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Abstract. One of the biggest concerns of underwater research is improving the
ability to detect and classify sound sources. The Machine Learning and Deep
Learning models often require a very large amount of data, while the data sources
of the passive sonar system are limited; therefore, it is very important to pre-
process data to improve data quality. This paper proposes a solution to improve
the detection and classification of cavitation noise generated from propeller by
improving the Detection of Envelope Modulation on Noise (DEMON) algorithm
before using a modified Convolution Neural Network. The testing result shows
that the accuracy of the modified model reaches around 90%, which is better than
the results of existing methods, and it is prospectively developed and applied in
practicalities.
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1 Introduction

The role of marine control and defense for Vietnam, a country with 3,200-km coastline,
is significantly important. The classification of underwater signals obtained from passive
sonar systems is one of the challenges, due to the complex changes in time and spec-
tral features in signals even from the same source. According to Nielsen [1] the typical
noise sources for a ship include: noise from engines, machines and equipment on the
ship while in motion (distant shipping), noise of hydrodynamic flows on the ship hull,
propeller noise. Each type of signals has its own characteristics and can be detected by
experienced surveyors by hearing or seeing the signal spectrum. During the movement,
themain noise source of each ship is the cavitation of the propeller blades. The character-
istics of this noise depend on the rotation frequency of the propeller blades, i.e. depend
on frequency components that are varied by the speed of the blades. The cavitation
noise increases proportionately with the speed of the blades and decreases as the depth
increases. The repetition of such process produces vessel-specific features. Based on that
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linear relationship, the analysis of main frequency components will allow the calculation
of the remaining parameters. The most popular and useful detection method is to use
DEMON algorithm. DEMON algorithm was first proposed by Nielsen in 1991; since
then, there have been many variations proposed to solve different specific problems, for
example, tracking of multiple sources in a decoupled way [2], or 3/2D spectral analysis
to extract propeller features from acoustic vector sensor data [3]. The basic DEMON
algorithm has been tested in practice [4] and has also been used to detect the breathing
pattern of divers from recorded data [5], etc. Based on the aforementioned research, we
use a modified DEMON to analyse the propeller characteristic frequency components,
and demonstrate the result under spectrogram (also called DEMONgram), which is a
graphical representation of frequency in terms of time andmagnitude. Spectrograms that
possess characteristics of each object are fed into Convolution Neural Network (CNN)
for analysis and processing.In recent years, Deep Learning (DL) has formed new break-
throughs; the DL model has the ability to process hidden features of the target signals
through a multi-layer network. From the proposals of Fukushima (1980) [6] and LeCun
(1989), the CNN completed in 2012 [7] was the first multi-layer structure using relative
relationships in space to reduce the dimensions of parameters and improve training per-
formance. LeNet [8] (1998) was the first network to apply 2-dimensional convolution.
AlexNet [9] (2012) has broken the previous stereotype that learned features will not be
as effecient as manually created features (through the SUFT, HOG, SHIFT algorithms).
VGG-16 [10] (2014) formed a trend to improve the accuracy of DL networks by increas-
ing the depth of the model. Variations of GoogleNet [11] (2014), by combining multiple
filters of different sizes into the same block, produced the block architecture for the later
CNN. ResNet-50 [12] (2015) used identified “short-cut” connection to map inputs from
the previous layers to the following layers. It is a very deep network architecture, but
has a smaller number of parameters, based on techniques from GoogleNet. DenseNet
[13] (2016) is the next generation of ResNet which inherits the block architecture and
develops the “short-cut” connection for a dense network.

The next parts of the paper will be organized as follows: part 2 will introduce the
DEMON pre-processing method and its improvements, part 3 will analyze the CNN
structure and the improved network model, and part 4 will be the conclusion.

2 Pre-processing by Modified DEMON

In the basic DEMON algorithm as defined by Nielsen, x(t) is the acoustic signal that
contains noise of the propeller and the environment, presented by:

x(t) = s(t) + n(t) (1)

s(t) = m(f , t)w(t) (2)

In which, s(t) is a broadband signal formed by the modulation of a carrier wave-
form w(t) by a modulating waveform m(f , t), while n(t) is environmental noise. The
modulating waveformm(f , t) is periodic with frequency f , thusm2(f , t) is also periodic
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which can be expressed under a cosine formula as follows:

m2(f , t) =
L∑

l=0

Al cos(lcft + lθ) (3)

Where c = 2π/fs, fs is the sampling frequency, Al is the expansion coefficient of
m2(t), θ is phase, and L is the number of coefficients. Because the square makes the left
side of Eq. (3) always positive, the coefficient Al must be selected to make the right side
also positive (Fig. 1).

Fig. 1. DEMON algorithm

We propose the following solution: the signal spectrum is calculated by Short Time
Fourier Transform (STFT). From that, we calculate a 2-dimensional spectral matrix,
among which, one dimension is frequency, the other is the number of samples. The
frequency amplitude of each segment is averaged to obtain a unique representative
value. This technique divides the acoustic signal into consecutive overlapping segments.
The result of this process is a set of filtered spectrogram images, which will be put into
DL network for training. When the signal is unstable, the detection and classification
accuracy will be reduced significantly. DL models can solve this problem more easily,
because they extract hidden features using layers. On the other hand, as there are various
types of noise, suitable selection of features plays an important role in guaranteeing
the performance of the model. Thus, the result of modified DEMON reduces noise
while retains sufficient features to increase detection accuracy. Our proposal can clearly
separate characteristic frequencies and harmonics, as well as can decrease false alarm.
Figure 3a, b are corresponding spectrograms of Fig. 2a, 2b.

In both methods, computation requires the definition of a target frequency win-
dow; unsuitable selection of input parameters can make the detection task unfeasible.
Each sample is smoothed by window fuction, and the corresponding standard deviations
are calculated. Signal is detected whenever the corresponding signal exceeds the cor-
responding detection threshold. Our simulation uses the dataset from the project: “An
underwater vessel noise database” by Research center for Telecommunication Technolo-
gies – Universida de Vigo [14], as well as the dataset recorded by ourselves – Institute
of Electronics, Military Institute of Science and Technology – in Lan Ha Bay, Hai
Phong, Vietnam. Datasets include various types of underwater ship sounds. The sounds
are recorded in shallow waters and in real conditions, which contain both natural and
anthropogenic environment noise (Fig. 4).
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(a)

(b)

Fig. 2. (a) Comparision result between DEMON and Modified DEMON at Record-1 (b)
Comparision result between DEMON and Modified DEMON at Record-2

Fig. 3. a, b Spectogram after pre-processing with Modified DEMON
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Fig. 4. Data recorded in Lan Ha Bay

Detection accuracy is calculated from the numbers and percentages of correct and
incorrect ship detections. Table 1 shows two confusion matrices displaying the detection
accuracy, and Table 2 summarizes the accuracy rates.

Table 1. Detection accuracy on a database of 3300 1-min audio samples

DEMON Reality No ship

Ship

Ship 1463 198

No ship 337 1302

Total samples 1800 1500

Modified DEMON Reality

Ship No ship

Ship 1768 45

No ship 32 1455

Total samples 1800 1500

Table 2. Accuracy rates and also the false-alarm rates

DEMON (%) Modified
DEMON(%)

Detection accuracy 81.28% 98.22%

False alarm 13.2% 3%
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3 CNN Comparision

We separate the samples into 70% for training set, 20% for validation set, and 10% for
test set. We also use the spectrograms size of 3 × 224 × 224 to include in the CNN
model for training. From analyzing results between the models, the accuracy of LeNet,
AlexNet, VGG is only around 65–75% (Fig. 5).

Fig. 5. a, b Training result our dataset with LeNet and VGG model

Proposed network model structure diagram (Fig. 6):

Fig. 6. Proposed convolution neural network architecture

The tuning is a challenge with a deep learning complicated structure. Because under-
water datasets are insufficient, the deep model network is hard to be trained. Therefore,
we propose a neural network using batch normalization with 1 input layer, 4 convolution

https://doi.org/10.1007/978-3-030-77424-0_fig5
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layers, 4 maxpooling layers, and 2 fully connected layers. The batch normalization lay-
ers which are placed just after defining the sequential model and after the convolution
layer will reduces the internal covariate shift of the model. The internal covariate shift is
a change in the input distribution of an internal. The inputs received from the previous
layer are always changed. Adding batch normalization layers ensure that the mean and
standard deviation of the inputs will always remain the same, and minimize the fluctu-
ation of the distribution. Batch norms don’t compute the entire data, and the model’s
data distribution will make some noise. This can help overcome overfitting and help
learn better. The first convolution layer has 1 convolution [5× 5], the stride is 2, and 96
kernels. Using a smaller size of convolution matrix [5× 5] will retain more information
on the spectrogram. Filter size of the pooling layers is [3× 3]; stride is 2. Extending the
size of the convolution layers, reducing the dimensions of the feature map and making
the filter size and stride smaller increase the accuracy of our model (Fig. 7).

Fig. 7. Training result accuracy with proposed model

With our model, the accuracy of validation increases around 90%. After testing with
the test set, the result shows that the accuracy has been greatly improved. It proves that
the classification network can be further improved by the modification of the neural
networks.

4 Conclusion

This paper describes a method for acoustic recognition of ships. It is a spectrogram
domain analysis for passive sonar based onDEMONwith amodifiedConvolutionNeural
Network which attains an accuracy percentage of 94.25%. The proposed model which
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is provided for cavitation noise from propeller, has a better performance in recognizing
and preventing false detection. Based on the classification results, we conclude that: (1)
deep learning models provide good results for detecting and classifying underwater and
surface targets, and these models still process well in low SNR environments; (2) while
DEMON algorithm focuses on fundamental frequency, our modified model additionally
recognizes variations in the amplitude of fundamental frequencies; (3) the transformation
of data from signal sequence to spectrogram enables the system to process a large amount
of complicated data on a real-time basis; (4) datasets are still limited due to some security
reasons. Therefore, preprocessing datasets and finding ways to increase the number of
samples are the two main problems that shall be improved in the future.
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