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Abstract. The process of large-scale manufacturing workshops is complex, and
the traditional fixed resource allocation method will cause unbalanced load. Aim-
ing at this problem, an edge-side server resource allocation algorithm based on
cloud collaborative architecture has been designed and implemented. By defining
the three-dimensional informationof each IO-intensive virtualmachine in the com-
pute node, the priority of the IO-intensive virtual machine is calculated. Through
analyzing the relationship between the CPU-intensive virtual machine and the
host physical machine, the number of CPU cores for different tasks of the CPU-
intensive virtual machine is obtained, and the hardware resources are uniformly
allocated in real time according to the maximum priority list. The experimental
results show that the proposed algorithm can significantly satisfy the require-
ments of high throughput and low latency in large manufacturing workshops, and
optimize the resource allocation for actual production.

Keywords: Cloud and edge collaboration · IO-intensive · CPU-intensive · Three
dimensional information · Resource allocation

1 Introduction

“Made in China 2025” is China’s overall industrial development plan for the next
10 years, marking China’s transition from labor-intensive production to technology-
intensive, and will make a major breakthrough in cutting-edge advanced technology. In
the industrial field, the Internet of Things (IoT) can actively sense and remotely control
all physical devices in cloud manufacturing scenario in the existing network infrastruc-
ture [1]. By mapping the contents obtained from the physical world (real space) to the
data of the information world (cyber space), it can reflect the full life cycle process of
corresponding physical equipment and effectively achieve “digital twin” [2, 3].

In industrial-level application scenarios, problems such as single point failure are
easy to occur. Therefore, in addition to the unified control of the cloud, certain computing
power should be given to the edge terminal nodes to independently judgment and solve
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problems, so as to improve the factory’s capacity and prevent equipment failures. With
the continuous research and exploration in the industry, as an important feature of edge
computing, cloud and edge collaboration with complementary operation mode has been
widely used in many scenarios such as medical, industry and finance [4, 5]. The cloud
and edge collaborative computing architecture balances the computing load, reduces
the hardware requirements of the edge-side servers, and makes the edge-side servers
smaller, lighter, and cheaper while ensuring capacity.

The purpose of this paper is to design corresponding edge-side server resource alloca-
tion method, effectively reduce enterprise investment, and fundamentally avoid waste of
resources [6]. Due to the difference of the mechanical equipment and business require-
ments deployed in different factories, the size and meaning of terminal data amount
also very from each other. Therefore, the weight of the upload type of the terminal
device is important for rational allocation of resources, optimization of operations, and
optimization of cluster parameters. The characteristics of time series data generated
by mechanical equipment include features such as massive equipment and measuring
points, high data acquisition frequency, and large data throughput. In the process of
resource allocation, we need to use the available space as a measure to ensure that the
edge server can continuously store data [7]. In this background, this paper proposes a
resource scheduling scheme and algorithm for cloud and edge collaborative computing
architecture for edge-side server clusters in industrial scenarios.

The rest of this paper is arranged as the following sections. In Sect. 2, related works
are reviewed. In Sect. 3, a cloud and edge collaborative computing architecture for indus-
trial big data is proposed and the workflow under the architecture is also described. In
Sect. 4 and Sect. 5, the systemmodel and problem definitions are introduced, and accord-
ing resource allocation algorithm is designed. In Sect. 6, the comparative experimental
evaluation results are illustrated, and Sect. 7 concludes the paper, and puts forward future
work.

2 Related Work

In the edge computing environment, due to the insufficiency of the infrastructure, few
studies have focused on the resource allocation of edge-side server. China’s 5G tech-
nology development in the recent years, focusing on the industrial and manufacturing
market, has provoked the interest of the scholars in terms of resource allocation.

A traditional cloud data center is mainly composed of heterogeneous servers that
carry multiple virtual machines (VM). The use of these virtual machine resources has
potential irregularities and instability, which may result in unbalanced resource usage
within the server, resulting in performance degradation. In order to shorten the response
time of the system, Rugwiro et al. [8] proposed a task scheduling and resource allocation
model based on hybrid ant colony optimization and deep reinforcement learning, based
on ant colony algorithm random decision to reduce the chance of falling into local
optimum, approximating optimal solution. Devarasetty et al. [9] proposed the improved
optimization algorithm for resource allocation by considering the target of minimizing
the deployment cost and improving the QoS performance. However, the meta-heuristic
algorithm ismore slower, and the obtained solution is not always the optimal solution. For
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this reason, Jangiti et al. [10] proposed a set of hybrid heuristics and an ensemble heuristic
to improve the solution quality. This method can effectively allocate and manage virtual
resources in the cloud data center. Since cloud computing and fog calculation cannot
meet the practical requirements of high response and low latency in large manufacturing
workshops, Liu et al. [11] proposed to apply extreme value theory to impose probability
and statistical constraints on task queue lengths in order to use a higher rate or visit a
nearby server to offload the task. Liao et al. [12] proposed to use machine learning to
maximize long-term throughput under the long-term constraints of energy budget and
service reliability. However, Liu et al. consider that the data uploaded by an individual
unit ismuch smaller than that collected bymechanical equipment in the actual production
workshop, and the uploading protocol is just one type of protocol. This paper studies
the impact of the large-scale mechanical equipment data collection on IO-intensive
virtual machines [13], and the impact of large-scale manufacturing workshop access on
CPU-intensive virtual machines [14].

In view of the above problems, this paper proposes an edge-side server resource
allocation method based on the cloud and edge collaborative computing architecture by
studying the research results of predecessors. The algorithm is designed on base of the
StarlingX virtualization platform. The main contributions are as follows:

Solve the situation that the response delay of the terminal device is high due to the
large amount of uploaded data. Solve the case of terminal equipment due to differences
in application scenarios lead to the actual deployment difficult. Promote the intelligent
and portable products of industrial enterprises, and effectively help traditional industrial
enterprises to get rid of backward production capacity.

3 Architecture and Workflow

3.1 Computing Architecture

The classic solution of cloud computing architecture is to upload various types of sensor
data on the facilities (vibreation, pressure, temperature, etc.) to the remote cloud server
through data acquisition modual (AGV, PLC, RTU, etc.). With the help of big data anal-
ysis technologies, mathematical model will be established and the production quality,
work efficiency and competitiveness of these facilities can be improved. Taking the coal
mining industry as an example, the mine is generally in a remote located in remote areas
and network communication is difficult. However, due to the large scale, variety, low
value density, and fast update and processing requirements of coal mines, traditional
cloud computing architectures cannot be adopted because traditional cloud computing
architectures are prone to single-point problems and slow closed-loop response. To this
end, this paper proposes a cloud and edge collaborative computing architecture [15] for
industrial big data to cope with the problems of fast real-time control response and fast
data processing in large manufacturing workshops.

Figure 1 illustrates the proposed architecture, it consists of a cloud component con-
sisting of a remote server cluster and an edge end component consisting of an edge-side
server cluster. To gain insight, the cloud component is mainly responsible for model
training of the data collected by the terminal data collection device, and the edge com-
ponent is mainly responsible for providing real-time services for the factory equipment
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by acquiring the data in the model dictionary. The closed-loop response time and the
production quality are improved because of the reduction of the training time. OpenStack
and StarlingX are the most widely used open source cloud computing platforms and the
latest distributed edge computing platforms, respectively. we use OpenStack [16] and
StarlingX [17] to manage and maintain remote server clusters and edge-side server clus-
ters. The cloud and edge collaborative computing architecture shown in Fig. 1 mainly
includes a big data analysis application layer, an industrial big data platform service
layer, a data resource layer, and a device sensing layer.
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Fig. 1. Cloud and edge collaborative computing architecture.

The industrial big data analysis application layer is mainly responsible for provid-
ing corresponding services for data under different application scenarios, such as fac-
tory equipment expert knowledge base management system, factory equipment security
problem reasoning and interpretation system.

The service platform of the industrial big data platform includes a task scheduling
control module, a data dictionary matching module, and a data processing module. The
data dictionary matching module monitors and manages the business logic, and returns
the data parameters of the corresponding model information to the edge-side server to
achieve fast edge-side server data processing. The data processing module specifically
processes the data collected by the data acquisition module for different data scales
including machine learning, deep learning and traditional data analysis methods.

The data resource layer mainly includes a core database, a business auxiliary
database, a file system, etc. The core database is responsible for the cloud data col-
lected by the storage device sensing layer device; the service auxiliary database can use
the relational database such as Oracle to assist the rapid processing of the system; the
file system adopts the HDFS distributed file system [18].

The device sensing layer mainly includes various sensors installed on industrial
equipment, such as temperature, pressure, vibration sensors or smart factory equipment
such as controllers and range finder.
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3.2 Workflow

Figure 2 shows the workflow of the proposed architecture. The data acquisition device
and the request action of the user are collectively referred to as a collector. The intelli-
gent terminal simply pre-processes the information of the collector and sends it to the
computing node in the cluster of the edge-side server. The IO-intensive virtual machine
in the computing node is responsible for receiving and storing it in the database of the
storage node.

Cloud serverEdge side server 

Intelligent 
Terminal InternetCollector

Fig. 2. Schematic diagram of the working process of the cloud and edge collaborative computing
architecture.

The following is the detailed communication process:

1) On edge-side server processing
The intelligent terminal device sends the collected data to the edge data storage
module; The data processing module obtains corresponding data from the edge side
data storage module according to the requirements of the user; The data processing
module performs lightweight big data analysis according to the model parameters
provided by the data dictionary module, and synchronizes to the edge side data dic-
tionary module; The decision module feeds back to the intelligent terminal to per-
form corresponding control according to the result processed by the data processing
module.

2) On remote centralized server processing: The edge-side server synchronizes the
incremental data to the remote centralized data storagemodule; The edge-side server
synchronizes the incremental data to the remote centralized data storage module;
The data processingmodule performs heavyweight big data analysis according to the
model parameters provided by the data dictionary module, and synchronizes to the
remote data dictionary module; The remote data dictionary module will synchronize
the data and edge data dictionary modules according to specific needs.
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The edge-side server and the remote centralized server periodically analyze and
mine the stored data to update the data dictionary to ensure the accuracy of the decision
message.

4 Resource Allocation for IO-intensive Virtual Machines

4.1 Computing Architecture

The edge computing model of this paper consists of an edge-side server cluster and ter-
minal devices that continuously send data. As shown in Fig. 3, an edge-side server cluster
consists of two control nodes and two or more compute nodes in order to implement a
highly available service architecture [19]. Among them, different data storage methods
are adopted for different data sizes. As shown in Fig. 3, small-scale data is stored in the
control node; large-scale data is stored in the storage node.

Controller-0

Compute-0 Compute-1 Compute-n

Controller-1

Storage

Fig. 3. Data storage mode.

In the industrial scenario, the amount of data sent by the terminal equipment deployed
in each factory is different for different factory equipment and actual business needs.
Therefore, it is necessary to design a design scheme for the edge-side server equipped
with different factories, thereby Scientifically reduce the procurement funds of enter-
prises and avoid the waste of limited resources. Collaborative computing enables the
processing of large-scale manufacturing workshops. Since the important parameters of
most mechanical equipment do not change frequently, the mechanical characteristics
of the mechanical equipment determine that most of the parameters will remain stable.
Taking the piston condition of the fluid equipment as an example, the state and the
outlet pressure are strongly correlated in most cases, and the outlet pressure gradually
climbs from the safety initial value to the stable value, and changes stably according
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to the business demand of the mechanical equipment [20]. Therefore, we obtain the
dimensionality information from three aspects of IO-intensive virtual machine, namely,
the weight W of the data type uploaded by the terminal device, the pre-allocated space
Spre corresponding to each IO-intensive virtual machine in the computing node and the
actual occupied space Spost , and generate themaximum priority list to uniformly allocate
hardware resources in real time.

4.2 Resource Allocation Model

In this section, we will obtain the priority Pi of each virtual machine through the dimen-
sion information of the three aspects of the IO-intensive virtualmachine. Assume that the
number of existing terminal devices isN, the data type uploaded by one terminal device is
vi = {vi1, vi2, . . . , vin}, and n represents the number of upload types of terminal devices.
The data size corresponding to the uploaded data types is αi = {αi1, αi2, . . . , αin}, the
corresponding sampling time is si = {si1, si2, . . . , sin}, and the data collection interval is
σi = {σi1, σi2, . . . , σin}. The terminal device sends data to the edge-side server cluster,
and the data is received by the IO-intensive virtual machine in the computing node. The
number of existing virtual machines is Q, the virtual machine in the computing node
is V = {

V1,V2, . . . ,VQ
}
, and the resource of a virtual machine of Vi is configured as

Ri = [
x, y, z

]
, x is the CPU, y is thememory, and z is the hard disk space. In order tomeet

the service requirements of the terminal equipment and the edge-side server cluster at the
same time, we propose a dynamic resource allocation scheme based on the second-order
differential heuristic algorithm. Assuming that the storage rate of the edge-side server
cluster is vi, Then the resources of the host and its internal virtual machine are satisfied:

A Vi virtual machine receives data sent from the terminal device. At the time of
sampling ti, the received data τi is as shown in Eq. 1:

τi =
∑N

j=1

∑n

i=1
αij × 1s + ε (1)

ε represents the error generated by sampling and calculation. The average speed of a Vi

virtual machine processing data is vi, then it takes t
′
i time to process all the data sent at

time ti, which satisfies the Eq. 2:

t
′
i = τi

vi
(2)

AVi virtualmachine needs t
′
i ,t

′
i+1, and t

′
i+2 time to store data in the database. The second-

order difference of the data received by the virtual machine is used to obtain the data
upload rate increment �v as shown in Eq. 3:

�v = τi+2 − 2τi+1 + τi (3)
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It can be known from Eq. 3 that a virtual machine of Vi has six states in the time
ti ∼ ti + 2σi period, and is represented by a set status = {1, 2, 3, 4, 5, 6}, where 1 is a
no data state; 2 is a reduced state; 3 is a steady state; 4 is an increased state; 5 is an early
warning State; 6 is the excess state.When�v ≈ −τi, it indicates that the virtual machine
of the ti ∼ ti + 2σi period has not received the data sent by the terminal device. When
−τi < �v < 0, it indicates that the data uploaded by the terminal device is decreasing
during this time period.When�v ≈ 0, it indicates that the data uploaded by the terminal
device remains basically unchanged during this time period.When�v < M0, it indicates
that the data uploaded by the terminal device is increasing during the time period. When
M0 ≤ �v < M1, it indicates that the data uploaded by the terminal device has exceeded
the warning valueM0 during the time period. When �v ≥ M1, it indicates that the data
uploaded by the terminal device has exceeded the actual physical storage capacity of
the storage node during the time period, and the rate of data uploading of the terminal
device needs to be solved by increasing the hard disk space or optimizing the data storage
solution. M1 is the actual storage size of the edge-side server storage space.

It is assumed that by collecting a large number of state sets numi ⊆ status of a Vi

virtual machine in a working time period in advance, ξi indicates that the previous state
of states 4, 5, and 6 is 4, 5, and 6. Then the probability πi of the previous state of 4, 5,
and 6 is 4, 5, and 6 as shown in Eq. 4:

πi = ξi

size(numi) − 1
(4)

The ith virtual machine in the compute node of the edge-side server soft allocates a
pre-storage space of Sipre, and the data size of a Vi virtual machine that has been stored

to the storage node at time ti is Sipost . When the amount of data received by a Vi virtual
machine is τi at a time, the priority pi of the data stored by the virtual machine of the Vi

is as shown in Eq. 5:

pi = Sipre − Sipost
τi

(5)

In the industrial application scenario, due to the particularity of the industrial equipment
itself, taking the aircraft as an example, there are a large number of key mechanical
components such as gears, shafts, bearings, blades, etc. in the power transmission system
of the aircraft, and the analysis of the collected data through deep learning is obtained.
The weight W [21] of parameter, combined with Eq. 4 and Eq. 5, gives the priority Pi

of a Vi virtual machine in response to stored data as shown in Eq. 6:

Pi =
∑

w

||W || × 1

pi
× πi (6)
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w represents the weight of each parameter. N represents the collection of w. It can be
known from Eq. 3 that assuming that there are terminal devices transmitting data to the
edge-side server, the data type uploaded by one terminal device is vi = {vi1, vi2, . . . , vin}.
n indicates the number of terminal device upload types. When the Pi value is larger, the
more the virtualmachine needs to be allocated to themorememory space in time, thereby
increasing the speed of data storage.

4.3 Priority List and Resource Allocation

The edge-side IO-intensive virtual machine in the cloud and edge collaborative comput-
ing architecture proposed in this paper is mainly responsible for receiving terminal data.
The mathematical model of virtual machine IO performance and hardware resources is
established by second-order differential heuristic algorithm, and finally the IO-intensive
virtual machine adaptive configuration is realized. Suppose a server at the edge end of Vi

receives k tasks List = {τ1, τ2, . . . , τk} continuously, set the current task waiting queue
as T = {τi}, the weight value of characteristic parameters as W, and the storage space
Spre and Spost corresponding to IO-intensive virtual machines in the server at the edge
end, and the priority is Pi. The priority generation algorithm is shown in Algorithm 1:

Algorithm 1 Priority generation algorithm
Require
Ensure
1 function PriorityGenerate( )
2: while do
3: if Data allocation table can view then

4:

5:

6: end if
7: end while
8: end function

Each IO-intensive virtual machine in the edge-side server will have a priority Pi. The
control node Controller will obtain this priority Pi and establish the maximum priority
queue P. The resource configuration of the IO-intensive virtual machine is updated
correspondingly by the change of the priority queue P. The virtual machine resource
allocation algorithm is as shown in Algorithm 2:
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Algorithm 2  IO-intensive virtual machine resource allocation algorithm
Require P
Ensure Max_heap_PList
1: function IOResourceAllocation(P)
2:    InitalGenerate(PList)
3:    InitalGenerate(Max_heap_PList)
4:    while do
5:       if Data allocation table can view then
6:  size[PList] = size[PList]+1
7:         PList[size[PList]] = 0
8:         if <PList[i] then
9:            Erro
10:        end if
11:       PList[i] = 
12:        while i>1 && PList[PARENT(i)]< PList[i] do
13:           exchange PList[i]<-> PList[PARENT(i)]
14:           i= PARENT(i)
15:        end while
16:     end if
17:   end while
18:   while do
19:      if size[PList] < 1 then
20:         Error
21:      end if
22:      = PList[1]
23:      PList[1] = PList[size[PList]]
24:      size[PList] = size[PList]-1
25:      adjust_max_size(PList,1)
26:      Max_heap_PList[i] = 
27:   end while
28: end function

TheAlgorithm2–3 lines initialize the biggest priority queue. Lines 4–7 insert priority
Pi into the set in turn. Lines 8–17 new Pi insertion at the end of the priority pair. Then
adjust the queue from the rear parent node. Lines 18–27 copy the last element in the
PList queue to the first location and delete the last node. Put the first element of the PList
queue into the Max_heap_PList queue and delete an element of the PList queue. And
then adjust the queue.

The time complexity of the algorithm is mainly the process of initializing the PList
queue and the process of re-establishing the PList queue after each selection of the
maximum number. The time complexity of initializing the PList queue isO(n). The time
complexity of changing the queue element to reconstruct the PList queue is O(nlogn),
and the space complexity of the algorithm is O(1). Based on the original algorithm,
the algorithm is applicable to the problem of IO-intensive virtual machine resource
allocation caused by large-scale terminal equipment sending data in industrial scenarios,
and maximally responds to resource requests of IO-intensive VM.
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By using the algorithm of this paper, it is assumed that there are N terminal devices
transmitting data to Q virtual machines. The resource allocator unit time average pro-
cessing capacity is μ, and the average number of requests per unit time is λ [22]. If we
need to allocate i virtual machines and can process m requests at the same time, you
can get the resource allocator utilization ρ according to multi-queue system, as shown
in Eq. 7:

ρ = i

mμ
,m ≤ i ≤ λ ≤ Q (7)

The relationship between the resource allocator utilization ratio ρ and the response
time R is as shown in Eq. 8:

R ≈ 1

μ
× 1

1 − ρm
(8)

5 Resource Allocation for CPU-intensive Virtual Machines

The virtual machines in the edge-side server are mainly divided into IO-intensive and
CPU-intensive virtual machines. IO-intensive virtual machines are mainly responsible
for receiving and storing data. CPU-intensive virtualmachines aremainly responsible for
lightweight edge calculation of data. At the same time, the IO-intensive virtual machine
uses the peer-to-peer mode to receive the data sent by the terminal device, as shown in
Fig. 4. Decoupling storage from computing reduces interference between services and
helps services become more efficient.

IO-intensive
VM1

CPU-intensive
VM1

IO-intensive
VM2

IO-intensive
VMn

CPU-intensive
VM2

Terminal 1

Edge side server
Compute node

E
dgesideserver storage node

Terminal 2 Terminal n

Fig. 4. Storage and computation decoupling, peer-to-peer mode receiving data.

5.1 Resource Allocation Model

In this section we will handle lightweight edge computing tasks with CPU-intensive
virtual machines. Suppose the number of existing tasks is b, and the task type
e = {

e1, e2, . . . , ef
}
on an edge-side server cluster, f represents the number of task
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types on an edge-side server cluster. The terminal device sends data to the edge-side
server cluster, and the CPU-intensive virtual machine in the compute node processes
the data. There are o CPU-intensive virtual machines. CPU-intensive virtual machine
V ′ = {

V ′
1,V

′
2, . . . ,V

′
o

}
in the compute node. The resource configuration of a V ′

i virtual
machine is Ri = [

x, y, z
]
, x is CPU, y is memory, and z is hard disk space. In order to

meet the service requirements of terminal equipment and edge side clusters at the same
time, we propose a optimal virtual machine performance (OVMP) resource allocation
method for CPU-intensive virtual machines. Assuming that T tasks are run in the CPU-
intensive virtual machine V ′

i in the edge-side server cluster, the execution time of the
CPU-intensive application [23] is as shown in Eq. 9:

Time =
{
time, T ≤ C
time + time

C (T − C), T > C
(9)

Where time is the time when a single task is executed,C is the number of CPU cores, T is
the number of simultaneous executions of the application, and Time is the time required
for all applications to execute. In industrial scenarios, artificial intelligence algorithms
such as machine learning and deep learning are commonly used to implement edge-
side data processing, while Hadoop and Spark are useful tools to allow storage and
process big data in a distributed environment across computer clusters using a simple
programming model [24, 25]. Assuming that the minimum execution time of the CPU-
intensive virtual machine in the pseudo-distributed computing environment is Rp, and
the minimum execution time in the distributed parallel computing environment is Rn,
the acceleration ratio sp obtained by the distributed computing system is as shown in
Eq. 10:

sp = Rp

Rn
(10)

Due to the wide variety of tasks in industrial big data, such as filtering for noise data,
cleaning and denoising, modeling integration and multi-scale classification, and tasks
such as correlation analysis of manufacturing parameters such as process parameters and
equipment status parameters [26]. This article uses time_com to indicate the completion
time of task. Considering the communication delay of different tasks, such as cloud
computing communication delay is about 100 ms, small data center communication
delay is about 10 to 40 ms, router communication delay is about 5 ms, communication
delay between terminal devices It is about 1 to 2 ms [27]. The industrial big data task
requires completion time as shown in Eq. 11:

Req_Time
′ ≥ time_com + time_cor (11)

Where Req_Time
′
indicates the required completion time of the task, time_cor indicates

the communication delay of the task. The virtual machine creates an impact on the
performance of the physical machine. When the number of virtual machines is less
than the number of CPU cores, the CPU resources occupied by system users increase
as the number of virtual machines increases. The execution time of the application is
not affected by the number of virtual machines. When the number of virtual machines



Resource Allocation Method of Edge-Side Server 77

exceeds the number of host CPU coresCphy, as the number of virtual machines increases,
the performance gradually decreases, and the impact rate is θ [28]. Thus, we get the
relationship between the number of virtual machines o and the impact rate θ , as shown
in Eq. 12:

θ = o

Cphy
(12)

Assuming b tasks are respectively executed in o CPU-intensive virtual machines
of the same configuration and the corresponding execution time Time =
{Time1,Time2, ...,Timeb} is obtained. Combined with Eq. 9 and Eq. 10, the process-

ing time Time′ =
{
Time

′
1,Time

′
2, ...,Time

′
b

}
is obtained in a distributed parallel envi-

ronment. For different business needs, the execution time Time′ must be less than the
required completion time Req_Time′, as shown in Eq. 13:

�i =
{
0, Timei ≤ Req_Time

′
i

1, Timei > Req_Time
′
i

(13)

Suppose there are d in the number of 1 in �, the task set b′ ={
b

′
1, b

′
2, ..., b

′
d

}
is not completed on time, its corresponding sequence seq =

{
seq

(
b

′
1

)
, seq

(
b

′
2

)
, ..., seq

(
b

′
d

)}
, the corresponding execution time Time

′
unfinished =

{

Time
′
seq

(
b
′
1

),Time
′
seq

(
b
′
2

), ...,Time
′
seq

(
b
′
d

)

}

, and the corresponding required completion

time Req_Time
′
unfinished =

{

Req_Time
′
seq

(
b
′
1

),Req_Time
′
seq

(
b
′
2

), ...,Req_Time
′
seq

(
b
′
d

)

}

.

Combine Eq. 9 and Eq. 13 to obtain a CPU-intensive virtual machine resource allocation
method, as shown in Eq. 14:

Cadd
i =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1,
Time

′
seq

(
b
′
i

)×T

Req_Time
′
seq

(
b
′
i

)
≤ 1

Time
′
seq

(
b
′
i

)×T

Req_Time
′
seq

(
b
′
i

)
− 1

2 ,

Time
′
seq

(
b
′
i

)×T

Req_Time
′
seq

(
b
′
i

)
> 1

, i = 1, 2, ..., d
(14)

Through extensive research, CPU-intensive applications mainly consume CPU
resources. Combined with Eqs. 12 and 14, it is necessary to increase the number of
corresponding Cadd cores by a maximum priority list of no less than C and no more
than d CPU-intensive virtual machines.

5.2 Resource Allocation

The CPU-intensive virtual machine in the edge-side server first allocates the same virtual
machine resource. Hadoop sends the task to the corresponding CPU-intensive virtual
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machine according to the default scheduler. The impact on the resource configuration of
the CPU-intensive virtual machine is updated accordingly. The virtual machine resource
allocation algorithm is as shown in Algorithm 3:

Algorithm3  CPU-intensive virtual machine resource allocation algorithm
Require T, C, Req_Time
Ensure
1: function CPUResourceAllocation(T, C, Req_Time)
2:     InitialGenerate(
3:     temp = 0
4:     while do
5:           

6:           if then
7:                  
8:           else
9:                  
10 temp = temp + 1
11:          end if
12:    end while
13:    while do
14:          if 

15:            if ( ' )

( )

1i

i

seq b

seq b

Time T
Req Time

16:               [ ] 1addC i
17:            else

18:               

19:          end if
20:    end while
21:     while do
22:          
23:   end while
24: end function

Line 2 adds the list of CPU cores for preliminary testing. Lines 4–12 calculate the
execution time of each task under a distributed parallel computing system. Lines 13–
20 calculate the number of allocated CPU cores for d of the b tasks that do not meet the
required completion time. Lines 21–23 assign the corresponding number ofCadd virtual
machine cores to C virtual machines.
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6 Experiment and the Results

6.1 Experimental Configuration

In this section, we will get the performance of the modified algorithm through the
StarlingX virtualization platform [29].

We created a virtual environment as an edge-side server through the StarlingX vir-
tualization platform, including one Controller node, four IO-intensive virtual machines,
and three CPU-intensive virtual machines. For the specific configuration of the above
examples, see Table 1, Table 2 and Table 3.

Table 1. Physical host related information.

Parameter BOGOMIPS Memory Disk Bandwidth CA OS

host 3791.22 128 GB 1TB 1000 Mb/s X86 Linux

Table 2. Information about IO-intensive virtual machines.

Parameter BOGOMIPS Memory Disk Bandwidth CA OS

Controller 3791.22 32 GB 70G 1000 Mb/s X86 Linux

IO-1 3791.22 12 GB 70G 1000 Mb/s X86 Linux

IO-2 3791.22 12 GB 70G 1000 Mb/s X86 Linux

IO-3 3791.22 12 GB 70G 1000 Mb/s X86 Linux

IO-4 3791.22 12 GB 70G 1000 Mb/s X86 Linux

Table 3. Information about CPU-intensive virtual machines.

Parameter BOGOMIPS Memory Disk Bandwidth CA OS

CPU-1 3791.22 3 70G 1000 Mb/s X86 Linux

CPU-2 3791.22 3 70G 1000 Mb/s X86 Linux

CPU-3 3791.22 3 70G 1000 Mb/s X86 Linux

6.2 Experimental Results

We run the client service of the resource allocator on four IO-intensive virtual machines,
which are responsible for monitoring the IO performance of the virtual machine. The
priority is obtained by calculation and sent to the Controller node. The server service of
the resource allocator running on the Controller node is responsible for collecting the
priority of the IO-intensive virtual machine, and responding to the resource request of
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Table 4. Average response time for IO-intensive virtual machines.

Number of IO-intensive virtual machines Maximum average response time

1 0.017 s

2 0.016 s

3 0.017 s

4 0.014 s

the IO-intensive virtual machine according to the maximum priority list. The average
response time of the algorithm is 0.01 s by simulation. As shown in Table 4:

It can be seen from Eq. 5 that the theoretical relationship between the utilization
ratio ρ and the response time of the IO-intensive virtual machine is as shown in Fig. 5. It
can be seen that when the utilization rate is gradually increased to 1, the response time
grows slowly. Explain that our resource utilization rate has little effect on response time
when it is close to 90%.

Fig. 5. Relationship between resource utilization and response time under theoretical conditions.

We compare the algorithm with the genetic algorithm and obtain the performance
data of the two algorithms in the experimental scene. We can see that the algorithm
guarantees the allocation of resources with the optimal response of the IO-intensive
virtual machine with a sampling width of 4. However, due to the uncertainty of random
number, the genetic algorithm is not reasonable enough to allocate resources. Results
are shown in Fig. 6.

We use the dd command to evaluate the hard disk read/write speed of the virtual
machine. By setting the memory size of the IO-intensive virtual machine, the bandwidth
of the corresponding hard disk data storage in the case of 1 GB data write is obtained,
as shown in Table 5. It can be seen from the table that the impact of memory on data
storage speed is relatively large. Combined with Fig. 6, we can get the impact of three
algorithms on the data written by the hard disk. Using the algorithm IO-intensive virtual
machine requires 417.8814 s to store all data to the hard disk, and the genetic algorithm
needs 436.9942 s. The specific results are shown in Fig. 7.
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Table 5. The effect of different memory on hard disk write data.

Memory (GB) Bandwidth (MB/s) Time to
write data (s)

16 266 4.0308

20 315 3.4082

24 352 3.05264

Fig. 6. Resource allocation graph for two algorithms.

Fig. 7. The effect of two algorithms on the hard disk write data.

We run Hadoop and Spark distributed storage and computing frameworks on three
CPU-intensive virtual machines. Common CPU-intensive applications are: WordCount,
Sort, TeraSort, RandomWriter [30]. For the above-mentioned types of CPU-intensive
applications, we generate different scale test data sets through HiBench and store them
in the HDFS file system and submit them to Spark to perform the corresponding tasks
[31]. The specific parameters of the tasks are shown in Table 6:
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Table 6. CPU-intensive application test case parameters.

Tasks Task type Task data set size Request completion
time

Task-1 WordCount 108 MB 20 s

Task-2 WordCount 108 MB 20 s

Task-3 Sort 216 MB 23 s

Task-4 Sort 216 MB 23 s

Task-5 TeraSort 432 MB 25 s

Task-6 TeraSort 432 MB 25 s

According to the initial resource configuration in Table 3, we can get the maximum
execution time of the application in the three cases of pseudo-distributed conditions,
fully distributed conditions and multi-task co-competition, as shown in Table 7:

Table 7. Application execution schedule in different execution environments.

Tasks Single task pseudo
distributed

Single task fully distributed Multi-task fully distributed

Task-1 24 s 15 s 24 s

Task-2 24 s 15 s 24 s

Task-3 24 s 15 s 24 s

Task-4 23 s 15 s 23 s

Task-5 27 s 19 s 45 s

Task-6 27 s 19 s 49 s

The OVMP algorithm of this paper is compared with the genetic algorithm and the
performance data of the two algorithms under the experimental scene is obtained.We can
see that the algorithm does not require a large amount of actual historical data to obtain
similar calculation time with other algorithms. The algorithm used in this paper starts
from the impact of virtual machine on physical machine performance and the impact
of different configured virtual machines on task execution time. The optimal resource
allocation method for CPU-intensive virtual machine is given. The experimental results
as shown in Table 8 and Fig. 8:
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Table 8. CPU core number allocation scheme corresponding to three algorithms.

Parameter OVMP
algorithm

Genetic
algorithm

CPU-1 5 5

CPU-2 5 5

CPU-3 6 6

Fig. 8. Algorithm performance comparison chart.

The time complexity for the CPU-intensive resource allocation method used in this
paper isO(n), while the time complexity of the genetic algorithm isO

(
n2

)
. By adjusting

the number of tasks, according to the time complexity, the data of the resource allocation
time under the theory can be obtained. By comparison, the algorithm used in this paper
is fast and suitable for the actual test lathe inspection environment.

7 Conclusions

In this paper, the cloud and edge collaborative computing architecture and the edge
side cluster resource allocation method were proposed. For the IO-intensive virtual
machine, the priority of each IO-intensive virtual machine is given in combination with
the second-order difference method, and finally the resource allocation algorithm of the
dynamic adaptive IO-intensive virtual machine is realized. For the CPU-intensive virtual
machine, combinedwith the application scenario of the test lathe in the actual production
environment, the dynamic adaptive CPU-intensive virtual machine resource allocation
algorithm is realized. Compared with other heuristic algorithms, the simulation results
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show that the edge-side server store data and calculation speed of this algorithm were
significantly improved, when the number of factory terminal equipment and test tasks
are large, the resource consumption is relatively small.
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