
Data Gathering System Based on Multi-layer
Edge Computing Nodes

Shuzhen Xiang, Huigui Rong(B), and Zhangchi Xu

Hunan University, Changsha, China
{shuzhenxiang,ronghg,zhangchixu}@hnu.edu.cn

Abstract. The development of Internet of Things technology brings newopportu-
nities for the development of edge computing. As an emerging computing model,
edge computing makes full use of the equipment resources at the edge of the net-
work and creates a new network computing system at the edge of the network.
At the same time, the emergence of edge computing solves the problem of high
latency in WAN which cannot be solved for a long time in the field of cloud
computing, and brings users with low latency, fast response and good service
experience. This article will use the edges computing architecture to construct a
multi-layer data collection system. In this systemmodel, sensors upload data to the
designated edge nodes for processing, rather than remote cloud computing cen-
ters. Data collection and sample training tasks of sensor nodes in different ranges
are realized through the design of multi-layer edge nodes. This system reduces the
energy consumption of data uploading and the delay in network communication.
As a result, it provides a better network experience for the end users. And it tries
to solve the problem that the edge node in the edge system cannot satisfy multiple
training task requests at the same time.

Keywords: Data gathering · Edge computing · Compress sense

1 Introduction

In general, after collecting the data generated by the terminal devices, the cloud data
center uses powerful computing power to train the AI service model, and then stores the
trained model on the cloud and the service devices at the edge. However, using cloud
data center to collect data will cause two very tricky problems. First, cloud data center
is usually far away from the end devices, and the end devices need to be connected
through wide area network (WAN), resulting in a large delay. Secondly, when users’
data is transmitted in a WAN, data privacy cannot be guaranteed due to the fact that
WAN covers a wide range of regions and there may be many intermediate nodes [1].
In the edge of computing architecture, the edge nodes have proximity. That is to say,
the geographic distance between the edge node and the end device is very close, which
is much smaller than the distance between the end device and the cloud data center.
At the same time, using wireless LAN for network connection, the propagation delay
is much smaller than in WAN. Based on the wireless local area network to transmit

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2021
Published by Springer Nature Switzerland AG 2021. All Rights Reserved
H. Jiang et al. (Eds.): ICECI 2020, LNICST 368, pp. 51–64, 2021.
https://doi.org/10.1007/978-3-030-73429-9_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73429-9_4&domain=pdf
https://doi.org/10.1007/978-3-030-73429-9_4

52 S. Xiang et al.

data, there is no need to worry about some relatively confidential data being leaked. So
the network system based on edge computing architectures constructing can well solve
the two problems. In addition, the analysis engine is close to the data source and only
a small amount of condensed information is sent back to the central system, which is
more effective.

However, in the edge system, there may be many different AI service models that
need to be trained, but the relatively scarce computing resources and storage resources
of the edge devices cannot meet the requests of all training tasks at the same time. As a
result, this article puts forward a kind of multi-layer edge data collection system, which
makes the data can be collected and trained on the edge of the network side, in order
to complete the training tasks of the AI service model as much as possible with limited
resources.

2 Related Work

With the emergence of new computing models such as IoT, edge computing, and fog
computing, some research efforts have attempted to implement distributed machine
learning model training in network edge devices with more geographical locations [1–
4]. These network edge devices are usually connected to each other through wireless
LAN. Moreover, compared with the server cluster in the data center, the computing and
storage capacity of a single network edge device is more limited. These factors have
brought challenges to the training of distributed machine learning in the edge network.
Reference [2] considers a distributed machine learning model training algorithm for
parameter aggregation through a central parameter server. This method does not need to
transfer the original data to the central server. Instead, it uploads the local model param-
eters on each distributed node after the aggregation. Based on the theoretical analysis of
the convergence rate of distributed gradient descent, a control algorithm is proposed to
determine the optimal tradeoff between local update and global parameter aggregation
to minimize the loss function under a given resource budget. Reference [3] proposes to
divide each layer of the deep neural network model (DNN) into several parts, which are
mapped to various hierarchical structures in the edge computing architecture. Through
joint training of each part, the network edge can quickly generate small neural network
model (that is, a neural network model with fewer parameters) for quick task inference,
while generating a larger neural network model (that is, a neural network model with
more parameters) on the cloud data center side for more accurate tasks inference. It is
inferred that this joint training method minimizes device communication and resource
utilization, and improves the practicality of feature extraction in a cloud computing
environment. Reference [4] introduces edge computing into IoT applications based on
deep learning, and proposes a new scheduling strategy to optimize the performance of
deep learning applications in the IoT through the edge computing architecture. However,
in the case of training distributed machine learning models to attract edge computing
architecture, it is not covered that how to effectively collect data from terminal devices
and offload tasks and correctly allocate limited resources for each task. Since machine
learning is usually resource-intensive and time-consuming, the data collection mecha-
nism and resource allocation mechanism will have a great impact on the accuracy and
training efficiency of the training model. Therefore, it is essential to tailor an effective

Data Gathering System Based on Multi-layer Edge Computing Nodes 53

data collection mechanism and an appropriate resource allocation mechanism for the
training of AI service model in the edge.

For data collection in distributed networks, many scholars at home and abroad have
also proposed the principle of using compressed sensing to sample and compress data.
Reference [5–8] studies the distributed source coding technology of multi-sensor collab-
oration. The source coding algorithm based on compressed sensing is adopted to reduce
the repetitive coding of data, improve the compression ratio and save energy. In recent
years, a large number of research achievements have been made on compressed sensing
itself and its application in medical detection, radar imaging, image processing and other
fields.

3 Theoretical Basis

3.1 Compressed Sensing

With a large amount of information growing now, the compressed sensingmethod breaks
through many limitations of traditional methods in data sampling, storage, and signal
bandwidth. Sampling and compression are completed at the same timewithout losing the
original information, which saves a lot of resources. Compressed sensing theory proves
that if the signal satisfies the sparse characteristics in an orthogonal transform space, the
original signal can be reconstructed accurately or with high probability through fewer
sampling points. Suppose there is a signal f (N×1), the length is N, and the basis vector
is Ψ i (i = 1, 2,…, N) to transform the signal.

f =
N∑

i=1

χi ψi or f = �X (1)

From the above, the current theory of compressed sensing mainly involves three
aspects:

(1) Sparse representation of signals;
(2) Design of measurement matrix;
(3) Design of reconstruction algorithm.

3.2 Random Walk

In computer, physics, biology and other fields, randomwalk has been widely used. More
and more attention has been paid to the random walk model. “RandomWalk” describes
a situation in which a person standing on a straight line in three dimensions has only two
directions to choose from, and now he can only choose to go left or right. In probability
theory, he takes one step to the left as much as he takes one to the right, and when he
takes enough steps he must come back to where he started.

First, the introduction of random walk on the graph: define the graph G (V, E, ω), G
(V, E, ω) is a right undirected graph with n vertices and m edges, where V is the vertex
set, E is the edge set, and ω: V × V → R is the connection weight function. As shown
in Fig. 1:

54 S. Xiang et al.

Fig. 1. Undirected graph

Figure 1 an undirected graph with 17 vertices {V0, V1 ….., V16}, and 26 edges { e1,
e2, e3…… e26}. Each edge is given a certain weight ωi..

If particle A goes from vertex Vi to vertex Vj with probability Pij, then the vertices
visited by particle A form a random sequence Xn, n = 0,1,2,…

4 Multi-layer Edge Data Collection System

This system combines the topology of the network with the compressed sensing and the
edge server, and sets the cluster and cluster head in the edge server in a fixed structure.
This paper mainly describes how to set up the edge network structure and how to realize
data collection on this structure. The logic diagram of the specific framework is shown
in Fig. 2.

Fig. 2. System framework logic diagram

4.1 System Model and Problem Description

The network architecture in Fig. 2 is adopted in this paper. The first layer is leaf level,
where each node is a data source node and corresponds to an area with a geographical

Data Gathering System Based on Multi-layer Edge Computing Nodes 55

area of s. The i (i>= 2) layer is the edge computing layer, which is composed ofmultiple
edge computing nodes.

Each edge computing node of the i-th layer can collect and process the data of the n
nodes of the specified I − 1th layer and upload it to the specified edge node of the i +
1th layer.

Ci,n represents the nth node in the i-th layer, andMi,n represents themeasured number
of the nth node in the i-layer (n = 1, 2, … Ni, Ni is the number of nodes shared in the
i-th layer). Ci,n has a data amount of Di,n and generates a training task request qi,n,k .

When faced with the assignment of training tasks. Each edge node of the system
can regard the upper node in its own cluster as the source node that can send training
requests. At the same time, in the training model of AI, for the same model, the greater
the amount of input data during training, the higher the accuracy of the training model,
and otherwise the effect is very poor. Therefore, our model has the potential to improve
the accuracy of the model by actively collecting more data.

4.2 Data Collection Process

Level 1: Source Node Data Collection

RandomWalk. We correspond the vertices of the undirected graph to the sensor nodes
in the wireless sensor network, and apply the random walk model to the first-level leaf
nodes of the system. We can define the starting node of the Random Walk randomly
or according to some properties of the signal, set the number of steps to be taken by
the Walk, and then generate a random sequence of access paths Xn. In a vector of 1 ×
N with all zeros, set the position of the path to 1, which means that the information of
this node is collected. If the node has been passed in this path, the value in the vector is
not changed, indicating that the information of this node is not collected. After a walk,
the last node will pass the collected data to the cluster-head node. In this way, a path
can be transformed into a 0/1 vector, and the 0/1 vector of M paths can be generated
by repeating M random walks. These vectors are combined together to form an M × N
matrix, which is the measurement matrix of compressed sensing, so as to collect and
measure information. The logical diagram is shown in Fig. 3:

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

1,1,0,0,0,1
1,0,0,1,1,1
0,0,1,1,0,1
0,1,1,0,1,0

M

Fig. 3. Random walk roadmap

There are 6 nodes in the figure, and each color represents a node that a walk passes
through. A total of 4 walks are made. The resulting measurement matrix is M.

56 S. Xiang et al.

In the measurement matrix formed by Random walk, each row vector is indepen-
dently generated, and the data collection process is also collected through one by one
path. These characteristics make the use of stopping rule to ensure the quality of data
with higher efficiency. Increasing the number of samplings at a time can be achieved by
simply increasing the number of other walks without re-sampling.

Stopping Rule to Ensure Data Quality. Since the data information of the node is
unknown, the sparsity of the information cannot be accurately estimated, which brings
certain problems to the setting of the sampling rate. If the sampling rate is set too
high, both communication overhead and computational overhead are wasted. And if the
sampling rate is set too low, the quality of the reconstructed data cannot be guaranteed.

First, let’s look at the sampling rate and the quality of data reconstruction. Figure 4
shows the relationship between the change of sampling rate and the quality of signal
reconstructionwhen sampling a certain signal. As the sampling rate increases, the quality
change of signal reconstruction tends to be stable. However, different types of signals
tend to stabilize at different sampling rates.

Fig. 4. The relationship between the change of sampling rate and the quality of signal
reconstruction when sampling a certain signal.

Stop Rule: compare the reconstructed x(m) and x(m + 1) when the number of measure-

ments ism and the number of measurements ism+ 1, if x(m)
�

≈ x(m+1), stop increasing

the number of measurements and upload the measurement results of m + 1 to the next
layer; if the conditions are not met, increase the number of measurements once, update
the value of m, and compare again, until the conditions are met. Then, stop increasing

the number of measurements. x(m)
�

≈ x(m + 1) is expressed as:

√∑
(x′(m − 1)ij − x′(m)ij)

2

√∑
(1/2(x′(m − 1)ij + x′(m)ij))

2
≤ ε (2)

Data Gathering System Based on Multi-layer Edge Computing Nodes 57

To judge whether the two matrices have reached the stability of the reconstruction
effect, ε is a small constant.

Saliency Influence theChoice of the Starting Point of the First FloorWalk. Saliency
is the recognition of local mutations in the relevant overall data. Therefore, we introduce
the concept of saliency into the sensor data processing.

Since randomwalk is a randomlywalks in the network structure of nodes, each newly
added walk in the above termination criterion is arbitrary, which affects the efficiency
of the entire reconstruction to a certain extent. If you can choose a walk with the best
improvement in overall reconstruction efficiency in the next walk, you can further save
the amount of calculation and upload data consumption. The implementation steps are
as follows:

(A) Divide the nodes in a cluster into n blocks on average;
(B) According to the reconstruction results of the previous m measurements, calculate

the saliency value Si of each block separately;
(C) Measure the weight of each block according to the saliency value of each block

wi = Si
n∑

i=1
Si
;

(D) According to the size of the saliency value, assign the block from which the walk
starts to walk, Pi= wi;

(E) Generate a new walk.

Algorithm Design of the First Layer

Input: The sampling rate of pre-sampling is Rpre, the initial sampling rate Rc, step t, the
number of new walks g each time, the stop condition threshold ε;
Step 1: Randomly select the starting point of the random walk of the leaf nodes with the
pre-sampled sampling rate Rpre, to obtain the pre-sampled measurement matrixMpre;
Step 2: Reconstruct the data according to the pre-sampling and use the reconstruction
algorithm to obtain the matrix Xpre;
Step 3: Divide Xpre into n blocks and calculate the saliency value Si of each block;
Step 4: Assign the weight wi of each block according to the saliency value, and calculate
the starting point probability Pi of each block;
Step 5: Select the starting point of random walk according to Pi, and then generate
the measurement matrix Madd of (Rc − Rpre) sampling rate to obtain the final initial

measurement matrixMc =
(
Mpre

Madd

)
;

Step 6: According to the measurement matrixMc, the reconstructed Xc is obtained, and
then g new walks are generated by Step 3 and Step 4, and the new walk is added to the
measurement matrix to update the measurement matrixM;
Step 7: Compare the reconstructed X(m) and X(m + 1) when the measurement times
are m and the measurement times are m + g, if X(m) and X(m + 1) meet the conditions
formula 2, then stop increasing the number of measurements, and upload the data to the
cluster head of the second layer; if the conditions are not met, updatem=m+ g, convert
Xpre in step 3 to X(m) and repeat after generating g walks.

58 S. Xiang et al.

Layer i: Data Collection Edge Layer

Saliency Affect the Sampling rate Distribution of the i (2 < i < N) Layer. In the
actual situation, the data uploaded by the sensor node is not known, and it is not smooth,
but with mutations. When faced with an unsmooth signal, the number of measurements
may exceed the total number of nodes, resulting in an increase in the amount of com-
munication data. Therefore, in the i-th layer (2 < i < n) of the entire system, this paper
introduces a weighting factor γ to evaluate the value of the data carried by the edge
nodes, and updates the measurement value of each edge node toM′(l)= γ * M(l), so that
each cluster can be adaptively measured.

Because the fixed sensor node is limited by regional time, within a certain period of
time, the data acquired by the sensor has certain similarity. All can calculate γ based on
the data obtained last time.

Suppose that the data of four edge nodes in layer i will be transferred to an edge
node in layer i + 1. The data of these four nodes are represented by vectors x1, x2, x3,
and x4, respectively, and the corresponding measured values are M1, M2, M3, and M4.
From x1, x2, x3, and x4, using the features of saliency, the saliency values of the four
vectors are calculated, and the corresponding saliency values are obtained as S1, S2, S3,
and S4. The γ value corresponding to the jth value is

γj = Sj
Savg

(3)

Where Savg is the saliency average of this layer,

Savg =

k∑
n=1

Si

k
(4)

Where k is the number of clusters contained in this layer, so that the corresponding
weighted value for the next retransmission can be obtained.

Algorithm Design of Layer i(2 < i < N)

Input: the original assigned Mi
(l) of the measured value of each cluster;

Step 1: Calculate the saliency value Si of each cluster in the i-th layer under this cluster
head according to the data reconstructed by the cluster head in the i + 1th layer;
Step 2: According to the saliency value Si, calculate the weighting factor γ i of the value
of the data carried by the node;

γi = k · Si
k∑

n=1
Sn

(5)

Step 3: Update the measured value of each cluster M ′(l)
i = γ i * Mi

(l);
Step 4: Use the updated measurement value to perform compression measurement on
the data of each cluster.

Data Gathering System Based on Multi-layer Edge Computing Nodes 59

4.3 Train the Task Assignment Process

Since the training task does not necessarily have frequent periodicality along with the
data collection, in addition to the function of data uploading, edge computing nodes can
also make use of idle time and collected data to conduct offline training for existing
models. This can improve the real-time performance of the request and reduce network
pressure.

Then, when the edge computing node receives the training request, it may not accept
and respond immediately. First of all, it is necessary to judge whether the training of the
request is feasible by combining the requested data volume with the current computing
resources. Training to each edge node Cin (i > 2) the maximum storage capacity and
computing power of rsin and rcin, respectively, at the same time, under the assumption
that each data source node generated trainingmission need to request a unit of the CPU to
calculate, we can get about edge training node storage capacity and computing capacity
constraints, the sum of all the tasks of computing power and storage capacity of no more
than the sum of node threshold.

After the training task of the edge computing node is completed and the updated
model is obtained, the training request information is summarized and uploaded to the
designated edge computing node at the next level of the system for model training with
a larger area. Therefore, the closer the system is to the source node, the more real-
time tasks it may have to face. Therefore, it is very likely that there will be insufficient
computing capacity of edge nodes and insufficient resources. Therefore, we need to
adjust our thought. In case of insufficient computing and resources, the request should
be transferred to the next layer. In order to ensure real-time performance and low latency,
the number of layers should not be more than 3. The specific algorithm is as follows
(Fig. 5):

Fig. 5. Train the task assignment process

60 S. Xiang et al.

5 Analysis of Experimental Results

5.1 Performance Measures

(1) Quality of collected data
The collected data quality will directly affect the accuracy of the training model. In
this paper, the error rate and SNR are used to represent the data quality.

(2) Communication overhead
Sensors in a small area can generate as much as 8 GB of data a day, and that doesn’t
include data generated by mobile devices, surveillance cameras, and Web services.
Therefore, in modern cities, the amount of data generated in one day will be very
large, and the amount of data collected will directly affect the communication
cost. The larger the amount of data, the greater the cost. In this paper, the data
volume of the first layer is related to walk number. Each walk generates one unit of
data. The generation of walk is directly determined by in the stopping rule, so the
communication overhead is indirectly expressed as the relationship between walk
number and ε.

(3) Training task volume
For each training task request, the system proposed in this paper will determine
whether the training task is accepted by the edge node and which edge node should
collect the task and its data for training. Depending on the goal of the problem, we
should consider the number of tasks the system accepts as a performance measure.
Different variables such as the storage capacity of edge nodes and the number of
data source nodes will affect the number of training task requests received by the
system.

5.2 Experimental Setup

In this paper, the experiments use the experimental data sources (https://tao.ndbc.noaa.
gov/tao/datadownload/searchmap.SHTML) of sea surface temperatures. In addition, two
groups of signals collected under other conditions are simulated for the experiment. The
second group of signals is sparse signal, and the third group of signals are mutated
non-sparse signal.

In this paper, a total of 1024 nodes are set, and the total structure is divided into
4 layers. The first layer is divided into 16 clusters, each with 64 nodes. The second layer
is divided into 4 clusters, each cluster contains 4 cluster-head nodes. The four cluster-
head nodes in the third layer upload the data to the data processing center in the fourth
layer. In the first layer, the pre-sampling rate Rpre is set to 0.1, the initial sampling rate
Rc is set to 0.3, the random walk skip is set to 30, and stopping rule’s only selects 1 walk
at a time. Measure the m value of the amount of data uploaded to the second layer when
the recording stops. In the second layer compression of the algorithm in the paper [9],
the same measured value M is used to compress and upload to the third layer, and the
sampling rate after the third layer is set at the same sampling rate of 0.9.

We assume that the size if data uploaded by a node is 0.25MB each time, and the task
data collected by a training task is 4 GB, in this paper, data storage capacity of the edge
of the tree nodes are assumed to be [10,100] of the GB uniform distribution, the amount
of computing power to vCPU decision, to obey [50, 150] vCPU evenly distributed.

https://tao.ndbc.noaa.gov/tao/datadownload/searchmap.SHTML

Data Gathering System Based on Multi-layer Edge Computing Nodes 61

5.3 Comparison of Experimental Results

(1) Influence of ε

In the experiment on the influence of ε, we use 1024 data, the predetermined Rpre is 0.
3, and the corresponding Mpre = 307.

(a) (b)

Fig. 6. The effect of ε on the reconstructed data Error Ratio

For different signals, the setting of ε affects them to different degrees, but they all
directly affect the quality of the reconstructed data when the algorithm stops. In Fig. 6(a),
the setting range of ε is 0.01–0.05, and the error ratio is higher than 0.1. The larger the
ε setting, the larger the error ratio, which indicates that the quality of the data increases
with ε. In the figure (b), the setting range of ε is 0.0001 to 0.0005, and the error ratio is
lower than 0.01, achieving high-quality reconstruction.

(a) (b)

Fig. 7. The effect of ε on the value of M

As ε increases, the value of M at the time of stopping also becomes smaller. The
smaller the value ofM, that is, the less data need to be uploaded, which directly affects

62 S. Xiang et al.

the overall communication overhead. The setting range of ε in Fig. 7(a) is 0.01–0.05, and
the range ofM value is basically between 300–650, which is equiva-lent to the sampling
rate between 0.3–0.6; (b) In the figure, the setting range of ε is 0.0001–0.0005, the M
range is basically between 750–1000, which is equivalent to the sampling rate between
0.7–0.9.

(a) (b) (c)

Fig. 8. Snr comparison chart of this algorithm and traditional algorithm

It can be seen from Fig. 8 that, overall, the algorithm in this paper significantly
improves the data quality compared to the traditional algorithm. Especially for the two
sets of signal data after the mutation, the improvement of the effect is more obvious.

(2) Impact on training business volume

This is mainly for comparison with the most intuitive way of collecting greedy thoughts.
According to greedy theory, in order to collect more training task requests, the system
should first select those training task requests that provide the least amount of data. Under
the greedy strategy, we first select the training task request with the smallest amount of
data, and then randomly put this training task request and the data it provides into an
edge node. The total number of edge nodes in the greedy thought and the number of all
edge nodes in the system.

Fig. 9. Impact on training business volume

Data Gathering System Based on Multi-layer Edge Computing Nodes 63

Figure 9 shows the impact of the storage capacity of the edge training node on the
number of training task requests received by the system. As the upper limit of the storage
capacity of the edge training node increases, the performance of the system is getting
better and better, probably more than the greedy strategy collect about 30% of training
mission requests.

6 Summary

This paper proposes a data collection system based on distributed edges, which uses
random walk and stopping rule and selects the starting point of walk based on saliency,
and applies it to the data collection of the leaf layer structure, so that each cluster can use
edge nodes to adapt. To collect data, save the amount of uploaded data while ensuring
data quality. In the compressed sampling process of the i-th layer (2< i< n), the sampling
rate of each cluster is allocated again according to the reconstructed data obtained in the
previous time using saliency, so as to better identify the sudden change area and avoid
the situation that the measured value in the abrupt region is greater than the number of
cluster nodes, thus wasting the amount of uploaded data. In addition to the cost savings
in the data collection process, the system proposed in this paper can better deal with
the data collection of edge nodes for AI data training. The data and model of each edge
node are closer to the data characteristics within the range of the node. And when the
computing power or storage capacity of the edge node is insufficient, the training request
can be passed to the edge node of the next layer to process as many training requests
as possible. In the future research, the problem of unloading and scheduling of edge
training tasks will be analyzed based on more specific scenarios.

Acknowledgments. This research was partly supported by National Natural Science Foundation
of China under Grant No. 61672221, and by National Natural Science Foundation of Hunan
Province under Grant No. 2020JJ4008.

References

1. Mao, Y., You, C., Zhang, J., et al.: A survey on mobile edge computing: the communication
perspective. IEEE Commun. Surv. Tutorials PP(99), 1 (2017)

2. Wang, S., Tuor, T., Salonidis, T., et al.: When edge meets learning: adaptive control
for resource-constrained distributed machine learning. In: IEEE INFOCOM 2018 IEEE
Conference on Computer Communications. IEEE, pp. 63–71 (2018)

3. Teerapittayanon, S., Mcdanel, B., Kung, H.: Distributed deep neural networks over the cloud,
the edge and end devices. In: 2017 IEEE 37th International Conference on Distributed
Computing Systems (ICDCS), IEEE, pp. 328–339 (2017)

4. Li, H., Ota, K., Dong, M.: Learning IoT in edge: deep learning for the Internet of Things with
edge computing. IEEE Netw. 32(1), 96–101 (2018)

5. Xu, X., Ansari, R., Khokhar, A., Vasilakos, A.V.: Hierarchical data aggregation using com-
pressive sensing (HDACS) in WSNs. ACM Trans. Sens. Netw. 11(3), 1–25 (2015). Article
45

6. Chong, L., Jun, S., Feng, W.: Compressive network coding for approximate sensor data
gathering. In: Global Telecommunications Conference, IEEE Press, pp. 1–6 (2011)

64 S. Xiang et al.

7. Luo, C., Wu, F., Sun, J., Chen, C.W.: Compressive data gathering for large-scale wireless
sensor networks. In: Proceedings of MobiCom (2009)

8. Luo, J., Xiang, L., Rosenberg, C.: Does compressed sensing improve the throughput
of wireless sensor networks. In: Proceedings of the IEEE International Conference on
Communications (2010)

9. Zheng, H., Yang, F., Tian, X., Gan, X., Wang, X., Xiao, S.: Data gathering with compressive
sensing in wireless sensor networks: a random walk based approach. IEEE Trans. Parallel
Distrib. Syst. 26(1), 35–44 (2015)

10. Wang, L., et al.: CCS-TA: quality-guaranteed online task allocation in compressive crowd-
sensing. In: UBICOMP 2015, Osaka, Japan, 7–11 September 2015

11. Kang, K.D., Chen, L., Yi, H., et al.: Real-time information derivation from big sensor data
via edge computing. Big Data Cogn. Comput. 1(1), 5 (2017)

12. Shi, W., Cao, J., Zhang, Q., et al.: Edge computing: vision and challenges. IEEE Internet
Thing J. 3(5), 637–646 (2016)

13. Sinaeepourfard, A., Garcia, J., Masip-Bruin, X., et al.: Estimating smart city sensors data
generation. In: 2016 Mediterranean Ad Hoc Networking Workshop (Med-Hoc-Net). IEEE,
pp. 1–8 (2016)

14. Sivakumaean, M, Iacopino, P.: The mobile economy 2018. GSMA Intelligence, pp. 1–60
(2018)

	Data Gathering System Based on Multi-layer Edge Computing Nodes
	1 Introduction
	2 Related Work
	3 Theoretical Basis
	3.1 Compressed Sensing
	3.2 Random Walk

	4 Multi-layer Edge Data Collection System
	4.1 System Model and Problem Description
	4.2 Data Collection Process
	4.3 Train the Task Assignment Process

	5 Analysis of Experimental Results
	5.1 Performance Measures
	5.2 Experimental Setup
	5.3 Comparison of Experimental Results

	6 Summary
	References

