illustrated in Fig. 2. Firstly, VMD is used to decompose original traces to VMD
modes. In the VMD process, it is necessary to set parameters. VMD needs to preset the
value of number of decomposed modes (K). If K is too small, all the decomposition
modes cannot be captured. In contrast, if K is too large, the interfering signal will be
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over decomposed such that the center frequencies of modes will be mixed. The penalty
factor () affects the bandwidth of the decomposed signal. To decompose the traces
by the VMD, the number of IMFs (K) and the quadratic penalty factor (a) should be
determined beforehand. In this work, the parameters, K and a, were determined according
to the following steps: (1) Decompose a power trace into modes for different K = [1,
20] and a = [5, 2000]; (2) Add up the modes for each of the K and a values to obtain
the reconstructed power trace and estimate the values of Pearson correlation coefficient
for the reconstructed and original power trace; (3) Select the sets of K and a values for
maximum of Pearson correlation coefficient. Others input parameters of VMD including
update rate (r) and convergence condition (¢) are selected by standardization values in
range of (0 : le — 6) [15].

In VMD mode determination phase, the frequency range that containing the clock
operating frequency of our attack device is selected. This VMD mode can be used
as features of the power trace and contains the most useful information for the SCA.
Therefore, CPA attack on the selected VMD mode should give the best results among all
VMD modes. Hence, the method for determination of VMD mode is as follows: perform
CPA attacks on all the VMD modes and based on the results of these CPA attacks, the
VMD mode that has the largest correlation coefficient is selected.

In GSO feature selection phase, it is necessary to set the number of selected features
(N). Our principle of finding the value of N is to find a trade-off between the accuracy
and the computation cost or execution time. So, the value of N that SVM has the highest
accuracy together with the lowest execution time is selected.

4 Experimental Results

In this section, we show the experimental results of implementing profiled attacks with
the proposed new SVMvymp approach, which is based on SVM and the combining of
VMD and GSO for feature extraction and selection. We compared the effectiveness of
the proposed method with the two profiled attacks based on SVM with points of interest
selection by CPA in [5] called SVMcpa, and the normal-based feature selection method
in [14] called SVMnNg. The following parameters are used to evaluate the effectiveness
of an attack:

— The ability to reveal the correct key: To confirm that our profiled attacks can reveal
the correct key used by AES-128, we figure out the probability of each key being the
actual key used. The key with highest probability is the most likely one.

— Guessing Entropy [21]: This score is also known as average rank of correct key is
widely used to rate the effectiveness of side channel attack according to number of
attack traces. By conducting the attack several times independently, guessing entropy
is calculated as follows: (1) the rank of correct key in all guessing keys are computed.
This is the index of the correct one in the list of all ranked keys; (2) calculate the
average indexes of the correct key. In this paper, this guessing entropy is estimated
over 10 independent attacks.
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4.1 Dataset

Dataset 1: The set consists of 60000 traces collected while AES-128 processed inter-
mediate values at S-box output. AES-128 was implemented on a Smartcard Atmega8515
runing on Sakura G/W. A sample of one of the collected power traces has 2500
time-samples which is titled ‘Original trace’ in Fig. 3.

Dataset 2: This data set consists of 100000 traces downloaded from public DPA contest
v4 website at: http://www.dpacontest.org/v4. There is 4000 time-samples in a trace of a
first-order masked AES implementation which the output of S-box is Sbox(P; + k) &M,
where M is a mask [22]. When the mask values are known, this data set are considered
as an unmasked case.

4.2 Results

4.2.1 Feature Selection Phase

In this section, we investigated the effect of the feature selection on the classification
accuracy of the proposed method. First, VMD is used to decompose original traces to
VMD modes. For VMD, two main parameters: the number of VMD modes (K) and
penalty factor («) are initialized with K = 5, « = 1000 according to procedure as
described in Sect. 3.2. The VMD modes of both Dataset 1 and Dataset 2 are depicted in
Fig. 3 and Fig. 4, respectively. As expected, VMD modes contain different components
of the original signal at different central frequencies. For selection of VMD mode as
feature of the power trace, we conduct CPA attacks on all the VMD modes and the results
are shown in Table 1. VMD mode 1 and VMD mode 2 are selected as the extraction
feature of power trace in Dataset 1 and VMD mode 2 because the CPA attack gives the
highest correlation value.

Table 1. Results of correlation power attack on VMD modes.

Mode Dataset 1 Dataset 2

Max correlation Key found Max correlation Key found
VMD mode 1 0.64 63 (correct) 0.52 108 (correct)
VMD mode 2 0.62 63 (correct) 0.87 108 (correct)
VMD mode 3 0.54 63 (correct) 0.80 108 (correct)
VMD mode 4 0.37 255 (wrong) 0.37 188 (wrong)
VMD mode 5 0.35 246 (wrong) 0.34 135 (wrong)
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Table 2 represents the classification accuracy of SVM on Dataset 1 when extracted
features are VMD mode 1 and the selected features are chosen by GSO. Table 3 represents
the classification accuracy of SVM on Dataset 2 when extracted features are VMD mode
2 and the selected features are chosen by GSO. The selected features are put into an
SVM classifier for the training phase. As the feature dimension increases, so does the
accuracy of the classification, but with too many features the accuracy decreases because
the features do not generalize the power consumption characteristic well when used by
the classifier. Therefore, the subset of features with the highest accuracy and lowest
feature dimensions are selected and shown in bold font.

Table 2. Acquired results considering extraction of features by VMD and selection by GSO on
Dataset 1.

Dim | Selected features Classification accuracy (%)
1036 509 18.2
1036 509 2261 2262 30.12
1036 509 2261 2262 2263 2260 50.31
1036 509 2261 2262 2263 2260 2264 2265 81.56
10 | 1036 509 2261 2262 2263 2260 2264 2265 2259 861 81.78
12 11036 509 2261 2262 2263 2260 2264 2265 2259 861 2267 | 89.22
1038

14 | 1036 509 2261 2262 2263 2260 2264 2265 2259 861 2267 | 95.03
1038 411 577

16 | 1036 509 2261 2262 2263 2260 2264 2265 2259 861 2267 | 95.02
1038 411 577 886 1687

18 | 1036 509 2261 2262 2263 2260 2264 2265 2259 861 2267 | 94.27
1038 411 577 886 1687 1211 1670

20 | 1036 509 2261 2262 2263 2260 2264 2265 2259 861 2267 | 92.84
1038 411 577 886 1687 1211 1670 1576 216
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Table 3. Acquired results considering extraction of features by VMD and selection by GSO on
Dataset 2.

Dim

Selected features

Classification accuracy (%)

1804 3201

22.6

4 1804 3201 1664 2389 31.89
1804 3201 1664 2389 689 3231 60.38
1804 3201 1664 2389 689 3231 1524 1556 80.24

10 1804 3201 1664 2389 689 3231 1524 1556 3093 3192 | 86.66

12 1804 3201 1664 2389 689 3231 1524 1556 3093 3192 | 90.35
2766 2282

14 1804 3201 1664 2389 689 3231 1524 1556 3093 3192 | 95.68
2766 2282 1244 852

16 1804 3201 1664 2389 689 3231 1524 1556 3093 3192 | 96.62
2766 2282 1244 852 2392 1797

18 1804 3201 1664 2389 689 3231 1524 1556 3093 3192 | 94.58
2766 2282 1244 852 2392 1797 2251 3113

20 1804 3201 1664 2389 689 3231 1524 1556 3093 3192 | 90.28

2766 2282 1244 852 2392 1797 2251 3113 3108 1095

4.2.2 Key Recovery Phase

In order to verify our proposed SVMvywmp profiled attack has the ability to reveal secret
key of attack device, In the attack phase, SVMymp is used to reveal the secret key
when classifying 9 Hamming weight classes of S-box output. Instead of predicting the
class HW of each trace, we gave the posterior conditional probability Psyys (X; V ¢). The
estimated probability of the hypothetical keys is determined by the maximum likelihood
estimation. The correct key is defined as the key with the highest probability. For Dataset
1, which was collected in this experiment, the first byte of the AES-128 key is 63, and
that is assigned the largest probability value, as depicted in Fig. 5. With Dataset 2, the
recovery key is 108 which is identical to the key used to install AES in the DPA contest
v4 (Fig. 6). These results prove that our attack method could correctly recover the key
used by AES-128.
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Fig. 3. VMD mode of the power trace on Dataset 1.

Figures 7 and 8 report the GE corresponding to different numbers of traces used for
attacks with Dataset 1 when SVMvymp, SVMcpa and SVMg are used to predict the
Hamming weight classes. As expected, the GEs of all attacks decrease as the number of
traces increases. Moreover, the larger the size of the training set, the lower the GE. The
reason for this is that the performance of SVM is determined by its parameters, and the
size of the training set is critical to find the best parameters for the SVM. With Dataset
2, we performed the same experiments as for Dataset 1, and the GE calculated in the
attack phases are presented in Fig. 9 and Fig. 10. The overall performance of all attacks
are the same as those for Dataset 1. Again, SVMywmp achieves the best GE values.

As shown in Table 4, for each dataset we give the number of traces required by
the profiled attacks based on SVM for guessing entropy to reach 0. SVMynp requires
the minimum number of traces to recover the key, 10.2 and 5.3 traces on average,
corresponding to 100 and 200 profiling traces, respectively. These empirical results
indicate that the SVM-based profiled attack with the VMD feature extraction technique
is more effective than the attacks with the CPA and normal-based feature extraction
techniques. This can be explained by the VMD extraction technique allowing more
effective selection of trace characteristics than the CPA and normal-based POI selection

methods.
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Fig. 7. Attack performance with 100 traces/HW class on Dataset 1.

4.2.3 Results with Noisy Traces

The power traces are usually polluted with noise in practice. To examine the effectiveness
of our proposed SVMywmp profiled attack in noisy condition, additive Gaussian noise
is added to the power traces. In our experiments, two noise level of standard deviation
o1 = 5 and o, = 10 are added to both Dataset 1 and Dataset 2. In addition, different
feature extraction techniques were used for the SVM-based profiled attacks to investigate
their effects on the efficiency of the attacks in the presence of noise. Overall, the guessing
entropy of all the attacks increase with the level of noise, but the attack based on SVM
with combining of VMD and GSO is the least sensitive to noise. The results of our
attacks with 200 profiling traces per Hamming weight class, presented in Figs. 11, 12,
13 and 14 and Table 5, show that out of SVMcpa, SVMnp and SVMywmp, the proposed
method, SVMywmp, has the best performance at both noise levels while SVMcpa and
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Fig. 8. Attack performance with 200 traces/HW class on Dataset 1.

Attack results with 100 traces/HW class - Dataset 2
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Fig. 9. Attack performance with 100 traces/HW class on Dataset 2.

Attack results with 200 traces/HW class - Dataset 2
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Fig. 10. Attack performance with 200 traces/HW class on Dataset 2.

SVMNng are comparable to each other. After adding noise to the power trace, the number
of traces required for GE to reach O increased by only 25% approximately with the
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Table 4. Number of traces used by the attacks to attain GE = 0.

No. of profiling traces | Dataset 1 Dataset 2

SVMymMmDp | SVMcpa | SVMNB | SVMywmp | SVMcpa | SVMNB
100 10.2 18.1 17.6 10.3 19.2 18.3
200 53 9.2 8.7 4.7 9.4 7.3

proposed attack, while it increased by over 100% for the other methods. This proves that
the VMD signal is insensitive to noise so the SVMymp attack should work well under
noisy conditions. This property is very useful in real attack scenarios where collected

measurement traces invariably contain noise.

Attack results with Dataset 1 - g;=5 noise added
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Fig. 11. Attack results on Dataset 1 with o7 = 5 noise added to power traces.

Attack results with Dataset 1 - 0,=10 noise added
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Fig. 12. Attack results on Dataset 1 with o1 = 10 noise added to power traces.
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Attack results with Dataset 2 - 0;=>5 noise added
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Fig. 13. Attack results on Dataset 2 with o1 = 5 noise added to power traces.
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Fig. 14. Attack results on Dataset 2 with o7 = 10 noise added to power traces.
Table 5. Number of noisy traces used by the attacks to attain GE = 0.
Noise level | Dataset 1 Dataset 2
SVMvymMmD SVMcpa SVMnNB SVMvMmD SVMcpa SVMnNB
o1 =5 74 19.0 17.0 6.7 18.8 14.6
oy =10 8.6 25.7 23.6 9.8 21.6 20.2

5 Conclusion

In this work, the combining of variational mode decomposition and Gram-Schmidt was
proposed as a feature extraction and selection method for the power traces. The VMD
mode that has central frequency related to clock operation frequency of the attack device
can be used as features of power traces and GSO can be used as a feature selection
method. Experimental results show that an acceptable classification accuracy can be
achieved when SVM classifier uses these selected features as its input. Compared to
other SVM-based profiled attacks, the SVMy\p required the minimum number of traces
for successful key recovery. Furthermore, SVMymp is less sensitive to noise so can be
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used well with noisy power traces. In our opinion, this work suggests a new approach
for feature extraction from power traces using variational mode decomposition, and this
method should also be tested in combination with other feature selection method and
learning algorithms for the profiled attacks.
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