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Abstract. In multi-edge networks, as the bandwidth and computing
resources of edge servers are limited, transmission and processing of large
amounts of data could bring significant pressure, leading to violations of
service agreements. Thus, it is very important to schedule tasks in edge
network efficiently for better performance. In this paper, we formulate
the problem as minimizing the overall completion time of tasks in edge
networks. Since the problem can be proved to be NP-hard, we propose a
novelty algorithm, SmartDis, for scheduling tasks accross multiple edges.
The main idea of SmartDis is to select offload slots of tasks based on
the principle of choosing the smallest sum of added value of the overall
completion time. We show theoretically that the system transmission
time of SmartDis is within a constant times of the optimal result, as
long as the data upload is scheduled according to the transmission order.
The evaluation results illustrate that SmartDis is superior to other cross-
domain job scheduling algorithms at this stage, achieving a performance
improvement of at least 25%.

Keywords: Multi-edge network - Edge bandwidth + Task schedule

1 Introduction

Multi-edge computing is a distributed computing framework that brings appli-
cations closer to data sources. It has become one of the most promising ways to
improve response times and bandwidth availability for IoT devices. In a typical
multi-job scenario, raw data is first collected from different devices and gath-
ered in an edge server for processing. Edge computing improves the efficiency
by dispatching data close to each edge server for distributed execution. Recent
research results show that under the distributed execution mode, 90% of the
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job completion time is shortened to 33% [10], and wide area network bandwidth
usage is reduced by a factor of 250 [23,24]. Furthermore, for jobs like query, the
speed can be increased by 3-19 times, and the transmission cost of the WAN
can be reduced by 15-64% [16]. This framework can bring significant advantage
for delay-sensitive tasks and data-privacy tasks, such as automatic driving [14],
public security [1,6], customized healthcare [4,15], and unmanned retail [21].

However, since the bandwidth and computing resources in edge networks are
limited, it is a critical issue to efficiently schedule and offload tasks. Figure 1
describes an edge network environment, which is composed of a terminal access
point (Access Point, AP) and several edge computing slots. Terminals upload the
data to the edge servers through the AP. In this scenario, the bottleneck is the
upload link bandwidth of the AP, which is less studied in previous researches.
The classic multi-machine scheduling problem [2,5,8,12] and the Current Open
Shop problem [9,13,18] mainly deal with jobs that can be execyted after release,
and hence can’t cope with such challenges.
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Fig. 1. Edge network environment.

In edge computing, due to the wide distribution of the edge regions and the
uneven density of users in different locations, the data processing requirements
naturally vary alongside the locations and time. The deviation also exists in the
service capability of the edge. Therefore, completing tasks as quickly as possible
on a single edge does not necessarily shorten the job completion time. Even
providing services for certain subtasks is “wasting” resources, because the sibling
tasks of these subtasks on other edges are being delayed due to the imbalance
in execution caused by the above deviations. Therefore, to get a better average
job completion time, it is more important to give priority to other tasks, such
as the task that can dominate the completion time of the job.

In this paper, we propose a novel polynomial-time algorithm SmartDis, for
efficient scheduling and offloading tasks in multi-edge computing. Considering the
bandwidth constraints, the problem is compounded as a joint scheduling problem
of network and computing resources. We first theoretically prove the NP-hardness
of the problem. Since the offloading occurs after the data upload is completed, this
paper naturally dismantles the problem into two sub-problems of optimizing data
upload time and optimizing offload calculation time. The main idea of SmartDis
is to arrange the order for the data upload request at each edge AP based on the
primal dual method, to minimize the global data upload delay: When the data
upload of a certain task is completed, SmartDis immediately selects the offload
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slot for the task based on the principle of the smallest value added of the sum of
the completion time, and arranges the scheduling timing for tasks on the slot.
We rigorously prove the theoretical performance guarantee of SmartDis. If
the upload sequence of tasks is arranged according to SmartDis’s sequencing
strategy, the global data upload delay can be guaranteed to be within a constant
times of the optimal value. Finally, we conduct extensive experiments via both
implementation and simulation to validate the practical performance of Smart-
Dis. We simulate job specifications in an real commercial cluster environment
and compare with several scheduling mechanisms, including traditional schedul-
ing mechanisms (FCFS and SRPT), recent scheduling mechanisms designed for
concurrent execution of multiple data centers (Reordering and SWAG). Then we
conduct evaluations on execution performance, fairness, sensitivity, and schedul-
ing execution cost. Compared with the heuristic scheduling algorithm based on
the SRPT class, SmartDis can improve the average job completion time by up to
33%, while keeping the additional calculation and communication overhead low.

2 Related Work

Since the WAN is a key bottleneck in cross-domain analysis, existing work is
aimed at coordinating data distribution and task scheduling among multiple
data-centers to reduce the WAN transmission time. Literature [16] emphasizes
the difference between the upstream and downstream bandwidth of each clus-
ter. If the low bandwidth carries high data volume, the receive/send operation
will often become the bottleneck of the job. Literature [16] therefore optimizes
the placement of two stages’ data and tasks to avoid higher bottlenecks in the
data transmission process, thereby reducing job completion time. Literature [23]
aimed at minimizing WAN bandwidth consumption, and adjusted the query-
execution plan and data backup scheme of SQL jobs. This move uses the cheap
storage resources in a single data-center to cache the intermediate results of
queries, aiming at avoiding redundant data transmission. The above research
work aims to reduce the WAN data transmission delay. However, purely opti-
mizing WAN transmission delay will cause uneven load on clusters, so the task
will be backlogged in some “hot spots” clusters, causing execution bottlenecks.

Literature [11] proposed that the task execution sequence within a data center
may still extend the completion time of the entire job. The reason is that the
completion of the job depends on the most lagging subtask, so the subtasks
completed in advance can be postponed appropriately.It is closest to the research
work of this paper. It points out that if the subtasks’ sibling tasks have a higher
delay in other data centers, reducing the subtask’s completion time does not
speed up job completion. Therefore, it is appropriate to postpone this subtask
and give resources to other competitors with “faster” sibling tasks, which may
have a better average delay globally. The literature first proposed an auxiliary
Reordering mechanism to adjust the existing scheduling order for the imbalance
of delay between sibling tasks. The basic idea behind it is to try to delay the tasks
in the queue, as long as the delay does not increase the overall completion time
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of the job, but provides opportunities for other jobs to shorten the completion
time. The specific operation is (1) Find the end task of the queue with the
longest completion time in each data center. (2) The job to which the task
belongs is inferior to other jobs. (3) Extract the task of the job from each queue
and update the queue completion time. Repeat the above steps until all jobs are
reordered. Since Reordering is a conservative method (used to adjust the existing
scheduling), its result depends on the original algorithm’s room for improvement.
Literature [11] further proposes a complete scheduling algorithm SWAG, and it
does not need Reordering assistance. The scheduling principle is to give priority
to the jobs that make the longest queue with a least value added. The specific
operation is (1) Calculate the increment of the completion time of each queue
when executing each job. (2) Select the job that makes the longest queue with a
least value added,and schedule it first (3) Update the length of each queue after
executing the job. Repeat the above steps to sort all jobs.

However, the above work is based on several assumptions: first, data centers
have the same number of computing slots; second, all slots have the same con-
figuration and computing performance. While, in a multi-edge system, the scale
of each edge cluster and the configuration of computing slots are heterogeneous
(note that the processing time of a task on different edge servers is independent
and different in this paper). This will lead to the coupling of scheduling and
offloading, that is, the competition and imbalance when tasks are offloaded to
different slots are different. The above scheduling algorithm that ignores hetero-
geneity is therefore not applicable.

3 Model and Problem Formulation

3.1 System Model

During execution, the multi-edge system requires a logically centralized coordi-
nator, which is deployed either in the cloud or on a strong edge. According to
the constraints of specific scenarios, the coordinator formulates corresponding
decisions and delivers them to the edge for execution. In Fig. 2, a job is submit-
ted to the coordinator. Due to the massive, redundant, and low-quality raw data
produced by terminal. The tasks of the job are usually dispatched to the edge
near the raw data.

In a wide area network environment, there are several edge APs, forming a
set P. Each AP is connected to an edge cluster p € P deployed nearby, and
let S, be the set of computing slots at edge p. Set the uplink bandwidth of the
AP to B,. A batch of analysis jobs J = {1,2,...,n} continuously arrives at the
system, 7; is the arrival time of job j € J. The initial stage of each job consists of
several tasks, which are responsible for processing the geographically distributed
raw data. v;’ is the amount of data that job j needs to process at edge p. Job j
assigns a task u? to edge p to perform data processing, and d?+ is the processing
time of the task on slot s € Sp.

Before the task u’j) performs data processing, data needs to be uploaded from
the terminal device to the edge cluster. Let ’Z}p be the data upload completion time,
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Fig. 2. Data analysis jobs run in the multi-edge system.
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ij:Tj+wn§+B*;7 (1)

Among them, umé-’ is the time that the data of the task is queued up at the
access point p to be uploaded. After the data upload is completed, the edge
cluster scheduler plans the slots used for offloading and scheduling timing for
the task. Considering the limited computing power of the edge server, this paper
sets the server to only handle one task at a time. If the task is offloaded to the
server s € S, to perform data processing, let Cf be the completion time of the
task uf, then

ij _ 7}17 + wcé”j + dls”j, (2)

Among them,wc? is the queuing delay of the task on the server s. Let C; =
maxpepC;’ represent the completion time of job j. For these jobs executed on
multiple edges,this paper coordinates the data upload order of tasks(wn? ), the
decision of the slot where the task is offloaded (the slot s that executes the
task), and the scheduling timing on the slot (wcP7), to minimize the sum of the
completion time }_,C;. Geo-TORS (Task Offloading and Resource Scheduling
for Geo-distributed Jobs) refers to this problem.

3.2 Problem Formulation

Since the offload occurs after the data upload is completed, this paper naturally
disassembles the Geo-TORS problem into two problems, which are the optimiza-
tion of job data upload time (problem I) and the optimization of job offload and
calculation time (problem II).

Problem I: Optimize the Upload Time of Jobs’ Data. This sub-question
determines the data upload completion time T pj for each task of the job. By
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arranging the task upload sequence, the sum of these job upload times is opti-
mized. Its formal definition is as follows:

Jj=1
st. T; > T, VpePNjeT (4)
szm, wePYied  (5)
P Ui v;) .

Among them, 7; is the data uploading completion time of job j, and constraint
(6) indicates that the task data is uploaded in strict order and no preemption is
allowed.

Problem II: Optimize Jobs’ Offloading and Calculation Time. After
the data upload is complete, the task uf waits for offload and processing. Let

] ’Tp be the time when the task uj can start execution. At time rj, select

a computmg slot s € S, to offload the task u , and use variables 2P € {0, 1}
to represent the task’s ofﬂoadlng decision. Then arrange the processing order of
this task on slot s, and finally optimize the sum of the completion time of the
whole job. Its formal definition is as follows:

minZCj (7)
j=1

s.t. Zx’;’jzl, VpeP,VjeT (8)
sESy
c; >cr, YwePVieJ  (9)
cl >t vwePVieJg (10)
Cr>Cl+ > alldtorct >cp+ > abldil, VpePVikeJ (11
SES SESp

Among them, the constrained formula (8) ensures that a task can and must be
offloaded to a slot. Constraint (11) shows that task execution strictly follows the
determined scheduling sequence, and preemption is not allowed.

Theorem 1. The Geo-TORS problem is NP-hard.

Proof. If the coupling between tasks in this problem is neglected(L.e. tasks
belonging to the same job jointly determine the completion time of this job),
the problem can be simplified to the problem of offloading and resource schedul-
ing of independent tasks in literature [22]. It has been proved that the offloading
and resource scheduling of independent tasks are NP-hard. Therefore, the Geo-
TORS problem is at least NP-hard.
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4 The SmartDis Algorithm

This paper designs tasks offloading and scheduling algorithm SmartDis. The
algorithm’s brief overview is that when a distributed execution job is released,
SmartDis first arranges the transmission order for the data upload request of the
job at each edge AP based on the primary dual method, to minimize the global
data transmission delay (GeoOrder component). When the data transmission
of a certain task is completed, SmartDis immediately selects the offload slot
for the task based on the principle of the smallest value added of the sum of
the completion time, and arranges the scheduling timing for tasks on the slot
(GeoSRPT+LeastDelta component).

Offloading the task immediately is due to the following two considerations.
First, the main scheduler has limited memory. If a large number of tasks are
cached in the task pool and only the resources are idle, the scheduling will
be performed. During this process, the data in the memory may be frequently
switched, which will cause extra time. The second is that in a heterogeneous
server cluster, the execution time of tasks on each server is independent. In
the face of different idle slots, the priority of tasks changes. If the task pool
model is adopted, no matter whether the scheduling is performed regularly or
the scheduling is performed after idle resources are available, the scheduling
algorithm needs to be executed once for the entire task pool. This is time-
consuming.

4.1 Determining Upload Orders

Based on the primary-dual method, when a new job is released, the SmartDis
algorithm performs job sequencing for each edge AP’s data upload requests, and
each edge AP should transmit data according to the ordered job sequence. The
transmission ordering strategy GeoOrder proposed in this paper is near optimal,
which ensures that the data transmission delay does not exceed 3 times the
optimal value.

The main challenge of GeoOrder design is how to capture the impact of the
data transmission between jobs in the system under the constraints of upload
bandwidth at each edge. This paper achieves this goal based on the job weight
scaling step derived from the primary-dual design framework. The execution
steps of GeoOrder are summarized as follows in Algorithm 3. Later, this paper
introduces the design process of GeoOrder based on the primary-dual framework
and the performance analysis of GeoOrder in detail.
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Algorithm 1: GeoOrder-simplified version

Input: J (unordered job set)
@f (Amount of data not uploaded by job j at edge p)
wj (The weight of job j)
Output: o (Assignment of jobs)
1 for k=n to1ldo
2 b « argmax, dej J (Find bottleneck AP)

3 o(k) — argminjc 7 =% (Select the job with the largest amount of
J

unuploaded data after welghtlng)

4 Wj — Wj — W () X ~p (Job weight scaling)

5 J — J\o(k) (Update JOb collections that have not been scheduled)

6 return o

GeoOrder (1) finds the bottleneck AP, that is, the edge AP with the largest
amount of unuploaded data (Algorithm 4.1, line 2) (2) Selects the job with the
largest amount of unuploaded data among all upload requests of the bottleneck
AP. And place the job at the end of all out-of-order jobs (Algorithm 4.1 line
3) (3) scale the weight of all out-of-order jobs to capture the impact of the job
sequencing operation in step (2) on the data transmission delay of the remaining
jobs (Algorithm 4.1 line 4). Repeat the above steps to sequence all jobs.

The design process of the primary dual algorlthm and GeoOrder performance
analysis. Let the variable T-p =7 +wn + B” be the time when the data transfer
of job j is completed at the edge p, and the variable 7; be the time when the
data transfer of job j is completed. w; is the weight of job j, and the default
value is 1. With the goal of minimizing the weighted data transmission time, the
formal data flow scheduling problem is as follows:

minij'Z} (12)
j=1

st T; > T, VpePNYieT  (13)
" >y, VpeP,VjeT (14)
T > TP+ or TP > TP 407, VpeP,VikeJ (15)

In this paper, the nonlinear Primal problem (Eq. (15) is a nonlinear con-
straint) is further rewritten as the linear programming LP-Primal. Equation (20)
is similar to the linear constraints introduced by Wolsye [25] and Queyranne [17]
for the One-Machine-N-Job scheduling problem:

> piC; dovi| +>_p| VS <Cn] (16)

jES jES JES

l\J\»—A

The variable C; is the completion time of job j , p; is the processing time of job j ,
[n] ={1,2,...,n}. Queyranne [17] shows that the convex hull of a feasible solution
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to a completion time vector in a scheduling problem can be fully described by
this linear constraint.

minZwﬂ} (17)
j=1
st T > TP VpePNYjed  (18)
" > ), VpePNied  (19)
1
Z 5 Zv + Z (Uf)2 Vp € P,VS C [n] (20)

JjES JES JES

This paper considers the duality problem of the LP-Primal problem and
analyzes the performance of the data flow scheduling algorithm proposed next
in this paper. This paper introduces the dual variable a? for the constrained
expression (18), the dual variable v} for the constrained expression (19), and
the dual variable 3% for the constrained expression (20). The LP-Dual problem
is as follows:

2

max S5 g SN (S| S (21)
P J S p

jes jes

s.t Za§<wj Vj € [n]

(22)

Y B5) <af —9F, vp € P,V € [n]
S3j

(23)

of > 0,97 >0, Vp € P,Vj € [n]

(24)

B >0, Vp € P,VS C [n]

(25)

Primal-Dual algorithm GeoOrder full version description see Algorithm 4.2
for details. Algorithm 4.1 has the following simplifications in Algorithm 4.2, so
that it can run at a certain time (specifically the time when a new job is released)
to sequence all jobs that have not uploaded data in the current system: (1) Ignore
the job release time r; (2) The input is the amount of data that the job has not
uploaded at each moment on each edge.

For the convenience of analysis, after GeoOrder calculates the job arrange-
ment o, this paper renumbers the job so that o(k) = k,Vk € [n]. Next,
this paper transfers data according to the sequence of jobs generated by Geo-
Order. The approximate ratio of the weighted data transmission completion time
(Zy 1 w;7;) to the optimal transmission completion time (Z? 1 wJTOPT) is
less than or equal to 3.
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Algorithm 2: GeoOrder
Input: J (unordered job set)
vf (Amount of data not uploaded by job j at edge p)
wj (The weight of job j)
Output: o (Assignment of jobs)

1 for k=n to1ldo
2 by, — argmax, )i ;v (Find bottleneck AP)
3 Tmaz < Maxjecy r; (Find the latest release time)
4 if rae < %Zjej v?"‘ then
Wi — 2
5 o(k) < argmin;c y %ﬁfﬁl] (Select the job with the largest
Vi
amount of unuploaded data after weighting)
w(T — Ubl
6 B(k) «— % (Update related parameters)
L (k)
else
o(k) < argmax;cy r; (Select the job with the closest arrival time)
9 VYo (k) < Wo(k) = Disk ﬂlvgl(k) (Update related parameters)
10 | J < J\o(k) (Update job collections that have not been scheduled)

11 return o

Theorem 2. If the order generated by the GeoOrder algorithm is used,

zn: wﬂ} < 3 zn: wjz];_OPT
j=1

Jj=1

Proof. We first construct a feasible solution for the LP-Dual problem and com-
pare the performance between SOL p,,; of the feasible solution with SOL primai
of the LP-Primal solution. Since SOL pyima; equals ZZ:1 wi Tk, we can get the
following equation according to weak duality theorem,

SOLDual < OPTDual < OPTPm'mal

Thus, we can show that the primal solution of SOL p;jmq; is within a constant
times of the optimal solution.

4.2 Computing Slot Selection and Task Scheduling

After the data transfer is completed, the task is ready to perform data processing.
Let 7 = T be the time at which the data processing task u/ of job j at edge p
can start execution. Let S, = 1,2,...,m be the server cluster of edge p. At time
rf , select a computing slot s € S, to offload the data processing task uf , and
arrange the scheduling timing of tasks on slot s.

With the goal of minimizing the sum of the completion delays, this paper

proposes a compute slot selection strategy (LeastDelta) and a task scheduling
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strategy on the slot (GeoSRPT). Each edge cluster executes the same slot selec-
tion strategy. When the data transmission of a task is completed, it selects the
computing slot for the task; each computing slot executes the same task schedul-
ing strategy and sequentially processes the offloaded computing tasks.

Algorithm 3: LeastDelta& GeoSRPT

1 Node Selection (LeastDelta): When the data transmission of task ,u? is

completed (that is t = 7“;’ ), we offload the task to the node

s* = argmingeg, Q’S)j(t)
2 Tasks scheduling on a node (GeoSRPT): At any time ', the node s
performs task pf., j* = arg minje 4,4~ uld (t')

Computing Task Scheduling Strategy (GeoSRPT). For single-task jobs (or
in more detail, for One-Server-One-Queue scheduling problems and preemption is
allowed). The SRPT (Shortest Remaining Processing Time) scheduling strategy is
optimal [20] (with the goal of minimizing the completion time of weighted jobs).
Based on SRPT and considering the multi-task job distributed execution mode
(Geo-execution), this paper designs GeoSRPT scheduling strategy.

Use dP(t) to denote the remaining execution time at time ¢ after the task
uf is offloaded to slot s. Let ul7(t) = maxi € P)d;(t) denote at least the
remaining execution time of the job to which the task belongs at time ¢. d}(t) is
defined as:

d (t) . di’,j (t), If the task u§ has been offloaded to the node s’ € S;.
VASEAR [ r;- +d./s" = argminses, db7 . If the task ué- has not been offloaded.

At time ¢, for tasks that have not been completed on slot s (denoted by the
set As(t)), and the task uf with the smallest u2(t) value is executed.

Slot Selection Strategy (LeastDelta). When ¢ = 7, the data transmission
of a task is completed, and an execution slot needs to be selected for the task.
LeastDelta’s slot selection principle is to offload the task to a certain slot, so that
the increase in the sum of the delays in the completion of the job is minimal.
When the task uf is offloaded to a slot s, and it is assumed that no new task will
be offloaded to the slot s after time ¢, the increase in the overall job completion

time is composed of three parts:

1. Because there are some other tasks (Type-I tasks) with a smaller u2 value
than task u? on slot s, the waiting time of task ug’ increases.

2. The processing time of the task itself.

3. Other tasks (Type-II tasks) that have a larger u? value than task u? existing
on slot s have an additional waiting time due to the execution of task u? .

When no new task is offloaded to slot s after time ¢, the completion time
of task u? can be calculated and expressed as tis(available by simulating task
scheduling on slot s, the scheduling strategy is GeoSRPT). Let ¢;(t) record the
time ¢, which is the maximum estimated completion time in the offloaded tasks
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of job j. The maintenance of the ¢;(t) value will be described in detail after each
offloading decision.

Let .Afj be the set of tasks that reach slot s at time t and have not been
completed. The definition is as follows,

AP, = {j’ | sP = s,r8 <t,db(t) > 0} (26)

Among them, s, is the slot selected for the task uf,. A7;(t) contains Type-I and
Type-II tasks affected by task uf.

Let nmthcalBlis (t) denote the type-I task set affected by the task u?, defined
as follows,

BIZ ()= {J' | € AL sul (1) < 2 (¥)} (27)

Let mathcal B2 (t) denote the type-IT task set affected by the task u},
defined as follows,

B2 (1) = {J' 17 € AL s (1) <t (1) (25)

Based on the above symbols, when the task u? is offloaded to the slot s at
t= 7’5 , the calculation value of the increase in the completion time of the overall
job QF,(t) is as follows,

QF.(t) = max Z db,(t) + df — c;(t),0 (29)
J'eB1t (1)

+ Z max {df — ¢;:(t),0} (30)

J'EBY (1)

Among them, the formula (29) is the increase of the completion time of the
task u? caused by the Type-I task, and the formula (30) is the increase of the
completion time of the Type-II task caused by the task u§ . LeastDelta selects the
slot s* = argminges, ng(t) for the task u} to perform the calculation. After
offloading, update the c¢; value of the job to which the related task belongs.

Update the c; value for the job to which the task u? belongs, as follows,

¢; = max{ ¢j,t+ Z s (t) +df 5. (31)
J'EBIY (1)

Update the c; value for the job of Type-II tasks uf,|j" € B2} .(t) on slot s*,
as follows,

¢; = max {cj/,t—l—t§,7s* —|—d§} . (32)
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5 Experiments

In this section, we simulate job specifications in an actual commercial cluster
environment and compared to several other scheduling mechanisms, including
traditional scheduling mechanisms (FCFS and SRPT), recent scheduling mecha-
nisms designed for concurrent execution of multiple data centers (Reordering and
SWAG), and SmartDis mechanism in this paper. Then we conduct evaluations
on execution performance (Sect.5.2), fairness (Sect.5.3), sensitivity (Sect.5.4),
and scheduling execution cost (Sect. 5.5).

5.1 Experimental Setup

System Scale: This paper expands the CloudSim simulator to simulate the
multi-edge system, with the number of edges ranging from 20 to 500. The main
evaluation experiment of this paper was run in a system environment with 100
edges and 3000 servers. The number of servers is scaled according to the ratio
of the number of servers to the number of edges (for example, a system with 50
edges deployed has 3000/100 x 50 = 1500 servers).

Server Distribution: In order to evaluate the impact of the difference in edge
size, this paper models the skewness of the server distribution between edges
based on the Zipf distribution. When there is no skew, the server is evenly
distributed to each edge. As the skew parameter of the Zipf distribution is higher,
the degree of skew of the server’s distribution between the edges is greater . The
default setting of the skew parameter is 2.

Job Specifications: This paper synthesizes simulated experimental loads based
on the job size specifications in Facebook’s commercial Hadoop cluster and
Google’s working cluster [11]. Both types of workloads are dominated by small
jobs. This paper is also based on high-performance computing clusters to syn-
thesize large-scale jobs. Refer to Table1 for details of the three types of loads.
This paper adjusts the job release interval based on the Poisson process to keep
the utilization rate of each load system consistent.

Table 1. Load specifications

Composition ratio | Small job | Medium job | Large job | Average job size
(1-150) | (151-500) (501+) (task numbers)

Facebook-like 89% 3% 3% 241
Google-like 96% 3% 2% 94
HPC-like 18% 29% 53% 582

Data Distribution: To evaluate the impact of job data distribution on schedul-
ing algorithms, this paper uses Zipf distribution to model the skewness of job
data distribution between edges. As the skew parameter of the Zipf distribution
is higher, the distribution of data between edges is more skewed. There are two
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extreme cases. One is that the job data is evenly distributed on the relevant
edges, and the other is that the job data is concentrated on a single edge. The
default setting of the skew parameter is 2.

Task Duration: This paper models job duration based on Pareto distribution
with 8 = 1.259, and the average task duration is 2s. This model is consistent
with the fitting of the task duration in Facebook cluster in [3].In the simulation
experiment, the server performance was randomly sampled from the normal
distribution. In order to show the heterogeneity of server performance between
edges, this paper sets different mean and variance parameters for the normal
distribution model based on the edge scale. For parameter setting, refer to the
results of virtual machine performance measurement in the Amazon cloud [7,19].

Evaluation Criteria: The main performance indicator that this paper focuses
on is the average completion time of the job. In addition, this paper focuses on
the degree of delay in the execution of the job, that is, the ideal execution time
without waiting divided by the actual execution time, as an indicator to measure
the fairness between the jobs.

The SmartDis in this paper is compared with the First Come First Sched-
ule strategy (FCFS),Global Shortest Remaining Processing Time (GlobalSRPT),
Independent Shortest Remaining Processing Time( IndependentSRPT), and
these two types of SRPT scheduling strategies adjusted by Reordering, and
SWAG Scheduling strategies. In this paper,the results of FCFS are used to
standardize the results of the remaining scheduling algorithms under the same
experimental environment setting.

5.2 Execution Performance

Figure 3 shows the average completion time of each scheduling algorithm under
different workload specifications (Facebook-like see Fig.3(a), Google-like see
Fig. 3(b), HPC-like see Fig.3(c)). The experimental results show that SmartDis
performs better than other scheduling strategies. Compared with the heuristic
scheduling strategy based on SRPT, SmartDis performance is improved by 33%
(Facebook-like), 25% (Google-like) and 27% (HPC-like) at high utilization rate
(82%). At low utilization (26%), the performance improvement is at least 15%
more. SmartDis chooses to execute the job that minimizes the increase in the over-
all execution delay by sensing the imbalance between the upload and calculation
requirements of each subtask of the job. Compared with the Reordering and SWAG
strategies, SmartDis’s performance improvement is better at the meticulous pro-
cessing of the edge scale and server performance heterogeneity. Under various load
conditions, SmartDis’s performance improvement advantage remains above 10%.

5.3 Fairness

Figure 4 shows the degree of delay of jobs of different size categories under each
scheduling algorithm, in order to show the degree of fairness between jobs. Since
the job delay in FCFS is too large compared to other algorithms, it is ignored
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Fig. 3. Comparison of execution performance of various scheduling algorithms under
different job specifications

in the results. Overall, the delay of small jobs is the smallest and the delay of
large jobs is the largest under all scheduling methods.Because all algorithms
essentially reduce the average job completion time by prioritizing the small jobs.

The difference in fairness is mainly reflected in the difference in the degree of
delay in large jobs. First, it is observed that GlobalSRPT and IndependentSRPT
are almost identical in maintaining fairness, so the following will only analyze
the gap between IndependentSRPT and other scheduling algorithms. From the
perspective of load type, the gap between the delay of large jobs in the Google-
like load and the overall job delay is more significant. This is because almost
all jobs in the Google-like are small jobs, resulting in a small number of large
jobs being queued for too long due to the preference for small jobs. Even so,
the big jobs in the SmartDis still maintain relatively low latency compared to
others. In Facebook-like and HPC-like, the delay of large jobs under the Inde-
pendentSRPT is at least 38% higher than the delay of their overall jobs. While,
IndependentSRPT’s large job delay adjusted by Reordering is controlled to not
exceed 28%. SWAG can control this gap to not exceed 23%, and SmartDis further
controls this gap to within 20%. Therefore, it can be concluded that SmartDis
does not significantly sacrifice the performance of large jobs when improving
performance.



30 W. Miao et al.

7
2.0 -
19 GlobalSRPT GlobalSRPT
’ I IndependentSRPT 6 S IndependentSRPT
E— !
1.8 GlobalSRPT w/Reordering s GlobalSRPT w/Reordeting ‘
1.7 51 IndependentSRPT w/Reordering E=J IndependentSRPT w/Reordering
16 A swaG 4 X swAG
’ [ SmartDis [ SmartDis
1.5
3

1.4
13 5 HHH
1.2 HHH NURmn 1 0 N3] Nrme |

: Small jobs Medium jobs Large jobs . Small jobs Medium jobs Large jobs

Al job j j ze
jobs (1-150) (151-500) >500) Alljobs (1-150) (151-500) 500

(a) Simulate Facebook business Hadoop clus- (b) Simulate Google cluster job specifications
ter job specifications

4.0
GlobalSRPT 5
35 X1 IndependentSRPT
GlobalSRPT w/Reordering
3.0 E=] IndependentSRPT w/Reordering
A sWAG
25 3 SmarDis
2.0
0 Mglalyl!
. Small jobs Medium jobs Large jobs
Alljobs (1-150) (151-500) (>500)

(c) Simulation of high-performance comput-
ing cluster job specifications

Fig. 4. Fairness comparison of scheduling algorithms under different job specifications

5.4 Sensitivity

The Impact of the Degree of Data Dispersion: Figure 5 presents the gen-
eral trend that as the data skewness increases, the performance of the algorithm
increases first and then decreases. When the job data is evenly distributed on
the relevant edges, there is less room for optimization. When the data distribu-
tion starts to be unbalanced, multi-edge job scheduling collaboration can reduce
job completion time. However, when the skewness exceeds a certain level, the
imbalance of data distribution becomes so severe that most of the data of the
same job is only distributed on a few edges. In this case, too much collaborative
work is not required.

The Impact of Edge Scale Differences: Figure 6 shows that with the increase
in edge scale heterogeneity, SmartDis performance has always maintained an
advantage, and compared with other algorithms, SmartDis is more sensitive to
edge scale differences. This is because SmartDis’s scheduling proactively senses
the imbalance in the execution delay between sibling tasks due to the difference
in the overall service capabilities of the edge caused by the difference in the
number of servers on the edge, and is committed to reducing the increase in
global completion time caused by the imbalance.
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The Effect of the Number of Edges: In Fig.7, as the number of edges
increases, the performance improvement of Reordering, SWAG, and SmartDis
all show an increasing trend, because more edges provide more coordination
opportunities for execution.

The Effect of Task Duration Estimation Accuracy: In the experiment, the
estimation error is introduced based on the uniform distribution with the original
task duration as the mean. The results in Fig. 8 show that with the increase in
the accuracy of task duration estimation, the performance of each algorithm will
be slightly improved, but it is not obvious. This is because due to the existence of
various interference factors in the execution process, the original set time of the
task is originally quite different, so the estimation error is not enough to seriously
affect the scheduling decision. SmartDis maintains the best performance under
different estimation accuracy, and it is robust to the estimation error of task
duration.
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5.5 Scheduling Execution Cost

Comparison of Running Time: The experiment measures the length of time
to run the algorithm at each scheduling decision point. Figure9(a) shows the
running time of the algorithm under different system utilization rates. FCFS,
GlobalSRPT, and IndependentSRPT are not shown in the results due to their
minimal running time compared to others. The results show that even at high
utilization rates (82%), Smart’s scheduled runtime (4.61 ms) is much smaller
than the average task duration (2s).

Comparison of Extra Traffic: Extra traffic is defined as the information
required by the scheduling algorithm to be transmitted from each edge to the
global scheduler. Note that this does not include the basic and necessary infor-
mation required for jobs. Figure9(b) shows the traffic of each scheduling algo-
rithm. FCFS and IndependentSRPT do not require the edge to provide any other
information to the global scheduler, so their traffic is zero. The amount of traffic
essentially depends on the current number of jobs in the system. SmartDis does
its best to schedule jobs that can be completed quickly, keeping the number of
jobs blocked in the system at a low level, so its traffic is acceptable.

GlobalSRPT w/Reordeting 4 100 GlobalSRPT
] . 90 i
49 =3 I‘ndvepe‘ndemSRPT“/Renrdermg GlobalSRPT w/Reordering
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(a) Comparison of running time of various (b) Comparison of traffic volume of various
scheduling algorithms scheduling algorithms

Fig. 9. Fairness comparison of scheduling algorithms under different job specifications

6 Conclusion

In the era of big data, the amount of data continues to grow at an alarming rate.
This paper emphasizes the network and computing resource competition prob-
lems encountered by cross-domain big data analysis jobs in the edge environment.
A resource coordination algorithm SmartDis is proposed to schedule subtasks
across regions on multiple edges. SmartDis can achieve a near-optimal average
completion time. Furthermore, the time-consuming transmission can prove the
efficient approximate ratio. This paper conducts extensive experiments based
on job execution specifications in real clusters to evaluate the performance of
SmartDis in a wide range of scenarios. Compared with the heuristic scheduling
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algorithm based on the SRPT class, SmartDis improves the average comple-
tion time up to 33%, and keeps the additional calculation and communication
overhead low.
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