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Abstract. In order to solve the problem of low accuracy of fault diagnosis algo-
rithms in multiple management domain environments such as such as Software
Defined Networks (SDN), this paper proposes a multi-domain cooperative service
fault diagnosis algorithm under network slice based on the correlation between
faults and symptoms. According to the relationship between the management
domain and the symptoms, the network resources corresponding to the symp-
toms are divided into resources within the management domain and inter-domain
resources. When constructing a suspected fault set, the suspected fault set is con-
structed according to the number of simultaneous faults, and the final suspected
fault set is determined by calculating the interpretation capability of the suspected
fault. Finally, according to Bayesian theory, the fault set with the highest probabil-
ity is regarded as the most probable fault set. Compared with the existing classical
algorithms in the experimental part, it is verified that the algorithm in this paper
improves the accuracy of fault diagnosis and reduces the false alarm rate of fault
diagnosis.

Keywords: SDN network · Network slicing · Fault diagnosis · Management
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1 Introduction

With the rapid construction and operation of next generation networks, the application
scope of various network-based services in production and life is gradually increasing.
In order to improve the reliability of the network, network virtualization technology
such as Software Defined Networks (SDN) has been applied to 5G networks [1]. In this
context, existing networks are divided into underlying networks and virtual networks.
The underlying network is responsible for the construction of the underlying network
nodes and the underlying network links. The virtual network leases network resources
from the underlying network to run specific 5G services. When network resources fail,
how to quickly and accurately locate the fault has become a key issue that network
operators urgently need to solve.
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The network fault diagnosis algorithm mainly adopts two strategies: passive detec-
tion [2] and active detection [3]. The main advantage of passive detection is simple
implementation, and the main disadvantage is the low accuracy of the fault diagnosis
model constructed. Active detection can better improve the performance of the fault
diagnosis algorithm by selecting the detection strategy in advance, but the design of
detection is more complicated. For example, literature [4] uses a dependency matrix
to construct a detection model, which better solves the problem of single-point fault
diagnosis. In terms of multi-layer fault diagnosis, the general method is to resolve the
multi-layer model into a two-layer model based on the network resource relationship
[5]. For the problems of complex network topology and low performance of fault diag-
nosis algorithms brought about by the large-scale network, literature [6] uses artificial
intelligence algorithms to construct learning models, which better solve the problem of
low performance of fault diagnosis algorithms in large-scale environments.

The existing research mainly solves the fault location in a single domain. However,
when the network scale becomes larger and larger, multiple network operators will
jointly build and manage the network, thereby forming multiple management domains.
Each domain is responsible for network resource allocation and fault management in
the area. When a virtual network service fails, each domain only knows its own internal
failure information. When faults cannot be located within a domain, the problem of how
multiple domains can collaborate to locate faults has not been well resolved. To solve
this problem, this paper proposes a multi-domain cooperative service fault diagnosis
algorithm under network slicing with SDN. The algorithm improves the performance of
the fault diagnosis algorithm through the cooperation of multiple management domains.

2 Problem Description

Network slicing is an on-demand networking method that allows operators to separate
multiple virtual end-to-end networks on a unified infrastructure. Each network slicing is
carried out from thewireless access network, the bearer network to the core network. In a
network slice, it can be divided into at least three parts: wireless network sub-slice, bearer
network sub-slice and core network sub-slice. The core of network slicing technology is
network function virtualization. Network function virtualization separates the hardware
and software parts from traditional networks. The hardware is deployed by a unified
server, and the software is undertaken by different network functions, thereby realizing
the needs of flexible assembly services. Network slicing is based on a logical concept
and is the reorganization of resources. Reorganization is to select the required virtual
machines and physical resources for a specific communication service type according
to the service level agreement.

In the network slicing environment, in order to distinguish the existing network from
the sliced network resources, the physical network resource is called the underlying net-
work, and each sliced resource is called the virtual network. Use undirected weighted
graph GS = (

NS , ES
)
to represent the underlying network. Use undirected weighted

graphGV = (NV ,EV ) to represent the virtual network. nsi ∈ NS and nVi ∈ NV represent
the underlying node and virtual node, respectively, and esj ∈ ES and eVj ∈ EV represent
the underlying link and the virtual link, respectively. Because the virtual network allo-
cates resources by the underlying network, use MappingN : (

NV → NS , EV → PS
)
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to represent the resource allocation relationship between the virtual network and the
underlying network. Among them, NV → NS indicates that the underlying node nsi
allocates resources to the virtual node nVi , and EV → PS indicates that the underlying
path PS allocates resources to the virtual link eVj . The bottom-level path PS refers to
the bottom-level link resource composed of multiple end-to-end connected bottom-level
links esj . The start and end points of the path respectively correspond to the bottom-level
nodes mapped by the two virtual nodes of the virtual link.

When the virtual network covers a large area, multiple domains need to cooperate
with each other to meet the resource requirements of the virtual network. The service
model of multi-domain collaboration is shown in Fig. 1. It contains 3 management
domains. The virtual network uses the network resources of these three management
domains to construct a virtual network. When a virtual resource on a virtual network
fails, the cooperation of the three management domains is required to quickly locate the
root cause of the failure.

Fig. 1. Multi-domain collaboration service model

3 Fault Propagation Model

Because all users want a reliable network, fault management is one of the most basic
functions of network management. When a component in the network fails, the network
manager must quickly find the root cause of the fault and troubleshoot it in time. Under
normal circumstances, it is unlikely that a fault can be quickly isolated, because the
factors that cause network faults are usually very complex, especially those caused by
multiple network components. In this situation, we should generally repair the network
first, and then analyze the cause of the failure. The recurrence of similar failures can be
prevented by analyzing the causes of failures, which is very important for the reliable
performance of the network. The goal of fault management is to resume normal service
operations as soon as possible, minimize the negative impact of component failure on
the business, and ensure that the service level goals and service level quality agreed with
the business customers in advance are met.

In order to quickly locate faults, a fault propagation model is constructed based
on Bayesian theory, so as to correlate the observed symptoms with the actual network
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environment. The Bayesian network is a directed acyclic graph G(V, E). The node V in
the graph represents a variable, and the directed edge E connecting the nodes represents
a dependency between the nodes. Each node stores a conditional probability table, which
indicates the influence of the value of its parent node on the state of the node. If the node
is the root node, the conditional probability of the node records the prior probability of
this node. The fault propagation model is shown in Fig. 2, including symptom, fault, and
directed line from fault to symptom.

Fig. 2. Fault propagation model based on Bayesian theory

Symptoms refer to the working status of various businesses running on the virtual
network. Symptom set So = {s1, s2, ..., sm} represents a set of m symptoms. When
the business is running normally, it is called a positive symptom and is represented by
sm = 0. When the business fails to operate normally, it is called a negative symptom
and is represented by sm = 1. Failure refers to the working status of the underlying
network resources. The set of suspected faults X = {x1, x2, . . . , xn} represents a set of
n suspected faults x.When the underlying network resources are operating normally, use
xn = 0 to indicate. When the underlying network resources are abnormal, use xn = 1 to
indicate. The directed line from failure to symptom indicates the probability that when
the underlying network resource is abnormal, the symptom status of the service carried
on the underlying network resource is negative.

4 Algorithm

This paper proposes a multi-domain cooperative service fault diagnosis algorithm under
network slice (MCSFDA) with SDN as shown in Fig. 1. The algorithm includes the
following three processes. (1) Symptom collection and fault decomposition, (2) Building
Bayesian model, (3) Fault set location. In step (1), each virtual network service provider
reports symptoms and fault information to the fault management center, and the fault
center performs fault decomposition based on the collected symptoms and network
topology, and sends the fault information to the corresponding management domain.
In step (2), each management domain uses detection technology to obtain the network
performance of each faulty node, and feeds the results back to the fault management
center. For links between domains, related domains need to send data packets to each
other to obtain the packet loss rate of the link. For example: in Fig. 1, the path (1–2–3)
belongs to domain 1, the link (6–7) belongs to domain 2, the path (11–12–14) belongs
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to domain 3, and the link (3–6) belongs to the shared resources of domain 1 and domain
2, links (7–11) belong to the shared resources of domain 2 and domain 3. The fault
management center builds a Bayesian model based on the network performance fed
back from each management domain. In the fault propagation model based on Bayesian
theory, the symptom refers to the status of the virtual network service, and the fault
refers to the detection result of the underlying link corresponding to the virtual network
service. In step (3), to select the most suitable fault set from the set of suspected faults
to realize fault location. It adopts two processes: constructing a set of suspected faults
and locating faults based on Bayesian formula. Steps (1) and (3) are described in detail
below.

4.1 Symptom Collection and Fault Decomposition

The end-to-end service PV
(
nVp1 , n

V
pm

)
contains multiple virtual paths. From the pro-

cess of mapping EV → PS from the virtual link to the underlying path, it can be seen

that the end-to-end service PV
(
nVp1 , n

V
pm

)
contains more underlying links. To facilitate

the description of the underlying links included in the end-to-end service, it is neces-
sary to map the end-to-end service to the underlying link. Use eV

(
nVk , nVl

)
to represent

the virtual link between virtual nodes nVk and nVl , and use PV
(
nVp1 , n

V
pm

)
to represent

the virtual path between virtual nodes nVp1 and nVpm . PV
(
nVp1 , n

V
pm

)
uses link to rep-

resent eV
(
nVp1 , n

V
p2

)
, eV

(
nVp2 , n

V
p3

)
, . . . , eV

(
nVpm−1

, nVpm

)
. Use eS

(
nSk , n

S
l

)
to represent

the underlying link between the underlying nodes nSk and nSl , and use PS
(
nSp1 , n

S
pm

)
to

represent the underlying path between the underlying nodes nSp1 and n
S
pm . PS

(
nSp1 , n

S
pm

)

use link to represent eS
(
nSp1 , n

S
p2

)
, eS

(
nSp2 , n

S
p3

)
, . . . , eS

(
nSpm−1

, nSpm

)
.

According to the relationship of EV → Ps, convert PV
(
nVp1 , n

V
pm

)
to PS

(
nSp1 , n

S
pm

)
.

If the fault in PS
(
nSp1 , n

S
pm

)
can be inferred based on the symptoms, the faulty resources

can be repaired to ensure the quality of service. However, when the underlying link con-

tained inPS
(
nSp1 , n

S
pm

)
is providedbymultiple underlyingnetwork resourcemanagement

domains, multiple management domains need to cooperate with each other to complete
fault diagnosis. Taking into account that each management domain can detect the failure

of its own internal network resources, this paper divides PS
(
nSp1 , n

S
pm

)
into the resources

of path PS
(
I i+1
i,j ,Ei+2

i,j

)
in the management domain and inter-domain link e

(
Ei
i,j, I

i+1
i,j

)

according to the characteristics of the management domain. Among them, I ki,j represents

the ingress gateway of the k-th SNk , and Ek
i,j represents the egress gateway of the k-th

SNk . For I ki,j, the constraints of nSp1 ∈ SNi, nSpm ∈ SNj, nSpn ∈ SNk and nSbn−1
/∈ SNk

should be satisfied. For Ek
i,j, the constraints of nSp1 ∈ SNi, nSpm ∈ SNj, nSpn ∈ SNk

and nSpn+1
/∈ SNk should be satisfied. Therefore, PS

(
nSp1 , n

S
pm

)
can be expressed as



60 W. Li et al.

eS
(
nSp1 ,E

i
i,j

)
, e

(
Ei
i,j, I

i+1
i,j

)
,PS

(
I i+1
i,j ,Ei+2

i,j

)
, . . . , e

(
Ej−1
i,j , I ji,j

)
. For example, the under-

lying network of the end-to-end service (a-b-d-e-g-h) in Fig. 1 can be divided into: the
path in domain 1 (1–2–3), the inter-domain link (3–6), the path in domain 2 (6–7), the
inter-domain link (7–11), and the path in domain 3 (11–12–14).

4.2 Fault Location

Fault set location includes two processes: constructing a set of suspected faults and
locating faults based onBayesian formula.When constructing a set of suspected failures,
construct a set of suspected failures based on the number of simultaneous failures. The
number of simultaneous failures is related to the number of network nodes and the
probability of network node failures. Assuming that the probability of failure of the
underlying network is 0.001 and network is composed of three network nodes, the
probability of failure of two nodes at the same time is 3 × 10−6. When constructing a
set of suspected failures, a failure node is arbitrarily selected from the failure node set
X , and placed into the candidate failure set mik (i represents the size of the candidate
failure set, and k represents the sequence number of the set). The failure set Mi(i =
1, . . . ,max(�, |X |)) is gradually constructed until the end condition is met, that is,
� nodes are included in mik . Among them, � represents the number of simultaneous
failures.

In order to evaluate the value of mik , define Abliik as the explanatory ability of
mik . The calculation method is shown in formula (1). NumA(s)=1 indicates the number of
abnormal symptoms related to the suspected failure;A(s) = 1 indicates that the symptom
s is abnormal, and the calculation formula is shown in formula (2). NumA(s)=0 indicates
the number of normal symptoms related to the suspected failure; A(s) = 0 indicates that
the symptom s is abnormal, and the calculation formula is shown in formula (3). pa(s)
represents the parent node of symptom s.

Ablimik = NumA(s)=1 + NumA(s)=0 (1)

NumA(s)=1 = |{s|s ∈ So,A(s) = 1, ∃x ∈ mik , x ∈ pa(s)}| (2)

NumA(s)=0 = |{s|s ∈ So,A(s) = 0, ∃x ∈ mik , x ∈ pa(s)}| (3)

According to Bayesian theory, if the state of some nodes is known, formula (4) can
be used to solve the maximum possible state of unknown node X = {X1,X2, ...,Xn}.
Among them, pa(Tj) represents the parent node of detecting Tj. N represents the number
of nodes, and M represents the number of probes.

X ∗ = maxX P(X |T ) = maxX
P(X ,T )
P(T )

= maxX P(X ,T )

= maxX
∏N

i=1 P(Xi)
∏M

j=1 P(Tj|pa(Tj)) (4)

Therefore, this paper uses formula (5) to calculate the probability of each Mi(i =
1, ..,max(δ, |Fs|)), and regards the failure set with the largest probability as the most
likely failure set. The nodes included in the failure set are the failed nodes.

P(Mi) =
∏

Xi∈X
P(Xi)

∏

Tj∈T
P(Tj|pa(Tj)) (5)
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5 Performance Analysis

5.1 Network Environment

In order to simulate the network topology in the network slicing environment, this article
uses the GT-ITM [7] tool to generate the underlying network and virtual network topol-
ogy to simulate the network slicing environment. In order to judge the performance of
the algorithm in different network environments, the node size of the underlying network
was increased from 100 to 500. The number of virtual nodes in the virtual network is
uniformly distributed from 5 to 25, which is used to simulate virtual networks of different
sizes. The mapping algorithm from the underlying network to the virtual network uses
the classic mapping algorithm [8]. In order to simulate different management domains,
the bottom network will be divided into 5management domains according to the number
of bottom network nodes. In terms of service simulation, this article takes end-to-end
service as the research object. Select 10% of the virtual nodes from the virtual network
as the source node. For each virtual source node, 3 nodes are randomly selected as desti-
nation nodes, and the shortest path algorithm is used to generate end-to-end services. In
terms of fault injection, set the prior failure probability of the underlying network node
to obey the uniform distribution of [0.001,0.01], and the conditional probability obey
the uniform distribution of (0,1).

In order to analyze the performance of the algorithmMCSFDA in this paper, it is com-
pared with the non-cooperative service fault diagnosis algorithm (NCSFDA). Different
from the algorithm in this paper, each management domain of the algorithm NCSFDA
sends the network performance to the management center, and the management center
directly diagnoses the fault based on the mapping relationship between the virtual net-
work and the underlying network. The evaluation indicators include the accuracy rate
of fault diagnosis, false alarm rate, and diagnosis time. The accuracy rate refers to the
proportion of the diagnosed faulty node set in the real faulty node set. The higher the
accuracy rate, it means that the algorithm has identified more real faults and the algo-
rithm performance is better. The false alarm rate refers to the proportion of false faults
identified by the diagnostic algorithm in all identified faults. The higher the false alarm
rate, it indicates that the algorithm mistakenly recognizes the normal network node as
the fault node, and the performance is poor. Diagnosis time refers to the time taken
by the algorithm from inputting network topology and service symptom information to
outputting diagnosis results. The longer the diagnosis algorithm takes, the greater the
time overhead of the algorithm.

5.2 Performance Comparison

The accuracy of fault diagnosis is shown in Fig. 3. The X-axis indicates that the number
of network nodes has increased from 100 to 500, which is used to analyze the impact of
different network sizes on algorithm performance. The Y axis represents the accuracy
of the algorithm. It can be seen from the figure that the size of the network has a small
effect on the accuracy of the fault diagnosis of the two algorithms, indicating that the
diagnosis performance of the two algorithms has little relationship with the network
topology. From the comparison of the accuracy of the two algorithms, the accuracy of
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this algorithm is high. This is because the algorithm in this paper can effectively improve
the accuracy of the data in the fault diagnosismodel through the collaboration ofmultiple
domain managers, thereby improving the accuracy of fault diagnosis.

Fig. 3. Comparison of accuracy rate

The comparison result of the false alarm rate of fault diagnosis is shown in Fig. 4. The
X axis represents the number of network nodes, and the Y axis represents the false alarm
rate of the algorithm. It can be seen from the figure that the false alarm rate performance
of the two algorithms has little to do with the network scale. The false alarm rate of
the algorithm in this paper is lower than that of the traditional algorithm. The same is
because the fault diagnosis model data of the algorithm in this paper is more accurate,
which reduces the false alarm rate.

Fig. 4. Comparison of false alarm rate

The comparison of the duration of fault diagnosis is shown in Fig. 5. The X axis
represents the number of network nodes, and the Y axis represents the fault diagnosis
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time of the algorithm. It can be seen from the figure that as the network scale increases,
the diagnosis time of the two algorithms is increasing. This is because as the network
scale increases, the fault propagation model increases, and the set of suspected faults
also increases, which requires more time for fault diagnosis. In addition, the diagnosis
time of the algorithm in this paper has increased rapidly. This is because, compared
with traditional algorithms, it requires cooperation between various domains for active
positioning, which requires a longer time overhead.

Fig. 5. Comparison of time

6 Conclusion

Accurate and rapid location of SDN network resource failures has become a key issue
that network operators urgently need to solve. However, when network resources are
composed of multiple management domains, the accuracy of service fault diagnosis
across multiple domains is low. To solve this problem, this paper proposes a multi-
domain cooperative service fault diagnosis algorithm under 5G network slicing with
SDN. The algorithm includes three processes: symptom collection and fault decompo-
sition, Bayesian model construction, and fault set location. In the symptom collection
and fault decomposition steps, the fault center performs fault decomposition based on
the collected symptoms and network topology, and sends the fault information to the
corresponding management domain. In the step of constructing the Bayesian model,
inter-domain links need related domains to send data packets to each other to obtain
the packet loss rate of the link. In the fault set locating step, it includes two processes:
constructing a set of suspected faults and locating faults based on Bayesian formula. The
algorithm uses detection technology to obtain network performance through the collab-
oration of various management domains, and builds a Bayesian model and fault location
based on network performance. Compared with existing research, this paper improves
the performance of fault diagnosis through fault decomposition andmanagement domain
collaboration.
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With the increase of network scale and the development of artificial intelligence
technology, how to further realize autonomous large-scale fault diagnosis is an important
and feasible research topic. In the next step, based on the research results of this article,we
will explore a large-scale network fault autonomous diagnosis system based on artificial
intelligence. Further improve the availability and convenience of the fault diagnosis
system.
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