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Abstract. This paper proposes a generative design approach for the
creative exploration of dynamic soundscapes that can be used to generate
compelling and immersive sound environments. A granular synthesis tool
is considered based on the perceptual self-organization of sound samples
by utilizing the t-Stochastic Neighboring Embedded algorithm (t-SNE)
for the spatial mapping of sonic grains into a 2D space. The proposed
system was able to relate the visual stimuli with the sonic responses in the
context of the generic gestalt principles of visual perception. According
to user evaluation, the application operated intuitively and also revealed
the potential for creative expressiveness both from the user’s perspective
and as a standalone, generative synthesizer.
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1 Introduction

Granular synthesis is based on the same principle as sampling. The samples
are split into small pieces of around 1 to 50 ms. These small pieces are called
grains. Multiple grains may be layered on top of each other, and may play
at different speeds, phases, volume and frequency, among other parameters, in
order to create what can be thought as “sound clouds”. The theory of granular
synthesis was initially proposed, in conjunction with a theory of hearing, by the
physicist Dennis Gabor [15]. Gabor referred to the grains as acoustical quanta,
and he postulated that a granular or quantum representation could be used
to describe any sound. Tannis Xenakis, [16], explicated a compositional theory
of grains of sound. His theory describes a possible approximation to Gabor’s
model in the context of an analog synthesis implementation, where he suggested
that the grained wave forms could be calculated directly on an appropriately
programmed digital computer [10]. Recording a set of sound grains and mapping
them as a data visualization could allow the performer to explore the sonic
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space in new ways of musical performance that could integrate a multi-modal,
perception based framework, that could fuse both sonic and visual ques, at the
same time. In order to make a consistent map of the various samples, these
would have to be sorted and organized by a measure of perceptual familiarity.
The aim of this study is to explore how the visualization match up with the user’s
intuitive sensibility of where the various samples should be positioned in space.
This sensibility is influenced by the fact that humans associate the listening
experience with simultaneous experiences obtained through non-auditory organs.
This phenomenon is called synaesthesia [20].

2 Background

2.1 Generative Art

Generative art, as an artistic approach, utilize an autonomous system controlled
by a set of predefined properties, balancing between unpredictability and order.
This behavior arises out of the dynamics of a complex system. This system can be
analysed in individual procedures and can be given a mathematical description
which can be modelled and simulated. Thus, the generative system produces art-
works by formalizing the uncontrollability of the creative process [18]. According
to [19] “Generative art refers to any art practice where the artist uses a system,
.., which is set into motion with some degree of autonomy contributing to or
resulting in a completed work of art”. The use of a generative approach pro-
vides new ways of expressing the artistic intent and purpose. Some supporters
of generative systems consider that the art is not anymore in the achievement
of the formal shape of the work but in the design of a system that explores
all possible permutations of a creative solution [17]. Generative Art range from
simple probabilistic procedures, to highly complex models that learn from a set
of sample examples. Moreno [23] demonstrates a method to generate original
bird vocalizations using a Variational Convolutional Autoencoder trained on a
dataset of bird songs and call recordings. Training can be autonomous or might
include a human in the loop. In their work [22] describe a human motion tracking
system, from surveillance cameras on New York Time Square, that was used to
feed a generative design algorithm in order to generate emotionally expressive
3D visualizations.

2.2 Audio Visualization

Audio visualizations, based on perceptual similarity of sound, have been used and
implemented in various ways, for a variety of applications. The “Bird Sounds”
interface [1] created at Google Creative Lab, applied the t-SNE algorithm to
self-organize thousands of different bird songs, with a goal to depict their sonic
relationships in a two dimensional grid. A similar application, “the infinite drum
machine” [2], use a similar topological mapping as a spatial exploration tool of
sound similarity. Selected sound samples could then be used to generate drum
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loops. The “Audio Explorer” interface by Leon Fedden [3], is a project exploring
an audio data-set visualization by mapping a multi-dimensional feature space
represented by Mel-frequency cepstral coefficients (MFCCs), into a 2D space.
The study considered a variety of dimensionality reduction algorithm such as
the UMAP, t-SNE and the PCA. Another project on interactive exploration of
musical space [4] build a music-space of 20,000 songs, visually rendered in a way
that could enhance music navigation in a way similar to a recommender system.

2.3 Feature Extraction

Dimensionality describes the potential perplexity of a given data-set such as
audio samples. A term often used is the “curse of dimensionality” which describes
the exponential growth of the space of possible hypotheses as the dimensionality
becomes higher [21]. This in effect creates sparse data representations that render
the hypothesis statistically insignificant. The procedure of compressing a data-
set by crafting new features from the existing ones and afterwards discarding
the original set of features, is called feature extraction. The new data-set should
be more comprehensive and inclusive in terms of information provided, as a
summarized version of the original set.

MFCCs. Mel-frequency cepstral coefficients are commonly used as features in
speech recognition systems as well in music information retrieval (MIR) appli-
cations such as genre classification and audio similarity measurement for recom-
mender systems. MFCCs are perceptually motivated and spectrally smoothed
representations of sound. The mel scale describes the non-linearity of the human
ear, where each scale of pitches is perceived as equal in distance from one
another [6]. This perceptually meaningful representation could be more compre-
hensive and inclusive in terms of information provided, as a summarized version
of the original set.

2.4 Dimensionality Reduction

Principal component analysis is a popular technique for dimensionality reduc-
tion. PCA is essentially a multivariate data analysis method involving trans-
formation of a number of possibly correlated variables into a smaller number of
uncorrelated variables known as principal components. However, its effectiveness
is limited by its global linearity [7]. Another popular choice that overcome the
limitation of PCA is the Stochastic Neighbor Embedding algorithm (t-SNE) [9].

t-SNE. (t-Stochastic Neighbor Embedding) is a manifold learning technique
used to visualize high-dimensional data by giving each data-point a location
in a two or three dimensional map and it was introduced by van der Maaten
and Hinton in 2008 [8]. The t-SNE requires tuning of parameters regarding
initialization and visualization. It can be initiated randomly, or even through
PCA, and can have its perplexity adjusted. Van der Maaten & Hinton suggests
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a perplexity value between 5 and 50 [9]. The distribution of points obtained
by t-SNE may be misleading when clusters form but practice may develop an
intuition on how to interpret these observations. Looking at a t-SNE map, one
of the first things to notice would be arbitrarily shaped clusters of data-points;
this usually mean that data-points who are further in distance are considered to
be dissimilar, while data-points appearing to be closer in space are considered
to be more similar. Depending on their position, in a 2D plane for example, one
may be able to recognize the patterns of the distribution and get to know the
data-set better and maybe conclude to some solid observations [14] (Fig. 1).

Fig. 1. t-SNE parameters test, with Perplexity (Y-axis) = [2, 5, 30, 50, 100] and Num-
ber of Iterations (X-axis) = [250, 500, 1000, 2000, 5000]. The Learning rate was set to
200

2.5 Gestalt Theory of Perception

The Gestalt school of psychology describes how we naturally perceive the world
as perceptual groups [13]. Two Gestalt grouping principles, which pose a central
role to this study, are the similarity and proximity rules. Ideally, sonic similar-
ities among the sound grains would correspond with their visual proximity. In
addition, there are principles describing connectivity and continuation, where
points that form lines or other shapes are perceived as a whole. The various
Gestalt principles can override each other, which means that in some cases the
perceived sonic similarity can outweigh the importance of the visual grouping,
and vice versa. Other times the principles are complementary, pulling in the
same perceptual direction.
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3 Creative Workflow
A modified version of the Audio t-SNE Viewer [5] was used as the basis of this

system. The system consists of 4 discrete parts as can be seen in Fig. 2, which
are further analysed below.
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Fig. 2. Workflow of the sound analysis and visualization

3.1 Generating Electronic Soundscapes

Analog electric soundscapes generated and recorded with a synthesizer that has
been built from our research team. This single voice semi-modular synthesizer
designed as a tool for the exploration of soundscapes through a variety of sound
synthesis techniques. The recording lasted for about an hour and as a result more
than a thousand samples were generated. Initially, fundamental frequencies were
recorded, then periodic frequencies were generated from a Voltage Controlled
Oscillator (VCO), controlled by a Low Frequency Oscillator(LFO). The first step
was to record every waveform format that could be produced by the oscillator
in order to get different timbres. Next step was to repeat the same method and
lead the same signal both to the VCO and to a Voltage Controlled Filter (VCF).
Moreover, drum timbers were generated by mixing white noise together with a
very low frequency and lead them into the filter which was modulated at the
same time by a very short Envelope Generator (EG).

3.2 Sample Generation

Next step was to create a set of sound chunks, with 1000ms duration each and
a sample rate of 44.1 kHz/24bit. A set of 1063 sound files were generated and
an overlap of 1.5ms was used to create a continuous feeling when samples would
be played in a sequence.
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Fig. 3. Spatial mapping of sound samples based on the t-SNE algorithm. Sounds that
appear to have a similar color, belong to the same sequence and probably have similar
sound content. Different sections (e.g. teal and orange) appearing clustered together
as well. This suggests those two sections may have similar audio content.

3.3 Chunks to t-SNE

Mel-frequency cepstral coefficients are a common choice in speech recognition
systems as well in music information retrieval (MIR). The mel scale describes a
scale of pitches perceived as equal in distance from one another [6]. For each audio
chunk the first 13 mel-frequency cepstral coefficients have been calculated along
with their first- and second-order derivatives, and concatenated into a single 39-
element feature vector which would characterize each clip and is standardized
so that each feature had an equal variance.

3.4 Visualizing the Sound Manifold

The t-SNE algorithm, as a manifold learning technique, was used to reduce the
dimensionality of the initial (N x 39) data-set to only two dimensions (N x 2),
where N = 1063 is the number of sound grains. Additionally the results were
normalized between 0 and 1. The t-SNE requires tuning of two hyper-parameters,
the perplexity and the learning rate. The perplexity parameter relates with the
number of nearest neighbors; As a rule of thumb, Van der Maaten and Hinton
suggest a perplexity value between 5 and 50 [9]. Learning rate was taken into
consideration, as if set too high it might cause the data to be hard to analyse
due to excessive proximity as well as if too low where most points may get
clustered in exaggeration. These considerations take into account the Kullback-
Leibler cost function for preventing it to get stuck in a local minimum [11]. In a
t-SNE map, clusters might form corresponding to individual sound chunks, with
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similar sounds occupying nearby positions and dissimilar sounds positioned far
away. Thus, certain clips are placed together in clouds of varying size, while
others end up in the periphery of the map (Fig. 3).

4 The Granular Synthesizer

A functionality for looping the samples has been added in the original applica-
tion. That way, by controlling the duration of the grains the app could work in
a similar way as a granular synthesizer. The original code had a minimum clip
duration of 100 milliseconds, which is just at the border of what can be defined as
granular synthesis [12]. The minimum clip duration was lowered to 1 millisecond
and the window length of the grains was determined by the maximum dura-
tion parameter. Each triggered clip always starts at its original beginning, and
loops at a rate set by adjusting the maximum duration. This means that both
the grain size and the grain density are controlled by the same parameter. This
density only applies horizontally over time, while the vertical density depends
on how many grains the user plays at the same time. Since the grains are all
regularly placed over time, this should be characterized as synchronous granular
synthesis [10]. However, there is no grain spacing, since they are all played in
continuous loops with no spaces in between. A panning gives the application
space to breathe in the stereo field. It is used lively and interactively by identi-
fying the spatial position of performative gestures. The technique that has been
used identifies the user’s relative position in the visualization and multiplies it
by 45°. The angle is normalized by [—1, +1] and is converted into radians.

Human Computer Interaction. A common way to generate sounds from
a synthesizer is through a MIDI controller, typically by triggering sounds and
control parameters during a music performance. A quite different way is to use
natural gestures on a touch screen or input from haptic sensors. Sparse distri-
butions and data positions throughout the screen would allow for navigation
through these sounds, inviting energetic exploration and improvisation. More-
over, different t-SNE parameter can affect the spatial navigation and perception
of sonic stimuli. We have found that distributions with values greater than 30
in perplexity and greater than 500 in number of iterations, could form distri-
butions that visually imposes a good navigational structure for exploring the
spatial formations of the samples.

Generative Design Scheme. In order to aid the creative exploration of the
synthesis of soundscapes a flow field was used to control a number of particles
within it. These moving particles, influenced from this force field could trig-
ger successive grains along their pathways. Flow fields are especially useful for
modeling chaotic movement, such as fluid dynamics, for procedurally generated
textures and for the control of the movement of autonomous agents. A flow field
is an area of usually 2D or 3D space divided up into a grid of cells. Each cell



GrainSynth 125

contains a velocity vector which represents a direction and speed of movement
Fig.5. When a particle enters a cell, its direction is transformed to match that
of the vector in the cell. As it moves through the field it will enter other cells
containing velocity vectors that change its movement again. The crucial factor
in a velocity field is the arrangement of the vectors. We use a special case of
a flow field that is based on a perlin noise texture (grid). Each cell of the flow
field represents a single, animated, force field vector. The vector is represented
by three values, the angle, the magnitude of the vector at the given position
and a global time ¢ value that represents the evolution of the process. Thus, two
different Perlin textures are needed to describe an animated force field. When a
particle is crossing over a sample point, the sound would be triggered by it. That
way, a high number of particles could trigger many samples at once, which could
generate aesthetically pleasant, polyphonic sequences (Fig. 4). As the sound sam-
ples are not evenly distributed to cover all the available space, a lot of empty
space forms, surrounding the grains. This neutral space serves as silent ”white
space” that simplifies the scene, according to the Gestalt approach, into figure
and ground.

Fig. 4. Ten particles spawned at the center of the canvas, moving under the influence
of a perlin based flow field, formed by a grid of size 32 x 22.

4.1 User Experience Testing

Eleven (11) Participants, with previous experience in synthesizer practices, were
asked to explore the interface and customize the available parameters after being
briefly instructed on the system’s controls. There was no specific time frame in
which the user had to complete the evaluation. The users were prompted then
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Vector Angles

Vector Lengths

Fig.5. Two different textures were used to form a perlin noise flow field. The first
texture (up) used to store the vector angles of the vectors in radians, while the second
texture (down) used to store the magnitude of the force vector. The size of the textures

is 32 x 22 pixels.

to answer a questionnaire in which they were asked to rate some aspects of
the interface’s performance and their overall user experience, along with some
additional commentary. Moreover, a focus group was used as the main method
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for the evaluation of the generative capabilities of the system.

Gestalt Grouping Principles Testing. A second questionnaire was con-
ducted as a non-parametric test and was addressed to a random sample of
twenty (20) people with no cognitive perquisites. The non-parametric test aimed
to explore the efficacy of the application to achieve a sense of playing intuition
through the scope of the grouping principles of the Gestalt School of thought.

Five basic principles were interpreted as questions:

— perplexity: “Do neighbouring dots in the visualization represent sonic sim-

ilarities in sonic space?”

— Closure: “Did you notice forming patterns in the distribution and if so, did
the sound correspond to sonic landmarks while navigating through them?”
“Did the distribution of points suggest a path to navigate

— Continuity:

through and if so, did the sound correspond to a sonic gesture?”

— Common Region: “Did the samples’ position display correspond to their

position in the sonic space?”

— Similarity: “Were similarly sounding samples, visually grouped together in

the distribution?”

4.2 Results

Tables3 and 1 presents the average score on a ten-point scale in regards to
each of the system’s performance overview and the user experience’s aspects
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respectively. Most participants reported highly satisfied with the interface con-
trol response. Regarding the interface’s parameter customization layout, it has
been reported that being able to adjust the parameters while producing sound
simultaneously, would be a useful and creative feature. As far as the user expe-
rience is concerned, none of the participants got the impression of being able
to anticipate the audio samples they were triggering, so as a result, they rated
the playing intuition and the ability to trigger the desired sounds the lowest.
However, after an initial navigation period the participants were able to antic-
ipate the sounds being triggered. This finding might suggest the formation of
cognitive spatial maps that could possibly help the user navigate within a previ-
ously experienced topological map of sounds. The synth controlling novelty was
rated high and five out of six participants with experience in music production,
reported that they would use the current interface in a music production project
of their own. Moreover, regarding the generative approach the overall aesthetics
was rated as good with temporal coherence although some irregularities have
been spotted.

Non - parametric Test. The outcome of the second experiment would provide
evidence on whether or not the application achieved its goal of providing the user
with a novel and intuitive way of playing with a synthesizer. Table 2 demonstrates
the average scores of the application’s compliance with Gestalt’s principles while
Fig. 6 provides a histogram of the score of the individual ratings of the grouping
principles against the number of occurrences. All collected data underwent the
Kolmogorov - Smirnov Test of Normality and found not to differ significantly
from that which is normally distributed.

5 Future Work

There are many possibilities of extending the functionality of this application
by utilizing the user interface for ultimate expressiveness and better perfor-
mance. A desirable way would be to use tactile sensors or human motion, such
as input from live camera feed, to trigger and manipulate the samples. Within
this example, the application would have more potential of being used not only
by musicians, but also from dancers or performers. For the moment, our team
is focusing on utilizing this system with an optical flow system, based on real
time camera feed. Our intention is to integrate a real-time sound generation sys-
tem, for dance performance, with a motion expressiveness visualization system.
(https://vimeo.com/220138824).

Moreover, adding new generative algorithms such as a flocking boid [21] is
under development. Flocking boid is similar, in a sense, with a perlin flow field,
however within a flocking boid the set of individual agents is capable of interact-
ing with each other. In a similar fashion, when a flocking agent would cross over
a sample point a sound would be triggered by it. That way, a population would
trigger an arbitrary amount of samples, generating interesting and stochastically
rich soundscapes.


https://vimeo.com/220138824

128 A. Vasileiou et al.

Table 1. Average ratings of their user experience on a 10 point scale (sound engineering
students).

User experience AVG score

1. Playing intuition 6.9

2. Desired sounds triggering | 5.09

3. Panning correspondence 8.09

4. Sample distribution scheme | 7.45

5. Synth controlling novelty 8.18

Table 2. Average ratings of the application’s compliance to Gestalt’s grouping prin-
ciples on a hundred point scale.

Gestalt grouping principles | AVG score
1. Perplexity 79
2. Closure 62
3. Continuity 63
4. Common region 69
5. Similarity 75

Table 3. Average ratings of the application’s performance efficiency on a 10 point scale
(sound engineering students).

Performance overview AVG score

1. Navigation triggering efficiency | 8.18

2. Click-looping efficiency 7.54

3. System latency 9

4. Navigation and loop synergy 7.72

5. Parameter customization 7

Gestalt Grouping Principal-based questionnaire's results

B closure
B continuity
6 B common region
W similarity
O proximity

No. of Occurences

Score [0-100]

Fig. 6. Histogram of the non-parametric Evaluation Test
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6 Conclusion

The proposed system augmented the artistic capabilities of a semi-modular ana-
log synthesizer. A data-set of 1000ms audio clips were self-organized using dif-
ferent visualization techniques, according to their musical content. As has been
demonstrated the dimensionality reduction capabilities of t-SNE is a rewarding
approach for shaping a “playable” visualization. Perceptually, the application
achieved to connect the visual stimuli and aural sound based on the generic
gestalt principles of grouping and continuation as well as the figure-ground prin-
ciple. According to user evaluation, the application operated quite intuitively.
The evaluation also revealed the potential for creative expressiveness both from
the users perspective and as a standalone, generative synthesizer.
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