
Android Malware Detection Using
Ensemble Learning on Sensitive APIs

Junhui Yu1,2(B), Chunlei Zhao1,2, Wenbai Zheng1,2, Yunlong Li1,2,
Chunxiang Zhang1,2, and Chao Chen1,2

1 Key Laboratory of Computer Vision and System, Ministry of Education,
Tianjin University of Technology, Tianjin 300384, China

2 Tianjin Key Laboratory of Intelligence Computing and Novel Software Technology,
Ministry of Education, Tianjin University of Technology, Tianjin 300384, China

Abstract. In recent years, with the quiet popularity of mobile payment
methods, mobile terminal equipment also have potential security prob-
lems while facilitating people’s lives. Behavior-based Android malware
detection is mostly based on permission analysis and API calls. In this
paper, we propose a static Android malicious detection scheme based
on sensitive API calls. We extracted all APIs called in the experimen-
tal samples through decompilation, and then calculated and ranked the
threats related to these APIs according to the mutual information model,
selected the top 20 sensitive API calls, and generated a 20-dimensional
feature vector for each application. In the classification process, an inte-
grated learning model based on DT classifier, kNN classifier and SVM
classifier is used to effectively detect unknown APK samples. We col-
lected 516 benign samples and 528 malicious samples. Through a large
number of experiments, the results show that the accuracy of our scheme
can be up to 94%, and the precision is up to 95%.

Keywords: Android · Sensitive API · Mutual information · Malware
detection

1 Introduction

The market share of smartphones running the Android operating system will rise
from 85.1% in 2018 to 87% [1]. The strong compatibility of the Android system
also attracts more and more developers. At the same time, due to the lack of
strong detection mechanisms and processes in the Google [2], this provides a wide
range of possibilities for the release and promotion of malicious applications.

The current behavior-based Android malware detection is mainly divided into
two parts. One is dynamic malware detection technology that simulates running
in sandboxes or virtual machines, and the other is static malware detection tech-
nology that extracts relevant features through reverse engineering. Static anal-
ysis matches specific characteristics of known malicious applications to detect

Supported by Tianjin Nature Science Youth Foundation (No.18JCQNJC69900).

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2021

Published by Springer Nature Switzerland AG 2021. All Rights Reserved

H. Jiang et al. (Eds.): ICECI 2020, LNICST 368, pp. 126–140, 2021.

https://doi.org/10.1007/978-3-030-73429-9_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73429-9_8&domain=pdf
https://doi.org/10.1007/978-3-030-73429-9_8

Android Malware Detection Using Ensemble Learning on Sensitive APIs 127

whether the sample is malware. However, with the development and changes of
malicious applications, the efficiency of a single static detection is not very high,
and there are certain false positives and false negatives. At the same time, the
dynamic analysis of Android malware can provide real-time and comprehensive
detection when the application is running, but there are still higher requirements
in terms of statistical information and the deployment of the detection environ-
ment. Moreover, the dynamic detection technology cannot simultaneously detect
a large number of applications simultaneously.

However, there are obvious differences between malicious applications and
normal applications in corresponding API function calls. This paper uses sensi-
tive API functions as features to detect malicious application software.

This paper proposes a static Android malicious detection method based on
integrated learning. The method is mainly divided into three parts: feature
extraction stage, training stage and detection stage. For the feature extraction
stage, the mutual information model is used to generate 20-dimensional API fea-
ture vectors ranked by sensitivity level; during the training stage, the feature vec-
tors are input to the associated three basic classifiers (decision tree(DT)classifier,
k nearest neighbor (kNN) classifier and support vector machine (SVM) classifier)
to generate the final training results. In the detection phase, the main task is to
quickly classify unknown APKs by using an integrated learning model. A large
number of experimental results show that the accuracy of the scheme can reach
94%, and the precision is up to 95%.

The specific experimental content of this paper is as follows:

• We collect top20 sensitive API calls as detection features to improve detection
accuracy.

• By comparing the detection performance of different combinations of various
classification algorithms, we propose an integrated learning algorithm based
on DT classifier, kNN classifier and SVM classifier as the basic classifier.

• Experiments show that this method can reduce the complexity of Android
malware detection, and improve detection accuracy.

The rest of the paper is organized as follows: Sect. 2 introduces the related
work, including the analysis of the research status of dynamic malware detection
technology and static malware detection technology. Sections 3 and 4 introduce
the experimental design of the feature extraction and detection process in this
paper. Sections 5 and 6 give the results and conclusions of the experiment.

2 Related Work

2.1 Dynamic Detection Method

With the evolution and development of malicious applications, more and more
malicious applications evade the corresponding static detection by obfuscating
code or hardening protection. This led to a situation where the false detection
rate of Android static detection was slightly higher under certain conditions.

128 J. Yu et al.

Dynamic program behavior monitoring technology can record the behavior of the
program during dynamic execution, so as to avoid the confusion of static code by
malicious programs. Depending on the recording granularity, information such
as instruction sequence, system call, API sequence, and API parameters can be
recorded. According to the principle of program behavior monitoring technology,
it can be divided into three categories: program behavior monitoring technology
based on binary instrumentation, program behavior monitoring technology based
on virtual machine and program behavior monitoring technology based on Hook.

Dynamic program behavior monitoring technology can record the behavior
of the program during dynamic execution, so as to avoid the confusion of static
code by malicious programs. TaintDroid [3] is an efficient system-level dynamic
stain tracking and analysis system that can track multiple sensitive data sources
at the same time, providing users with a view of the use and sharing of private
data by third-party applications. TaintDroid is deployed on mobile phones, so
its overhead cannot be ignored. Crowdroid [4] is a dynamic analysis method.
It obtains the application behavior logs from the user’s mobile phone through
crowdsourcing. The specific data collected is the system call, and the data is
uploaded to the remote server, and the data is clustered through K-means. In
order to find malicious applications, it is difficult to apply them without incen-
tives.

2.2 Static Detection Method

The most obvious feature of the static detection technology based on reverse
engineering is that it does not need to execute the malicious application to
obtain the relevant static features contained in the application by decompila-
tion, including the permission information applied by the application, the API
function calls, etc. Wu et al. [5] proposed an Android malware detection sys-
tem, which uses a dataflow application program interfaces (APIs) as classifica-
tion features to detect Android malware. This paper uses a thorough analysis,
to extract dataflow-related API-level features, and to improve the kNN clas-
sification model, and uses machine learning to further optimize the API list
dataflow-related and improve the detection efficiency. The accuracy of the sys-
tem in detecting unknown Android malware is as high as 97.66%. Onwuzurike,
L et al. [6] proposed a MAMADROID model based on a static analysis system is
proposed, which uses the sequence obtained by the application’s API call graph
(such as Markov chain) to build the model to ensure that the model’s changes
to the API and the size of the feature set are convenient for management. The
MAMADROID model has a high detection rate, but still has a certain FPR.
Kim, T et al.[7] proposes A novel Android malware detection framework. The
framework extracts multiple features such as permissions and API calls, and
refines these features to achieve an effective feature representation for malware
detection. In addition, a multi-modal deep learning method is proposed as a mal-
ware detection model. It was found that the detection method greatly improves

Android Malware Detection Using Ensemble Learning on Sensitive APIs 129

the detection rate, but the complexity is high. Zhao et al.[8]propose a detection
method that uses sensitive APIs as detection features. But they used two basic
classifiers, the detection accuracy only to 92%.

3 Feature Extraction and Analysis

Based on the in-depth understanding of Android malware detection in this paper,
you can extract the information of sensitive API calls and analyze based on this
feature, which mainly includes the following 3 steps:

• Feature generation: decompilation of the application program of the experi-
mental sample to extract all API call information.

• Generate a collection of sensitive API calls: use the mutual information model
to calculate and rank the correlation between each API call and malware in
the sample.

• Generate feature vectors: Select the top 20 sensitive API calls to generate a
20-dimensional feature vector for each application.

3.1 Preliminaries

In the early stage of this paper, a lot of information collection and data min-
ing were carried out on the Android operating system, mainly including API
features, sensitive API calls, and the selection of mutual information models.

API Features. The Android application is released in the form of an APK,
which is essentially a compressed package file. The corresponding file obtained
by decompressing APK is shown in Fig. 1.

APK file

resources.arscAndroidManifest.xml res classes.dex META-INF

Fig. 1. APK file structure

Among them, the android manifest.xml file is used to store the package name
of Android application, permissions, SDK version number, etc. It is the config-
uration file of Android application package (APK). The res file is a storage
resource file in which the images, strings, layouts, etc. of Android APK are
stored. The META-INF file is used to hold the signature information of APK to
ensure the integrity of APK. The classes.dex is a Java bytecode file that can be
directly run in a Dalvik virtual machine.

Due to the good adaptability of the APIs, the operating system can provide
service interfaces for various types of applications. When the request of data

130 J. Yu et al.

access, network data connection, file read and write, or other important resources
appear, the applications will invoke the APIs. Because of the important role
of the APIs, malicious applications will call the target APIs to achieve some
malicious behavior.

Sensitive API Call. In the Android platform, there is a correspondence
between permissions and API calls to access specific resources of the system.
The Android platform API list describes nearly 8000 calling methods. Among
them, there is a specific correspondence between certain APIs and permissions.
For example, when an application calls the SendMessage() API for sending
short messages, the Android system process checks whether the application has
applied for permission to send short messages: Android.permission.SEND SMS.
Only when the application has applied for the permission and the permission is
declared in the manifest file <Manifest> will the SendMessage() API be called
when it is used. Android’s official website lists all the permission information,
mainly divided into four categories: normal, dangerous, signature, signature-
orSystem. The permission risks they represent increase in turn, which means
that the risk of the API corresponding to them also increases in turn.

0

10

20

30

40

50

60

70

80

90

sendtextmsg

chmod
abortBroadcast

startService

startActivity

getDeviceId

openConnection
API Calls

Fr
eq

ue
nc

y(
%

)

Fig. 2. Frequency of calling certain APIs in malware and benign applications

As shown in Fig. 2, we found that the frequency of calling certain APIs is
quite different between malicious applications and normal applications through
experiments. Therefore, these sensitive APIs can be used as one of the basis
for identifying the maliciousness of the application. In this study, we focus on
high-risk APIs that involve sensitive user data. Hanna [9] have studied the per-
mission mechanism in depth and given the corresponding relationship between
the permissions and APIs. According to the APIs corresponding to the sensitive
permission list, the mutual information model is used to measure the relationship
between API and application maliciousness.

Android Malware Detection Using Ensemble Learning on Sensitive APIs 131

Mutual Information Model. In machine learning, the correlation between
measured features and class variables is called feature ranking, and its purpose
is to select the features with the largest amount of information and improve the
performance of the learning model [11]. In probability theory and information
theory, Mutual Information (MI) [10] for two random variables is a measure
of the interdependence between variables. Unlike correlation coefficients, mutual
information is not limited to real-valued random variables. It is suitable for more
general and common application scenarios and determines the product p(x) of
the joint distribution p(X,Y) and the decomposed edge distribution. The similar-
ity of p(y). Mutual information can be used to measure the mutual dependence
between two sets of events. The mutual information calculation formula of two
discrete random variables X and Y is shown as formula (1):

I(X,Y) =
∑

xi

∑

yj

p(X = xi, Y = yj) × log
p(X = xi, Y = yj)

p(X = xi) × p(Y = yj)
(1)

P(x, y) is the joint probability distribution function of X and Y, while p(x) and
p(y) are marginal probability distribution functions of X and Y respectively.
In formula (1), the variable X represents that the APIs exist in an Android
application software (or not), variable Y on behalf of the application of cat-
egories (application belongs to malicious applications or benign applications).
P(x) means the probability that the variable X is equal to x, p(y) means the
probability that the variable Y is equal to y. P(x, y) is the value of x with
respect to X, and the value of Y is the probability of y. In the case of continu-
ous random variables, the summation formula is replaced by the double integral
formula, which is shown in the following formula (2):

I(x, y) =
∫

Y

∫

X

p(x, y) × log(
p(x, y)

p(x) × p(y)
)dxdy (2)

Similar to formula (1), in Eq. (2), p(X, Y) still represents the joint probability
distribution function of X and Y, while p(x) and p(y) are the marginal prob-
ability distribution functions of X and Y, respectively. Mutual information is
the inherent dependence between the joint distribution of X and Y relative to
the joint distribution under the assumption that X and Y are independent. So
mutual information measures dependency in the following way: I(X,Y) = 0 if and
only if X and Y are independent random variables. It is easy to see from one
direction: when X and Y are independent, p(x,y) = p(x)·p(y), so we can draw
the conclusion shown as formula (3):

log(
p(x, y)

p(x) × p(y)
) = log1 = 0 (3)

In addition, mutual information is non-negative (I(X;Y) ≥ 0) and symmetrical
(I(X,Y) = I(Y,X)).

132 J. Yu et al.

3.2 Feature Generation

Feature Extraction. In this paper, we use the script file of the Androguard
tool to statically analyze the experimental samples. Figure 3 shows the Android
API call examples of some experimental samples obtained.

java/lang/Long intValue()I
java/lang/Long <init>(J)V
java/lang/LongvalueOf(J)Ljava/lang/Long;
android/util/StateSet stateSetMatches ([I[I)Z
android/util/StateSet trimStateSet([I[I)[I
android/view/ViewTreeObserver$InternalInsetsInfo <init>()V

Fig. 3. Android API call sequence

Generate a Collection of Sensitive API Calls. Mutual information can be
used to measure the correlation between two sets of events. This paper uses an
effective sorting method, that is, “mutual information” as shown in formula (1),
to measure the correlation between Android applications and specific API calls,
and based on the calculated correlation, a set of sensitive APIs is generated. And
the sensitive value of each API is calculated separately.

The final calculation result is between 0 and 1. The larger the value of the
result, the higher the correlation between the two. If the value is 1, it means that
the two are necessarily related, and similarly, the value is 0 that the two are not
related. Extract 20 API functions most relevant to malicious applications as a
collection of sensitive API calls.

5 10 15 20 25 30 35 40 45 50
10

20

30

40

50

60

70

80

90

100

Number of features

Tr
ue

 P
os

iti
ve

 R
at

e
(%

)

Fig. 4. The TPR of different number of features on detection results

As shown in Fig. 4, the reason why we choose the top 20 APIs for sensitivity
calculation as the reference standard for selecting functional APIs is because if

Android Malware Detection Using Ensemble Learning on Sensitive APIs 133

the number of selected APIs is too small, the detection accuracy will be low;
if you choose a large number of APIs will cause redundancy of data, reduce
detection efficiency, and increase detection time complexity. Through the final
analysis of the experimental results, the top 20 APIs with the highest correlation
coefficients with malicious applications were selected. The ranking of sensitivity
calculation results is shown as Table 1.

Table 1. The 20 most sensitive API calls

Number Score API calls

1 0.467 sendMultipartTextMessage ()

2 0.426 getNETWORKCountryIso ()

3 0.402 openConnection()

4 0.385 chmod ()

5 0.343 abortBroadcast ()

6 0.301 writeTextMessage ()

7 0.279 writeExternalStorageState ()

8 0.266 sendTextMessage ()

9 0.257 getLine1Number ()

10 0.252 getLastKnownLocation ()

11 0.209 getSimOperator ()

12 0.198 getAccountsByType ()

13 0.194 getDisplayMessageBody ()

14 0.193 com.android.contacts ()

15 0.188 getOutputStream ()

16 0.173 getDeviceId ()

17 0.165 getInputStream ()

18 0.161 startService ()

19 0.157 getRunningTasks ()

20 0.153 updateConfigurationLocked ()

Generation of Eigenvectors. We create a 20-dimensional feature vector
[APIs]1∗20 for each experimental sample, and unified the format of the feature vec-
tor as: [X1 : Y1;X2 : Y2;X3 : Y3; · · ·Xi : Yi; · · ·X20 : Y20] (i = 1,2,3... 20). The Xi

represents the i-th API calls in Table 1, and Yi represents whether this API calls
exists in the sample. If it exists, it is set to 1, otherwise it is set to 0. Then input
the generated feature vector into kNN classifier, DT classifier and SVM classifier
respectively. In this paper, we use 450 malicious samples and 450 benign samples
to train, and then use 100 samples to detect.

134 J. Yu et al.

4 Detection System Design

The malware detection flowchart is shown in Fig. 5. This section is the detec-
tion phase, which mainly uses the integrated learning model to detect unknown
applications.

APK
file

Feature
Extraction

Sensitive
API Calls

Sensitive
API Calls

Feature Generation

 Ensemble Learning Model

DT-Classifier

SVM-Classifier

Final
Result

Benign
Application

Malicious
Application

Benign
Application

Malicious
Application

Result1

Result2
Voting

kNN-Classifier

Benign
Application

Malicious
Application

Result3

Fig. 5. Flow chart of malware detection

Data sample

Feature extrac�on

Classifier 1

Classifier 2

Classifier N

. . .

Classifier integra�on

Pa�ern
recogni�on

Fig. 6. Multi-classifier integrated learning model implementation diagram

4.1 Ensemble Learning Detection Model

Classification is a kind of supervised learning by training a classifier in the sam-
ples of the known category so that it can classify the unknown samples, as shown
in Fig. 6. However, the detection accuracy of a single classification algorithm is
not high, and it has a certain randomness. Therefore, this paper adopts the set
learning method [12]. In this paper, we use DT, kNN and SVM as the basic
classifier to classify the samples.

4.2 Base Classifiers

In this paper, kNN classifier, DT classifier and SVM classifier are used as the
basic classifier of the integrated learning model.

Android Malware Detection Using Ensemble Learning on Sensitive APIs 135

KNN Classifier. The kNN algorithm is a classification algorithm. The idea
of the algorithm is: A sample is most similar to the k samples in the data set.
If most of the k samples belong to a certain category, the sample also belongs
to this category. The choice of k value in this algorithm is critical. Too small k
value will cause the model to be complicated and prone to over-fitting. Too large
k value will reduce the accuracy of prediction. Sometimes benign and malicious
applications call the same API, resulting in overlapping sample sets. For this,
the classification performance of the kNN classifier is more advantageous than
other classifiers.

In summary, the selection of k value is very important in the kNN algorithm.
As shown in Fig. 7, according to the test data results, when the k value is 5, the
classification accuracy of the kNN algorithm is the highest. Therefore, the value
of k is 5 in this paper.

0 1 2 3 4 5 6 7 8 9 10
0.5

0.6

0.7

0.8

0.9

1

The value of K

A
cc

ur
ac

y

Fig. 7. The accuracy of different k value on detection results

DT Classifier. The algorithm of classification decision tree learning is a process
of recursively selecting the optimal feature, and segmenting the training data
according to the feature, so that each sub-data set has the best classification
process. For the DT classifiers, the “information gain” is similar to the MI model
used in feature extraction. Therefore, the DT classifier is very suitable as the
basic classifier in the ensemble learning model.

SVM Classifier. Support vector machines are a two-class classification model
(or called classifier). Its classification idea is to solve the separation hyperplane
that can correctly divide the training data set and have the largest geometric
interval for the sample set of positive and negative examples. Since the SVM algo-
rithm was originally designed for binary classification problems, it has unique
advantages and better performance in application scenarios to determine appli-
cation maliciousness. This not only helps us to pay more attention to key samples
and eliminate a large number of redundant samples, but also destined to have
better robustness of SVM algorithms. Because of the advantages and good clas-
sification performance of the SVM algorithm, we also use the SVM classifier

136 J. Yu et al.

as a set of base classifiers in the experiments designed in this paper. Together
with the kNN classifier and the DT classifier mentioned above, it forms the base
classifier for integrated learning.

4.3 Weighting Combination Strategy

In this paper, we use [apkName, result-DT], [apkName, result-kNN] and
[apkName, result-SVM] represent the detection results given by the DT clas-
sifier, kNN classifier and SVM classifier respectively. If the detected application
is malware, result-DT, result-kNN, and result-SVM set the value to 0. Otherwise
it will be set to 1.

The reason why the detection threshold is 0.5 is that the probability of the
detection result of the detector on the sample is equal. In detail, we use the
linear weighted sum method (LWSM) to calculate the final result. The linear
weighted sum is calculated as formula (4):

Final − Result = P1 ∗ X1 + P2 ∗ X2 + · · · + Pn ∗ Xn =
∑

(Pi ∗ Xi) (4)

Based on this, the possible detection results are shown in the following Table 2:

Table 2. Detection results

Result Classifier

DT kNN SVM

Benign 1 1 1

Benign 1 0 1

Benign 0 1 1

To be identified 0 0 1

To be identified 1 1 0

Malware 0 1 0

Malware 1 0 0

Malware 0 0 0

If the final result is greater than 0.5, the application will be classified as a
benign application. If the final result is less than 0.5, the application is classified
as a malicious application. If the result is equal to 0.5, then further manual recog-
nition is required. However, the experimental results show that the probability
of this situation is low, about 2–4%.

Android Malware Detection Using Ensemble Learning on Sensitive APIs 137

5 The Results of Experimental

5.1 Experimental Environment

In this experiment,we selected 1044 experimental samples as data sets. Among
them, 528 malicious applications are download from the malicious sample set
of the virusShare.com [13].And 516 normal Android applications are provided
from third-party application market and Google Android Market [14] by using
web crawler programs.The experimental environment is: operating system of
Windows 10, processor: Intel Core i7, 16 GB of memory, Python 2.7 scripting
languages.

5.2 Evaluation Indeces

Classification performance is commonly assessed by the accuracy, true positive
rate (TPR), false positive rate (FPR) and precision.

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

TPR =
TP

TP + FN
(6)

FPR =
FP

FP + TN
(7)

Precision =
TP

FP + TP
(8)

Here, TP and TN are the numbers of true and false samples that are correctly
labeled by the classifier, respectively, and FN and FP are the numbers of true
and false samplesthat are incorrectly labeled by the classifier, respectively.

5.3 Analysis of Experimental

In order to verify that the detection method proposed in this paper has good
applicability, we conducted multiple classification tests on a large number of
samples.

Detection Model Performance. This paper compares the experimental
results of whether to use sensitive APIs. The results are shown in Fig. 8.

In Fig. 8, when a set of sensitive API calls are used, the effect of the detection
model is significantly improved in terms of accuracy, TPR and accuracy. Among
them, accuracy can reach 93% while the precision can reach 95%. In addition, our
method proposed in this paper can achieve a TPR of 89%. All in all, our malicious
application detection method based on sensitive API has better detection results.

138 J. Yu et al.

Accuracy TPR Precision FPR
0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

DT & kNN & SVM classifiers with the sensitive API calls
DT & kNN & SVM classifiers without the sensitive API calls

Fig. 8. Detection model performance

The Effect of Detection Model. Figure 9 and Fig. 10 respectively show that
our ensemble learing model has a higher detection rate and a lower FPR in the
six comparative experiments conducted. Among them, it can achieve the optimal
accuracy of 94.8% and the average detection accuracy above 94%.

1 2 3 4 5 6 Average
75

80

85

90

95

100

The number of experimental groups

A
cc

ur
ac

y(
%

)

kNN
DT
SVM
kNN+DT+SVM

Fig. 9. Contrast of accuracy with differ-
ent classifiers

1 2 3 4 5 6 Average
12
13
14
15
16
17
18
19
20
21
22

The number of experimental groups

Fa
ls

e
Po

si
tiv

e
R

at
e

(%
)

kNN
DT
SVM
kNN+DT+SVM

Fig. 10. Contrast of FPR with different
classifiers

The Comparison of Different Classifiers. As shown in Fig. 11, we have
selected five different classification algorithms to analyze our experimental
results. It can be seen that combining the results of TPR and PRE, when the
integrated learning model of DT + kNN + SVM algorithm is used, the entire
system reaches the best performance. Therefore, they are used as basic classifiers.

Android Malware Detection Using Ensemble Learning on Sensitive APIs 139

0

0.2

0.4

0.6

0.8

1

kNN+DT+SVM

kNN+Bayes+DT

kNN+SVM+Bayes

SVM+DT+LR

Bayes+DT+LR
R

at
io

True Positive Rate (TPR)
Precision Rate (PRE)

Fig. 11. The effect of different classifiers

The Comparison of Different Weights. We also conducted corresponding
experiments on the different weights occupied by the kNN classifier, DT classifier
and SVM classifier in the integrated learning module, and gave the classification
results of the DT, kNN and SVM classifiers, respectively. Different weights, and
the final test result is calculated according to the linear weighted sum. It can be
seen from the calculation that there are different weight distribution combina-
tions in total. In this paper, we conducted corresponding experiments on each
combination of weights. As shown in Fig. 12, we selected nine representative
weight combinations for drawing. It can be seen that the detection result of the
whole system is the most optimal when the weight of the DT classifier is 0.2,
the weight of kNN is 0.3 and the weight of SVM classifier is 0.5.

0

0.2

0.4

0.6

0.8

1.0

0.1DT&0.2kNN&0.7SVM

0.2DT&0.2kNN&0.6SVM

0.3DT&0.1kNN0.6SVM

0.4DT&0.1kNN&0.5SVM

0.2DT&0.3kNN&0.5SVM

0.3DT&0.3kNN&0.4SVM

0.7DT&0.2kNN&0.1SVM

0.6DT&0.2kNN&0.2SVM

0.8DT&0.1kNN&0.1SVM

A
cc

ur
ac

y

Fig. 12. The effect of different weights

6 Conclusion

This paper proposes an Android malicious application detection model based on
integrated learning. By extracting API functions called by Android applications
and combining MI models to generate a set of sensitive APIs. Then select the top

140 J. Yu et al.

20 sensitive API functions as the feature library to generate 20-dimensional fea-
ture vectors. The integrated learning model based on kNN classifier, DT classifier
and SVM classifier is used to effectively detect unknown Android applications.
Experimental results show that this method has achieved good results in Preci-
sion, TPR and Accuracy. However, the method proposed in this paper has a high
FPR due to the detection value of 0.5. In future research, we will conduct more
experimental studies to reduce the FPR on the basis of ensuring the accuracy
and accuracy of detection.

References

1. IDC new report: Android account for 87% market share in 2019, iPhone
only accounts for 13%. https://baijiahao.baidu.com/s?id=1644272367710328052&
wfr=spider&for=pc. Accessed 10 Sept 2019

2. Android. https://www.android.com/. Accessed 30 Nov 2016
3. Enck, W., Gilbert, P., Han, S., et al.: TaintDroid: an information-flow tracking

system for realtime privacy monitoring on smartphones. ACM Trans. Comput.
Syst. (TOCS) 32(2), 5 (2014)

4. Burguera, I., Zurutuza, U., Nadjm-Tehrani, S.: Crowdroid: behavior-based malware
detection system for android. In: Proceedings of the 1st ACM Workshop on Security
and Privacy in Smartphones and Mobile Devices (2011), pp. 15–26. ACM (2011).
https://doi.org/10.1145/2046614.2046619

5. Wu, S., Wang, P., Li, X., Zhang, Y.: Effective detection of android malware based
on the usage of data flow APIs and machine learning. Inf. Softw. Technol. 75,
17–25 (2016)

6. Onwuzurike, L., Mariconti, E., Andriotis, P., De Cristofaro, E., Ross, G., Stringh-
ini, G.: MaMaDroid: detecting android malware by building Markov chains of
behavioral models (extended version). ACM Trans. Priv. Secur. 22(2), 1–34 (2019)

7. Kim, T., Kang, B., Rho, M., Sezer, S., Im, E.G.: A Multimodal Deep Learning
Method for Android Malware Detection Using Various Features. IEEE Trans. Infor.
Forensics and Secur. 14(3), 773–788 (2019). https://doi.org/10.1109/TIFS.2018.
2866-319

8. Zhao, C., Zheng, W., Gong, L., et al.: Quick and accurate android malware detec-
tion based on sensitive APIs. In: IEEE International Conference on Smart Internet
of Things. IEEE Computer Society, pp. 143–148 (2018)

9. Felt, A.P., Chin, E., Hanna, S., et al.: Android permissions demystied. In: ACM
Conference on Computer & Communications Security, vol. 10, p. 627 (2011)

10. Guyon, I., Elisseeff, A., et al.: An introduction to variable and feature selection. J.
Mach. Learn. Res. 3(6), 1157–1182 (2013)

11. Wang, X., Feng, D., Liu, J.: Exploring permission-induced risk in android applica-
tions for malicious application detection. IEEE Trans. Inf. Forensics Secur. 9(11),
1869–1882 (2014)

12. Xiang, C., Yang, P., Tian, C., Liu, Y.: Calibrate without calibrating: an iterative
approach in participatory sensing network. IEEE Trans. Parallel Distrib. Syst.
26(2), 351–356 (2015)

13. Virusshare. http://virusshare.com. Accessed 30 Sept 2017
14. Google android market. https://play.google.com/store/apps?feature=corpussel-

ector. Accessed 30 Jan 2017

https://baijiahao.baidu.com/s?id=1644272367710328052&wfr=spider&for=pc
https://baijiahao.baidu.com/s?id=1644272367710328052&wfr=spider&for=pc
https://www.android.com/
https://doi.org/10.1145/2046614.2046619
https://doi.org/10.1109/TIFS.2018.2866-319
https://doi.org/10.1109/TIFS.2018.2866-319
http://virusshare.com
https://play.google.com/store/apps?feature=corpussel-ector
https://play.google.com/store/apps?feature=corpussel-ector

	Android Malware Detection Using Ensemble Learning on Sensitive APIs
	1 Introduction
	2 Related Work
	2.1 Dynamic Detection Method
	2.2 Static Detection Method

	3 Feature Extraction and Analysis
	3.1 Preliminaries
	3.2 Feature Generation

	4 Detection System Design
	4.1 Ensemble Learning Detection Model
	4.2 Base Classifiers
	4.3 Weighting Combination Strategy

	5 The Results of Experimental
	5.1 Experimental Environment
	5.2 Evaluation Indeces
	5.3 Analysis of Experimental

	6 Conclusion
	References

