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Abstract. Internet of things (IoT) technology is in continuous development, and
the access of the IoT power terminal is facing various security threats such as
data tampering and malicious attacks. Thus, we propose a blockchain-based edge-
terminal collaborative resource allocation architecture to solve these security prob-
lems, which places the terminal trusted authentication data on the blockchain to
realize the security of the terminal authentication information. Since the min-
ing process of the blockchain system will generate a large number of computing
intensive tasks, this paper establishes an energy-oriented blockchain mining task
offloading model, and proposes the energy-aware blockchain resource allocation
(EABRA) algorithm with deep reinforcement learning (DRL) to jointly optimize
the offloading decision and transmission power allocation decision. Finally, the
simulation results show that the EABRA algorithm can save 68.87% energy con-
sumption than theRandomalgorithm,which verifies the correctness and feasibility
of the scheme.

Keywords: Internet of things · Edge-terminal collaborative · Trusted
authentication · Task offloading

1 Introduction

Recently, the power terminals of the Internet of things (IoT) present a variety of charac-
teristics, and most power terminals are more vulnerable to be attacked due to their low
security. The traditional terminal authentication mechanism faces many security prob-
lems such as data leakage and data tampering. And the centralized authority solution
is not suitable for the authentication and access of highly distributed IoT devices [1].
The distributed characteristics of power terminals need a self-protection mechanism that
does not depend on the central authority [2]. In order to realize the trusted authentication
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of power terminal and reduce the security risk of terminal access, we use the security
and tamper-resistant of blockchain technology, and usemobile intelligent terminal as the
key carrier of identity authentication and electronic signature. The core data is placed
on the blockchain, the blockchain is used to realize the safe storage of authentication
information, and the smart contract is used to realize the safe and automated execution
of the authentication process [3].

Based on the analysis of the research status at home and abroad, it can be seen
that many scholars have made a lot of research achievements on blockchain-based
trusted authenticationmethods. Neisse et al. [4] proposed a blockchain-based platform to
enhance the transparency and traceability of network security authentication information
and realize the trusted exchange of IoT security authentication information. Cui et al. [5]
proposed a blockchain-based multi-sensor network authentication scheme for the IoT,
which builds a blockchain network between different types of nodes to achieve mutual
authentication of node identities in different communication scenarios. Thakker et al.
[6] proposed a data management system based on blockchain technology to ensure the
security of access terminals, and the authenticated terminals can ensure data integrity and
provide trusted data storage. The non-tamper ability of blockchain can well guarantee
the trust of the system. However, the application of blockchain technology is limited by
the mining process, that is, miners (mobile terminals) are required to complete comput-
ing intensive tasks, which puts forward extremely high requirements for the computing
capacity of the terminals [7].

We introduce mobile edge computing (MEC) technology to solve the problem of the
limited computing capacity of the blockchain system. In order to achieve the integrity
and validity of authentication information, we then propose a blockchain-based edge-
terminal collaborative resource allocation architecture to ensure the trust of terminal
authentication.

2 System Model

2.1 Application Model

As shown in Fig. 1, the blockchain system is located at the end layer, and we store
the trusted authentication information of the terminals in the block. The MEC server is
located in the edge layer, and the edge node can be connected with the base station. Let
N = {1, 2, . . . ,N} represent the set of base stations and M = {1, 2, . . . ,M} represent
the set of mobile terminals. Suppose that each mobile terminal can perform the mining
task Kn of the blockchain system as a miner xn, and the mobile terminal can access its
nearest edge node for collaborative task offloading. We use fn and fm (CPU cycles/s) to
represent the computing capability of the edge node and themobile terminal respectively.
For miner xn, we use <Dn, τn,Xn> to denote the data sizeDn (bit), the completion time
τn (second), and the computing intensity Xn (CPU cycles/bit) of the mining task Kn. The
symbols used in this paper are summarized in Table 1.
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Table 1. Notation definitions.

Symbol Definition

N The set of base stations

M The set of mobile terminals

Dn The data size of the task

τn The completion time of the task

Xn The computing intensity of the task

fm The computing capability of mobile terminal

fn The computing capability of edge node

ζm The computing energy efficiency coefficient of mobile terminal

ζn The computing energy efficiency coefficient of edge node

Ps The static circuit power

Pn(t) The transmission power between mobile terminal and edge node

gn(t) The channel gain between mobile terminal and edge node

�min The minimum computing power required by blockchain system

Fig. 1. The blockchain-based edge-terminal collaborative resource allocation architecture.

2.2 MEC Model

In theMEC system, we assume that all mobile terminals and edge nodes have computing
capability to perform the mining task of blockchain. Due to the limited computing
capability of mobile terminal, it may not be able to handle a large number of computing
intensive tasks, so we use MEC server to solve this problem. The MEC server has
powerful computing resources. We can offload the computing tasks of the terminal to
the edge node for collaborative computing, so as to improve the computing speed of the
system. Therefore, we consider two different calculation modes, and let dn(t) ∈ {0, 1}
represent computing offloading decision of miner xn. dn(t) = 0 indicates that the miner
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xn selects mode 0, that is, the mobile terminal performs computing task. dn(t) = 1
indicates that the miner xn chooses mode 1, that is, the mobile terminal offloads the
computing task to the edge node for computing.

Mobile Terminal Computing
We analyze the performance of miner xn when performing computing task on the mobile
terminal in this mode. The delay of local computing includes the time for miner xn to
complete the task.Weuse fm to represent the computing capability of themobile terminal,
that is, the time for miner xn to perform the mining task Kn can be expressed as:

Tm(t) = DnXn

fm
(1)

Let χ represent the number of CPU cycles required by themobile terminal to process
1-bit computing task. The computing rate of the mobile terminal in this mode can be
denoted as:

rm(t) = fm
χ

(2)

We use ζm to represent the computing energy efficiency coefficient of mobile
terminal, so the energy consumption of the system can be expressed as:

Em(t) = ζm(fm)3Tm(t) (3)

Edge Node Collaborative Computing
The time taken by miner xn to upload Kn to the edge node can be denoted as:

Tu
n (t) = Dn

rn(t)
(4)

where rn(t) is the transmission rate from the mobile terminal to the edge node,
we let B denote the channel bandwidth, gn(t) and Pn(t) denote the channel gain and
transmission power between the mobile terminal and the edge node respectively.

rn(t) = B · log2(1 + Pn(t)gn(t)

σ 2
n (t)

) (5)

where σ 2
n (t) is the noise power between the mobile terminal and the edge node. We

use fn to represent the computing capability of the edge node, so the time for the edge
node to complete the mining task Kn can be expressed as:

Te
n (t) = DnXn

fn
(6)

We assuming that the number of CPU cycles in the task buffer of the edge server is
Qn, then the queuing delay of miner xn can be denoted by:

Tq
n (t) = Qn

fn
(7)
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We use ζn to represent the computing energy efficiency coefficient of edge node,
and Ps to represent the static circuit power. In this mode, the energy consumption of the
system can be denoted as:

En(t) = Pn(t)T
u
n (t) + ζn(fn)

3Te
n (t) + PsT

q
n (t) (8)

Additionally,we useEtot,n(t) to represent the total energy consumption of the system,
which can be denoted as:

Etot,n(t) = (1 − dn(t))Em(t) + dn(t)En(t) (9)

2.3 Blockchain System

We can put the authentication information of mobile terminals in the blockchain system.
Andwe choose somenodeswith high voting rate as consensus nodes of blockchain to par-
ticipate in block generation and verification, which can improve the system performance
[8]. In the consensus process of the blockchain system, we use the Delegated Byzantine
Fault Tolerance consensus mechanism. The nodes are divided into agent nodes and ordi-
nary nodes. The agent nodes have the right to keep accounts. The ordinary nodes can see
the consensus process and synchronize the ledger information. The number of votes for
consensus nodes depends on the number of stakes and available computing resources.
The available computing resources refer to the remaining computing resources of the
node after the offloading task is processed.

We use S(t) = {S1(t), S2(t), ..., Sn(t)} and �(t) = {�1(t), �2(t), ..., �n(t)} to repre-
sent the set of the stake and available computing resources. Assume that there is a data
buffer in the edge server to store offloading tasks that have arrived but have not yet been
executed. Additionally, we use �m and �min to represent the total computing capability
of the edge server and the minimum computing resources required by the blockchain
system, respectively. The computing resources available for the blockchain system in
the edge server can be denoted as:

�n(t) = max{�m − �n(t), �min} (10)

Let ρn to represent the processing density, so the dynamics of the system processing
queue can be defined as:

�n(t + 1) = max {�n(t) − fm + ρnrtot(t), 0} (11)

where rtot(t) is the total computing rate of the system, and it can be denoted as:

rtot(t) = (1 − dn(t))rm(t) + dn(t)rn(t) (12)

3 Problem Formulation

We model the optimization problem as a Markov Decision Process (MDP) to obtain the
optimal resource allocation strategy. Due to the dynamic characteristics of the system,
we propose an algorithm based on deep reinforcement learning (DRL) asynchronous
advantage actor-critic (A3C) to solve this problem.We use tuple<S,A,Pr, r> to define
the Markov decision process, where S is the state space, A is the action space, Pr is the
state transition probability, and r is the reward function.
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3.1 Optimization Objective

In order to realize the reasonable resource allocation of the system, we propose an
optimization problem to minimize the total energy consumption of the system, and
optimize the offloading decision and transmission power allocation decision.We express
the optimization problem as follows:

min
T−1∑

t=0

N∑

n=1

Etot,n(t)

s.t. Ttot,n < τn C1

0 ≤ Ptot,n(t) ≤ P C2

0 ≤ fm < fn ≤ fmax C3

dn(t) ∈ {0, 1} C4

(13)

In order to meet the requirements of task delay, constraint C1 ensures that the total
time for the system to complete the mining task does not exceed the completion time
τn. Constraint C2 means that the sum of transmission power does not exceed the total
power P. Constraint C3 ensures that all CPU frequencies are non-negative and finite.
Constraint C4 ensures that the task offloading decision is effective.

3.2 Problem Transformation

State Space
We express the state space as the combination of channel condition G(t) =
{gn(t), gn,k(t)} and available computing resource �(t) = {�1(t), �2(t), ..., �n(t)} of
the MEC server:

S(t) � {G(t),�(t)} (14)

Action Space
We use A(t) = [d(t),P(t)] to define the action space. We define the task offloading
decision d(t) and the transmission power allocation decision P(t) as:

d(t) � {d1(t), d2(t), ..., dN (t)} (15)

P(t) � {P1(t),P2(t), ...,PN (t)} (16)

State Transition Probability
After performing an action, the probability of leaving the state s(t) to the next state
s(t + 1) can be defined as:

Pr(s(t + 1)|s(t), a(t)) =
∫ st+1

st
f (s(t), a(t), s)ds (17)
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where f is the state transition probability density function.

Reward Function
The reward function in this system can be defined as:

rs =
{
R(t), if C1 − C4 are satisfied

0, otherwise
(18)

where R(t) = 1
N∑
n=1

Etot,n(t)
.

3.3 Problem Solution

A3C is a parallel implementation of deep reinforcement learning asynchronous method
[9]. A3C algorithm is to create multiple parallel environments on a machine, put actor
and critic inmultiple different threads for training and assign tasks, and update the param-
eters of local network to the global network each single thread completes the learning,
and acquire the comprehensive learning of updated parameters from the global network
regularly. Each thread will learn from the environment independently and explore dif-
ferent strategies in parallel. Therefore, we use A3C to explore the optimal offloading
decision of edge-terminal collaboration.

4 Simulation Results and Analysis

In order to evaluate the performance of the EABRA algorithm under different parame-
ters, we use TensorFlow 2.0 based on Python 3.7 for simulation, and establish a model
composed ofMEC system and blockchain system, in which the network coverage radius
is about 500 m. The main simulation parameters are summarized in Table 2.

Table 2. Simulation parameters.

Parameter Value

The computing capability of mobile terminal fm 1 GHz

The computing capability of edge node fn 2.4 GHz

The processing density χ 737.5 cycles/bit

The noise power density N0 −174 dBm/Hz

The bandwidth B 180 KHz

The learning rate for actor network ηa 0.001

The learning rate for critic network ηc 0.01

The static circuit power Ps 0.05 W

The data size of the task Dn 0.42 MB
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As shown in Fig. 2, we can use TensorBoard, the built-in module of TensorFlow, to
see the visualization of A3C algorithm architecture.We can see that theA3C architecture
consists of a global network and eight worker agents. The A3C algorithm starts from
building a global network.

Fig. 2. Visualization of DRL algorithm based on TensorBoard.

Figure 3 shows the internal structure of a worker agent. Each worker agent has actor
network and critic network, and can interact with the surrounding environment. After
the interaction, worker agents will update the global network parameters according to
their own network parameters.

Fig. 3. Visualization of the worker agent based on TensorBoard.

In order to verify the feasibility of the EABRA algorithm, we compare it with the
Random (mobile terminals perform actions randomly). In Fig. 4, we compare the loss
functions of the two algorithms, and we can see that the EABRA algorithm converges
faster, and the performance of the Random is poor, which can hardly converge.

Figure 5 shows the impact of the computing capability of edge node on the total
energy consumption. It can be seen that for all schemes, the total energy consumption
increases with the increase of fn. This is because as the CPU frequency of the edge node
increases, although the calculation rate will increase, the communication overhead will
also increase, which will lead to additional energy consumption, thus increasing the total
energy consumption of the system. Figure 6 shows the effect of transmission power P



Energy-Aware Blockchain Resource Allocation Algorithm 101

Fig. 4. The change curve of loss function based on A3C algorithm.

on the average reward. It can be seen that the performance of EABRA is always the best,
because we jointly optimize the task offloading decision and the transmission power
allocation decision, and find the optimal resource allocation scheme base on the DRL
algorithm.

Fig. 5. The impact of fn on total energy consumption of the system.
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Fig. 6. The impact of P on average reward of the system.

5 Conclusion

This paper proposes a blockchain-based edge-terminal collaborative resource alloca-
tion architecture, including MEC system and blockchain system. Local mobile terminal
computing mode and edge node collaborative computing mode are used to process the
mining task of blockchain system, so as to ensure the trust of terminal authentication
information. In order to optimize the total energy consumption of the system, we model
the problem as anMDPproblem, jointly optimize the offloading decision and power allo-
cation decision, and propose the EABRA algorithm with deep reinforcement learning
for solution. The simulation results clearly show the superiority of EABRA algorithm.
Under different parameter settings, the EABRA algorithm has faster convergence speed
and better performance.
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