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Abstract. Re-authentication identifies the user during the whole usage
to enhance the security of smartphones. To avoid frequent interrupts
to users, user features should be imperceptibly collected for identifica-
tion without user assistance. Conventionally, behavior habits (e.g. move-
ment, trail) during the user operation are commonly considered as the
most appropriate features for re-authentication. The behavior features,
however, are often fluctuating and inevitably sacrifice the accuracy of re-
authentication, which puts the phones at risk increasingly. In this paper,
we propose TouchSense, an accurate and transparent scheme for user re-
authentication. The basic idea is to leverage the combined information
of human biometric capacitance and touching behavior for user identi-
fication. When the user touches capacitive-based sensors, both informa-
tion can be automatically collected and applied in the authentication,
which is transparent to the user. Based on the authentication results, we
build up user-legitimate models to comprehensively evaluate the user’s
legitimacy, which reduces misjudgment and further improves accuracy.
Moreover, we implement TouchSense on an SX9310 EVKA board and
conduct comprehensive experiments to evaluate it. The results illustrate
that TouchSense can identify 98% intruders within 10 s, but for legiti-
mate users, the misjudgment is less than 0.9% in 2.6-hours-usage.

Keywords: User re-authentication · User-transparent · Touching
behavior · Biometric capacitance · Continuous security

1 Introduction

Over the past decades, the dramatic outpouring of digital information has gen-
erated a mass of invaluable data stored in computer phones. One of the crucial
concerns lies in the private data that is sensitive to be accessed by illegal users.
To prevent this, user authentication schemes [3,35,41] are proposed to recog-
nize who is operating the device at several critical operations (e.g. unlocking,
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paying). These schemes, however, are vulnerable to attacks in that attackers
can tamper with the private data between two authentications or even steal the
keys (e.g. password, fingerprint) to pass the authentication [28,40]. Therefore,
in order to enhance security, re-authentication schemes are desired to identify
the user during the whole usage.

At first glance, user re-authentication may be a simple repeat of conventional
authentications. However, many approaches for authentication are inadequate to
re-authentication as they require user assistance and interrupt fluent operations.
For instance, users may suffer from the bother of frequently checking their fin-
gerprints for security. Therefore, we desire to find out a way to authenticate
the user transparently from their operations. To this goal, a typical approach
may exploit video streaming for continuous face recognition [4]. This approach,
however, becomes insecure in that recent reports [24] have proofed that 3D face
masks can fool facial recognition at airports.

To offer a guarantee to the privacy data, several works have been proposed for
user-transparent re-authentication. Lingjun et al. [19] presents an on-screen ges-
tures monitoring system to identify users according to screen operations includ-
ing basic sliding and tapping. Further, the authors in [21,34] provide approaches
for continuous authentication using movement data measured on smartphones.
As a consequence, both gestures and movements belong to human habits built
from individuals’ daily life. Although habit features show potentials to be uti-
lized in user authentication, they hardly achieve high accuracy in practice as
the behaviors performed from habits are often fluctuating and mutable. Specif-
ically, users cannot perform completely the same actions every time, even the
same user repeats the same motion (e.g. tap) [10]. Besides, those works may also
be affected by different Apps (Application software) and achieve lower accuracy
in practice. For instance, some Apps require users to long-press the screen to
copy text, which changes the user’s behavior and may cause misjudgment in the
authentication.

In this paper, we propose TouchSense, an accurate and transparent scheme
for user re-authentication. Our basic idea originates an observation that past lit-
erature [23] has proofed that biometric capacitance of human bodies contains a
unique feature for individuals recognition. Specifically, the biometric capacitance
stands for the capability of the human body to store charges, which is propor-
tional to the number of cells and size of cell mass in the body, thus different
for everyone. Upon this, TouchSense collects the user’s biometric capacitance
via finger touching and imperceptibly authenticates users in the whole duration
of human-machine interaction (HMI). Compared to habit features, biometric
capacitance shows better accuracy for two reasons. First, the biometric feature
is more stable than behaviors as it is determined by the user’s physical charac-
teristics and will not change in a short time [7,16,36]. Second, biometric features
are not affected by different Apps as user use.

Although the basic idea seems effective, we have to address a fundamental
challenge in TouchSense. Off-the-shelf capacitive touch screens [1,13,14,29,30]
detects the touch by sensing the biometric capacitance during user touching, but
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Fig. 1. Upon the capacitive sensors in a touchscreen, TouchSense continuously authen-
ticates users according to their biometric capacitance during finger touching.

the accuracy is not adequate to achieve user authentication. The reason mainly
stems from the fact that the accurate measurement of biometric capacitance
requires the human standing with bare feet on a Styrofoam plate in a Fara-
day shield [11,18]. In practice, it is unrealistic to prepare such an experimental
environment to measure the biometric capacitance.

We tackle this challenge by combining the biometric capacitance and touching
behavior of the user to improve the accuracy. We show that both parameters
can be obtained simultaneously by the touchscreen, as shown in Fig. 1. The
peak value represents the biometric capacitance, while the rate of curve change
is related to the user’s operation habit (Fig. 1(b)). Specifically, when the user is
going to touch the screen, the finger and the sensor will form a capacitor (CUser)
in which the capacitance depends on both human biometric capacitance and the
distance between the finger and the sensor under screen (Fig. 1(a)). Further,
once the finger is touched on the screen surface, the distance can be treated as a
constant value and thus the measurement result is only related to the biometric
capacitance for different users. In addition, the finger movement speed results
in the change to the distance and finally implies the user habits to touch the
screen.

We also design an algorithm to avoid the impact of different Apps on user
behaviors. The algorithm can distinguish and obtain the rising and falling edge
of the sensed biometric capacitance which related to user behavior and exclude
the holding period (finger keep on screen) which may be affected by different
APPs. Finally, we build up a user-legitimate model to comprehensively evaluate
the user’s legitimacy in usage. This model accumulates the authentication results
of each touching operation of the user and generates a legitimacy score, which
increases with legal operations and decreases with illegal operations. Once the
score drops below the threshold, the user will be considered an attacker and
logged out to avoid further operations.

To show the feasibility of our design, we implement TouchSense on an SX9310
EVKA board [37] and evaluate it for 50 volunteers. To comprehensively evaluate
the performance of TouchSense, we utilize the collected data set from 50 users
and did mass simulations on 100,000 samples of the attackers and legitimate
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users. For each sample, the simulation is up to 50,000,000 times. The results
show an interesting result that TouchSense can identify 98% attackers within
6 s (10 operations) and logout all of them within 11 s (18 operations). However,
for legitimate users, the misjudgment is only 0.321% in 16-minutes-usage (1,000
touching operations), and only 0.895% in 2.6-hours-usage (10,000 touching oper-
ations).

Contributions. We propose TouchSense, a novel secure scheme for accurate
and transparent user re-authentication. TouchSense leverages human biometric
capacitance to achieve imperceptible user re-authentication. Further, we combine
the biometric capacitance and touching habits to enhance accuracy. We also
eliminate the impact of APPs on user behavior to ensure the robustness of
TouchSense in practical. Finally, we build up a user-legitimate model to describe
the user’s legality much more accurately in using.

The remainder of the paper is organized as follows. Section 2 discusses the
background. Section 3 introduces our scheme design. Next, Sect. 4 discusses the
evaluation setup and test results. Section 5 discusses future works and ethical
concerns of this paper. Finally, we make a summary in Sect. 6.

2 Background

The widespread use of smartphones has not only enriched our lives but also raise
new issues of security and privacy concerns. For example, smartphones are no
longer just communication tools, but become as powerful as computers, which
may store many personal information (e.g. location, account, photos, shopping
preferences) in it. Hence, smartphones become more and more private and build
up a relationship with users. Having a victim’s private information, the attacker
can launch an impersonation attack [38]. Such attacks could threaten the owner’s
property and even reputation security. Therefore, protecting private information
on smartphones is a key issue that has to be settled urgently.

To protect the user’s privacy, most smartphones have deployed conventional
authentications schemes to unlock the devices, such as passwords, fingerprints,
facial recognition, palm textures [43] and signatures [2,26,27] which authenticate
users when they are logging in. However, the device is still vulnerable to attackers
for the remainder of the session. Specifically, an attacker can easily access the
privacy information if the owner forgets to lock the device and loses it in public
places. Even the device is locked, the attacker can also leverage system flaws to
circumvent the lock screen, which is reported to exist in both IOS [5] and Android
[17] systems. Hence, the continuous protection provided by re-authentication
is necessary for smartphones, as it will repetitively verify the current user’s
legitimacy during the whole system execution.

As re-authentication schemes will keep running in the background as long as
the user operating the phones, it should target not only accuracy but also to be
user-transparent which can automatically run without user assistance. Previous
re-authentication schemes are mainly base on the user’s behavior or biometric
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information. However, none of them satisfies both aforementioned requirements
simultaneously.

2.1 Behavior-Based User Re-authentication

Behavior information is the process of body motion, which contains the habit
information of the user [25] and can be transparently sensed during it’s pro-
cess (e.g. gait [12] can be sensed when the user is walking). Hence, many re-
authentication works are concentrate on it. Zijiang et al. made an efficient user
re-authentication scheme which bases on keystrokes [15]. This scheme can ver-
ify the user’s identity transparently by their typing behavior when the user is
using the on-screen keyboard, but the accuracy is inadequate (90% at 20 typing
operations) for high-security requirements, and it can only work when the user
is typing. Lingjun et al. designed another scheme [19] to verify the user by the
on-screen operation gestures. The same as Zijiang’s work, it achieves the advan-
tages of user-transparency but also not accurate enough. There are also some
other works using other behavior information for user re-authentication. Such
as gait-based schemes [8,31,33,39,44], which can work when the user is walking,
but in practical, walking may not the most state of users.

2.2 Biometric-Based User Re-authentication

Biometric information is the reflection of our body characteristics, just like the
internal passwords of us, which is good at stability and uniqueness [6]. However,
biometric information doesn’t contain any motion, which has to be sensed under
user assistance (e.g. touching fingerprint panel). Hence, biometric-based schemes
may interrupt user operations and bother users during the re-authentication
process. There are relatively little works study on it.

David et al. designed an excellent work, which leverages the user’s facial
information for re-authentication [4]. This scheme uses the front camera to con-
tinuously verify the current user’s legitimacy, which is accurate and easy to build
on the existing phones. However, this work needs the user to keep facing the front
camera when using, which constrains user-behavior in practical. Moreover, this
scheme may be fooled by a 3D mask [24], which is insecure under such attacks.
Feng et al. design another work that continuously authenticates the user by voice
[9], but the user has to talk to assist the re-authentication, which influences user
experience.

In summary, both existing biometric or behavior based re-authentication
schemes can only satisfy either accuracy or transparency. To meet both require-
ments simultaneously, TouchSense should combine both biometric and behavior
information in the authentication. As biometric information has to be sensed
under user motion, the solution is to find a biometric whose necessary extrac-
tion step happens to be the user’s device operation behavior. In this way, it
can be extracted during the user’s operation transparently without any addi-
tional auxiliary actions, thus avoid disturbing the user. In this paper, we start
from the user’s finger touching operation and combines the associated biometric
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Fig. 2. TouchSense authenticates the user on every screen-touching operation and
accumulates the results as the user’s total legal score. If the score drops below the
threshold, TouchSense will lock the device to protect private data on it.

information (biometric capacitance) and behavior information (touching behav-
ior) to build up the re-authentication. Since the user needs to operate the device
through finger touching, TouchSense can continuously work during the whole
usage.

3 Scheme Design

The system design of TouchSense is shown in Fig. 2. When the user touches the
screen, TouchSense scans the sensor and obtains the capacitance data. Then
TouchSense fits the curve base on the sampled data and generate the user’s
feature vector according to the parameters of the curve function. After that,
TouchSense compares the generated feature vector with the stored database to
authenticate the user through Support Vector Machine (SVM). Finally, Touch-
Sense builds up the user-legitimate module base on the authentication results
during usage and generates the user’s legal score. The score dynamically updates
during user operation, which rises with legal operations or drops with illegal
operations. If the score drops below the logout threshold, TouchSense logs out
the user as an attacker, and locks the smartphones to avoid the user’s further
operation.

3.1 Data Sampling

The first step of TouchSense is data sampling. TouchSense periodically scanning
the sensor during user operation to obtain data for the authentication. To elimi-
nate the impact of different APPs on user behavior, we design a novel algorithm
to combine the rising and falling edge together, and remove the holding period,
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Fig. 3. (a) We only extract the rising and falling part of the sensed data and removing
the holding period to avoid influence from different Apps. (b) Ignore the holding period,
the touch frequency of 50 testers is 31–103 times per minute, and the period of each
touch is 0.58–1.94 s.

Fig. 4. Data sampling (a) and curve fitting (b) for 3 testers.
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Algorithm 1. BIOMETRIC-CAPACITANCE-EXTRACT
1: � The variable initialization
2: New File String
3: New Array P [length][3]
4: time ← 0, value ← 0, trend 50 ← 0, trendflag ← 0
5: � The data processing
6: for String.readLine()! = null do
7: timenext ← String[0]
8: valuenext ← String[1]
9: if |timenext − time| > timethreshold then

10: Continue
11: else
12: trendflag ← 1
13: P ← timenext, valuenext, trendflag
14: Continue
15: end if
16: if valuenext − value > 0 and trend 50 == 0 then
17: trendflag = 0
18: P ← timenext, valuenext, trendflag
19: Continue
20: end if
21: end for
22: � Calculate the value
23: for for i ← 0 to length[P ] do
24: if flag ← P [i][3] == 1 then
25: count ← count + 1
26: time ← time + P [i][0]
27: value ← value + P [i][1]
28: end if
29: timeavg ← P [i][0]/count
30: valueavg ← P [i][1]/count
31: Quick − Sort(P )
32: end for

as shown in Fig. 3(a). Specifically, the holding period might be influenced by
specific APPs (e.g. sliding, long pressing, have longer holding period than tap-
ping), which may lead to misjudgment. This algorithm can identify the trend of
the sensed biometric capacitance. If the value does not change significantly over
a period of time, it will be defined as the holding period and deleted, and the
portions that rise rapidly (finger go close to the screen) and fall (finger move
away from the screen) will be recorded, as shown in Algorithm 1 (page 9). To
set the appropriate length of the edge decision window, we analyzed the oper-
ating habits of 50 users, as shown in Fig. 3(b). Among 50 users, the operating
frequency is 31–103 times, and the duration of each operation is 0.58–1.94 s.
Hence, we set 1 s as the length of the decision widow to obtain the rising and
falling edge of the curve (2 s in total).
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3.2 Curve Fitting

After the data sampling, TouchSense gets the discrete capacitance value, shown
in Fig. 4(a). These discrete points contain both biometric capacitance and touch-
ing behavior information of the user. The increasing or decreasing of the value
depends on the user’s touching behavior (e.g. finger moving speed, tapping fre-
quency) and the peak value represents the biometric capacitance In this step,
TouchSense uses the Gaussian function to fitting the curve base on these sam-
pled data, and we can see the obvious differences between different users, shown
in Fig. 4(b). The Gaussian function has three coefficients: (1) the peak value of
the curve: a, (2) the abscissa value in the center of the curve: b, (3) the half-
width of the curve: c. TouchSense utilizes these three coefficients and builds
up a three-dimensional feature vector for the user, which represents the user’s
identity under the current finger touching. The formula of the Gaussian function
is shown below.

f(x) = ae−
(x−b)2

2c2 (1)

3.3 Feature Vector Extraction

To obtain the accurate value for user feature vector, we need to solve Eq. (1) and
get the optimal value of those three coefficients, which minimizes the variance
between the fitted curve and sampled value.

We use logarithm and simplify it as follows:

ln(yi) =
{

ln(a) − b2

2c2

}
+

2xib

2c2
− x2

i

2c2
(2)

Let ln(yi) = Zi, ln(a) − b2

2c2 = b0, 2b
2c2 = b1, − 1

2c2 = b2, and bring these
equations into Eq. 2 to get the fitting function:

Zi = b0 + b1xi + b2x
2
i =

(
1 xi x2

i

)
⎡
⎣b0

b1
b2

⎤
⎦ (3)

The sampled capacitance from the user’s single operation is defined as

[X,Y ] = [(x1, y1) , (x2, y2) · · · (xi, yi) · · · ] (4)

Where xi is the sampling time of the sensed biometric capacitance and yi is
the sampled value. We import all the sampled data into function (3) and get the
following parameter matrix:

⎡
⎢⎢⎢⎣

Z1

Z2

...
Zn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1 x1 x2
1

1 x2 x2
2

...
...

...
1 xn x2

n

⎤
⎥⎥⎥⎦

⎡
⎣b0

b1
b2

⎤
⎦ +

⎡
⎢⎢⎢⎣

ε1
ε2
...

εn

⎤
⎥⎥⎥⎦ (5)
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Fig. 5. Feature vector sets for three users. The coefficient a is the peak value of the
Gaussian curve, b is the abscissa value at the center of the Gaussian curve, c is the
half-width of the Gaussian curve.

Simplified as:
Zn×1 = Xn×3B3×1 + En×1 (6)

To minimize the sum of squared errors of the calculation results, we can find
the least squares solution of the B matrix according to the principle of least
squares:

B =
(
XTX

)−1
XTZ =

⎡
⎣b0

b1
b2

⎤
⎦ =

⎡
⎣ln(a) − b2

2c2
2b
2c2− 1
2c2

⎤
⎦ (7)

By further solving the equation, we can get the optimal value of those three
parameters (a, b, c), and define it as the user’s three-dimensional feature vector
for authentication.

To verify the rationality of feature vectors, we trained the data from 50
testers, and each tester has 80 groups of data tests to build their own feature
vector set. Among them, the data sets of three users are shown in Fig. 5. We can
see that the feature vectors for the different users are merged in different areas,
which makes it possible to classify different users.

3.4 Feature Matching (Authentication)

In this step, TouchSense will compare the generated feature vector with the
stored data to verify the current user’s legality. To find a suitable algorithm for
user authentication in TouchSense, we test common classification and matching
algorithms, including curve distance difference, curve correlation and Support
Vector Machine (SVM), and found that SVM results best, as shown in Fig. 6(a)

The SVM is a supervised learning model which has associated learning algo-
rithms to analyze the data for classification. It needs a kernel function to work,
and different kernel functions will bring different performance. We conduct many
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Fig. 6. The authentication accuracy with different classification algorithm (a) and SVM
results best with polynomial kernel (Poly) (b)

experiments and finally find that the polynomial kernel achieves the best results,
as shown in Fig. 6(b). The equation of polynomial kernel is shown below.

K {x, y} =
(
axT y + c

)d
x means the abscissa values, y means the ordinate value, T represents the

matrix transpose, a, c and d is the artificial constants.
We can see that the performance of Polynomial Kernel gradually stable after

45 groups of data training. Hence, for better user experience, TouchSense only
needs to collect 45 groups of data as the user’s data set. By this configuration,
TouchSense achieves 87.26% accuracy and provides 16.12% FAR (False Accept
Rate) and 9.36% FRR (False Reject Rate) in a single finger touching.
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Algorithm 2. User-Legitimate Module
Input : Authentication result of each finger touching operation.
Output : User’s legitimacy score and system decision (Keep user login or lock
screen).

1: Start
2: Score = 100
3: Operation times : i = 0
4: for Score ≥ 0 do
5: i + +
6: if Authentication result[i] = illegal then
7: Score = Score− plenty points X
8: if (i≥2) and (Authentication result[i − 1] = illegal) then
9: Score = Score− extra plenty points E

10: end if
11: else
12: Score = Score + correction points Y
13: end if
14: if Score > upper bound S then
15: Score = upper bound S
16: end if
17: if Score < 0 (Threshold) then
18: Log the user out (Lock the screen)
19: end if
20: end for

3.5 User-Legitimate Model

Finally, TouchSense builds up the user-legitimate model to comprehensively
evaluate the user’s legitimacy. This model converts the authentication results
of each finger touching into corresponding scores and accumulates it after the
user logging in. The total score can effectively represent the user’s legitimacy,
and it increases if the result is legal, or decrease if the result is illegal. Touch-
Sense works in the background without bothering the user until his score drops
below the threshold. Then TouchSense regards the user as an attacker and locks
the screen to ensure device security. Hence, we can set suitable parameters to
quickly logout intruders while providing certain fault tolerance for legitimate
users. By this, TouchSense can rapidly reduce misjudgment and improve accu-
racy, as shown in Algorithm 2.

This algorithm has four parameters: penalty points X for illegal operation,
correction points Y for legal operation, extra penalty points E for continuously
illegal operation, and upper bound S . When logging in, the user will get an
initial score: 100, and the score will decrease by X points for illegal operation
or increase by Y points for legal operation. For continuously illegal operation,
the user will deduct extra penalty points E . After the user’s i-th operation, the
expectation of the legitimacy score can be expressed as

S(i) = MAX(100 − iPX + i(1 − P )Y − (i − 1)P 2E,S) (8)
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S(i) is the expectation of user score after the i-th operation, and P is the average
probability for the user to be judged illegal in each operation. If S(i) drops below
the threshold, TouchSense will lock the system and stop the user’s (i + 1) th
operation. We did mass calculation and find the optimal values for those four
parameters: (X,Y, S,E) = (25, 67, 568, 40). By this configuration, 59% (calcu-
lated by (1 − FAR)3 ) of the attackers will be logged out within three operations,
and most legitimate users will increase their score to the upper bound within ten
operations, which ensures the security while hardly bother the legitimate users.

4 Evaluation Results

To evaluate the feasibility of TouchSense, we built an experimental platform on
the SX9310 evaluation board and did comprehensive experiments and simula-
tions base on the data collected from 50 users.

4.1 Experimental Platform Setup

To ensure the validity of experiments, we need to choose the appropriate hard-
ware to deploy TouchSense. Capacitive-screens are vital interfaces for users to
interact with smartphones, which relying on biometric capacitance to detect the
touch. However, we can not directly deploy TouchSense on existing capacitive-
screens because the screen can not obtain the accurate value of the human
body capacitance, which need for authentication. Specifically, capacitive-screens
are aimed at the localization but not authentication. To precisely detect the
touching coordinate, most capacitive screens are based on Projected Capaci-
tive Touch (PCT) technologies[13,22,29], which comprised of millions of micro
capacitors by the mixed array [1,30,42], but only use a single threshold ADC to
sense the touch. When the user touches the screen, the finger forms an inductive

Fig. 7. The test platform for TouchSense. We use a laptop to observe the working states
of our scheme. The sensed biometric capacitance is shown in the window real-timely.
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capacitance with the touch sensor below the screen, which values proportional
to the user’s biometric capacitance and inversely proportional to the distance
between the finger and the sensor. The touch takes effect if the value exceeds
the threshold. So it can precisely detect the location where the user touches but
fail to obtain the specific value of biometric capacitance. Hence, we need to find
a suitable device embedded with a sensitive sensor and high-resolution ADC to
deploy TouchSense.

We find the chip SX9310, which has up to 0.08fF (1fF = 10−15F ) resolution
for capacitive sensing [37]. We use the evaluation board as the hardware to deploy
TouchSense, and carry out experiments to verify the feasibility. This board has
an SX9310 chip to gather the data and an MSP430F2132 chip to analyze the
results. We can also use a laptop to monitor the working status of TouchSense,
shown in Fig. 7.

Table 1. Biometric capacitance extract accuracy

UI Gender Temperature Motion Actual
motions

Valid
detection

Missed
detection

1 Male High (30 ◦C) Tapping 48 48 0

9 Female Low (10 ◦C) Holding 50 50 0

12 Male High (30 ◦C) Holding 45 45 0

26 Female Low (10 ◦C) Tapping 48 46 2

39 Male High (30 ◦C) Tapping 44 44 0

42 Female Low (10 ◦C) Holding 46 46 0

Biometric capacitance detection accuracy of 50 users: 99.2%

Legend: UI = User ID

We test the platform for 50 users, including tapping and holding, and find
that the extraction accuracy of the biometric capacitance is 99.2%; among them,
the test results of 6 users are shown in Table 1.

Tapping and holding represent user operation for different Apps. Tapping
fits most Apps in which the user tap the screen with negligible holding time.
Holding represents some special APPs, which require users to long-press the
screen, such as copy text or screenshots. Correspondingly, the finger stays on
the screen for a long time, and the trend of the sensed biometric capacitance is
completely different. The results show TouchSense achieves good robustness in
different user APPs.
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Table 2. Cross-validation for 50 users

UI S

UI

1 2 3 4 5 6 45 46 47 48 49 50 FIR (%)

1 0.38 0.12 0.15 0.07 0.12 0.19 ... 0.08 0.14 0.11 0.16 0.12 0.18 0

2 0.12 0.41 0.21 0.14 0.11 0.11 ... 0.17 0.31 0.25 0.17 0.24 0.19 0

3 0.15 0.13 0.44 0.15 0.14 0.19 ... 0.10 0.26 0.33 0.22 0.12 0.23 0

4 0.21 0.18 0.16 0.42 0.26 0.23 ... 0.22 0.26 0.06 0.04 0.04 0.07 0

5 0.14 0.13 0.15 0.19 0.35 0.12 ... 0.11 0.02 0.01 0.01 0.02 0.05 0

6 0.13 0.17 0.11 0.21 0.18 0.36 ... 0.25 0.06 0.04 0.04 0.05 0.21 0

... ... ... ... ... ... ... ... ... ... ... ... ... ... ...

45 0.17 0.21 0.14 0.21 0.08 0.24 ... 0.41 0.04 0.09 0.11 0.08 0.42 2

46 0.09 0.18 0.05 0.03 0.02 0.01 ... 0.06 0.47 0.34 0.24 0.18 0.14 0

47 0.03 0.18 0.08 0.00 0.01 0.01 ... 0.25 0.04 0.45 0.20 0.10 0.05 0

48 0.07 0.03 0.11 0.00 0.01 0.00 ... 0.17 0.21 0.40 0.42 0.15 0.09 0

49 0.16 0.21 0.14 0.04 0.02 0.04 ... 0.23 0.09 0.34 0.26 0.44 0.18 0

50 0.05 0.07 0.09 0.02 0.03 0.03 ... 0.18 0.07 0.07 0.04 0.03 0.42 0

Average accuracy of 50 users: 99.6%, false identification rate of 50 users: 0.4%

Legend: S = Similarity; UI = User ID

4.2 Test Results

First, we cross-validated the data set of 50 users, as shown in Table 2. The first
row and column show the ID of each user, and the value in the table means
the similarity score between two users. The last column shows the FIR (False
Identification Rate). In real experiments, we find that there is only one of 50
users who falsely identified. Hence the average FIR is 0.04%. From these results,
we also observe that for correctly matched users, the similarity scores are ranged
from 0.38–0.47 and which is below 0.37 for most false matched users. Hence, we
can set 0.375 as the similarity threshold for TouchSense to identify legitimate
users and attackers.

To further evaluate the performance of TouchSense. We did mass simula-
tions on 100,000 samples of attackers and legitimate users based on the data set
collected from 50 users. The FAR (False Accept Rate) and FRR (False Reject
Rate) in different operation times are respectively shown in the Fig. 8 and 9.

The FAR curve (Fig. 8) shows the rate of attackers who falsely accepted by
TouchSense in different operation times, represents the performance of security
during usage. For 100,000 samples, the simulation result shows that only 2.19%
of attackers will be left after 10 operations (9.5 s), and none of them will be left
after 18 operations (17 s). Hence, TouchSense identify 97.8% attackers within
10 s, and locks all of them after 17 s. If an attacker stole a phone which deployed
TouchSense, he knows the password, and he wants to steal 1 US dollar through
E-bank payment, he has only 0.064% probability to succeed because he has to
take at least 18 operations (Open software and find the payment function: at
least 2 steps. Input the attackers account: at least 8 steps. Input the victim’s
password: at least 6 steps. Pay money: at least 2 steps).
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Fig. 8. The FAR (False Accept Rate) of attackers for different operation times. The
FAR rapidly reduces with the increase of operations. For 10 operations the FAR is only
2.19%, and it goes to 0 after 18 operations.

Fig. 9. The FRR (False Reject Rate) of legitimate users for different operation times.
The FRR is very low in short usage, and it increases slowly with more operations as
the legitimate users who misjudged by TouchSense will be accumulated during the
usage. However, it hardly affects the majority of legitimate users, as even in 2.64-h of
long-time continuous usage, the FRR keeps below 0.9%.
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The FRR curve (Fig. 9) shows the rate of legitimate users which falsely
rejected by TouchSense. The lower the FRR, the fewer legitimate users are mis-
judged and logged out by TouchSense. From the simulation results, we can see
there are only 0.258% legitimate users falsely rejected by TouchSense for 10
operations (9.5 s), and for 100 operations (1.6 min), the FRR is only 0.267%.
As user re-authentication is a repetitive process, despite in every operation, the
legitimate users have very little chance to be logged out due to misjudging,
the number will also be accumulated during usage. Hence the FRR increases
slowly with more operations, for 1,000 operations (15.8 min), the FRR growth
to 0.312%, and for 10,000 operations (2.64 h), the FRR is only 0.895%. Moreover,
for the legitimate users who unfortunately be misjudged and excluded from the
system, only need to re-login, and he can use the device freely like before. In
summary, TouchSense can quickly identify and lock attackers but hardly affect
legitimate users in daily use.

5 Discussion

The future works and ethical concerns of TouchSense are discussed below.

5.1 Feature Works

Due to the limitation of hardware, this paper only verifies the feasibility of
TouchSense by one-finger touching, as the platform only deploys one sensor to
sense the touch. In future works, we can use sensor arrays to authenticate users
by more behaviors (e.g. multi-finger touches), and further improve accuracy by
fusing the data collected from multi-sensors. The basic idea is to build sensing
points which evenly distributed on the screen, shown in Fig. 10. The maxim
interval to place sensing points (LMax) can be defined as

LMax = (2 · L2
2 − 2 · L2

1)
1
2

L2 is the maximum sensing range of the sensing points, and L1 is the maxi-
mum distance between the user’s finger and the screen during the touching. In
most cases, the user’s fingers are close to the screen in using (L1 ≈ 1 cm by
the test). Therefore, we only need to deploy a few sensing points to cover the
whole screen. For SX9310 (L2 ≈ 2 cm by tested), the maximum deploy inter-
val LMax is 24.5 mm, and only 12 sensing points are required to cover a 6-inch
screen (92 × 122 mm). Also, we can use low-power approaches to optimize power
consumption of sensor array [20,32].
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Fig. 10. The distribution schematic of sensing points. L1: Maximum operation distance
for most users (h ≤ L1). L2: Maximum sensing range for the sensor. If the maximum
distance from the finger to the sensing point MAX (d1 , d2 , d3 , d4 ) ≤ L2 , all the user
motion trajectories can be captured.

5.2 Ethical Concerns

In this paper, the collected user features (e.g. biometric capacitance, finger touch-
ing behavior) will be only used and stored locally without appearing on Internet.
Thus, we believe that our work does not involve ethical issues and user privacy
leakage.

6 Conclusion

In this paper, we describe our approach towards TouchSense, a new method to
re-authenticate the user accurately and transparently. TouchSense senses and
authenticates the user by the combined information (touching behavior and bio-
metric capacitance) as long as the user operates the smartphones. To complete
our design, we build up User-Legitimate Module to comprehensively evaluate
the user’s legitimacy by stitch the authentication results of each finger touching.
The experimental results show that TouchSense achieves 87.26% accuracy and
offers 16.12% FAR and 9.36% FRR in a single touch. Further, the simulation
result indicates that TouchSense identifies 98% attackers within 10 s (10 touching
operations) and logs out all of them within 17 s (18 touching operations). How-
ever, for legitimate users, the misjudgment is only 0.321% in 16-minutes-usage
(1,000 touching operations), and only 0.89% in 2.6-hours-usage (10,000 touch-
ing operations). Moreover, TouchSense is also designed in light-weight, which
not require intensive computations and power. With the merits of high-security,
user-transparency, low power consumption, and continuous security, we foresee
that TouchSense can be wildly deployed on smartphones in the future.
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