
Self-secure Communication for Internet
of Things

Bin Hao1,2(B) and Sheng Xiao1,2

1 College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
{binhao,xiaosheng}@hnu.edu.cn

2 National 2011 Collaborative Innovation Center for High Performance Computing,
Changsha, China

Abstract. Cryptographic key management is a challenge for the large scale
deployment of Internet of Things (IoT) devices. It is difficult to properly setup and
constantly update keys for numerous IoT devices, especially when these devices
are restricted by size and lack of the key input interface. This paper proposes
a lightweight key management scheme which embeds the key distribution and
update process into the communication process. The keys are constantly changing
as the communication data flowing back and forth between IoT devices. Therefore
even if a key is stolen by the attacker, it will quickly become invalid as the commu-
nication goes on. The proposed scheme also contains a key initialization protocol
which generates independent keys for multiple IoT devices simultaneously. This
paper describes the protocols in detail and analyzes its security properties. The
practicality of the protocol is verified by experiments.

Keywords: Wireless randomness · Key agreement · Secure communication ·
Internet of Things

1 Introduction

The Internet of Things (IoT) technology allows the ordinary objects that perform inde-
pendent functions to achieve interconnection [1]. With the communication ability, IoT
devices provide great convenience to people’s lives such as to create a smart home, to
help monitoring the patients, and to allow a vehicle to sense its surroundings [2].

Since the communication among IoT devices carries the sensitive data which closely
associates with the people’s private lives, it becomes a prominent target for the malicious
attackers [3]. Moreover, IoT devices are often restricted by the form factor and the power
supply, the Internet security solutions are not entirely suitable for the IoT environment
[4]. One particular challenge for the IoT communication security is the keymanagement.
It is difficult to preset cryptographic keys in the IoT devices as they are great in numbers
and the IoT device manufacturers have no information about when these devices would
be installed and what would be the network topology. It is even more difficult to update
the keys in IoT devices as they are often scattered in the fields. It would be desirable

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2021
Published by Springer Nature Switzerland AG 2021. All Rights Reserved
H. Jiang et al. (Eds.): ICECI 2020, LNICST 368, pp. 159–173, 2021.
https://doi.org/10.1007/978-3-030-73429-9_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73429-9_10&domain=pdf
http://orcid.org/0000-0002-7548-9993
http://orcid.org/0000-0003-1081-0739
https://doi.org/10.1007/978-3-030-73429-9_10


160 B. Hao and S. Xiao

to have a key management scheme that allows the IoT devices to negotiate and update
the keys by themselves, in the field, with negligible performance penalty. The paper
responses to the challenge and proposes a key management scheme that enables self-
secure communication for Internet of Things.

Self-secure communication does not rely on the PKI infrastructure or any pre-shared
key material. It collects the physical layer randomness in wireless transmissions and
converts the randomness into symmetric keys. Unlike traditional physical layer security
methods such as [5–8], our scheme does not go deep into the physical channel status or
coding schemes. Our scheme embeds the key management in the communication pro-
cess and takes advantages of the error re-transmission mechanism, therefore minimizes
the security overhead on communication bandwidth or delay. The main idea of self-
secure communication is to utilize the inevitable packet loss phenomenon in wireless
communications. Particularly for the IoT devices, because the transmission power limit,
such packet loss phenomenon occurs for both the benign user IoT devices and for any
attacker who attempts to eavesdrop the IoT communication.

The main contributions of this paper are:

1. This paper proposes a lightweight keymanagement schemewhich allows IoTdevices
to autonomously establish and update keys without pre-shared key materials or pre-
installed public key certificates.

2. The proposed key management scheme supports the secure one-to-many commu-
nications and the secure relay communications. These communication modes are
essential for IoT applications.

3. The proposed key management scheme considers the abnormal situations such as
node failures, power outages, and connection losses. It could be easily implemented
into engineering solutions.

4. This paper verified the practicality of the proposed scheme using experiments.

The rest of the paper is organized as follows: Sect. 2 briefs the previous works related
to our research. Section 3 describes the proposed self-secure communication scheme.
Section 4 verifies the feasibility and robustness of our protocol by experiments. Section 5
summarizes the paper.

2 Related Work

Since the concept of “Internet of Things” was proposed, researchers have been searching
for effective keymanagement protocolswith the constraint of the limited resources of IoT
nodes. The previous works could be roughly divided into three categories: trusted third
parties, proxy-based encryption calculations, and batch processing. The keymanagement
protocol proposed in [9–11] is based on the public key system of a trusted third party
and requires a trusted certification authority to issue a certificate for it or generate and
distribute keys. J. Shen et al. [12–14] describe agent-based end-to-end key management
protocols. The core ideaof these three protocols is to delegate the complexkey calculation
operations in the public key encryption system to multiple adjacent unrestricted or less-
constrained nodes for execution. These nodes are called agents. Each agent participates



Self-secure Communication for Internet of Things 161

in the calculation and transfer of a sender’s public DH (Diffie-helloman) key, and also
participates in the derivation of the public DH key before the sender is constructed. This
approach reduces the computational pressure on the communication nodes. References
[15, 16] proposed a group key management protocol based on batch processing. The
group key is distributed securely to all group members through a key distribution center
(KDC). If a node joins or leaves, the KDC will establish the new group key and send it
to all group members again.

The above-mentioned protocols are basically aimed at the problem of limited node
resources in the Internet of Things, focusing on how to design lightweight key man-
agement protocols. However, the Internet of Things has some characteristics that are
different from the traditional Internet. First, the nodes cannot be specially monitored
and inspected [17, 18]. Some nodes in the IoT system are deployed in some complex
geographical environment [20, 21], and it is difficult to achieve real-timemonitoring and
inspection of each node by a dedicated administrator. This may cause the keys to be lost
for a long time without being discovered, leading to a leak. Second, some scenarios lack
human-computer interaction interface [22–24]. Some terminal nodes of the IoT system
lack the means to interact with key managers, and many devices still need to manually
enter the keys regularly to update them. For example, if the smart home requires work-
ers to come to the home to update the keys regularly, and leave an interface for external
devices to connect, this is neither convenient nor secure.

3 Self-secure Communication

The main challenge to secure IoT communication is that the IoT devices need to operate
in a fully autonomous manner. Therefore, it is necessary to have the IoT devices to
negotiate and establish the initial keys after the physical deployment of the IoT network
and frequently update keys by themselves. Some may argue that to have a public key
infrastructure (PKI) with a unified root certificate authority (CA) would help solve the
key management problem. However, to have PKI reachable for all IoT devices is over
demanding in many application scenarios. To have an interoperable root CAmechanism
is even more impractical since IoT devices could come from many independent vendors
around the world. In this paper, we propose the self-secure communication scheme that
allows IoT devices to autonomously establish and update keys, without the need of pre-
shared keymaterials or public key certificates.Moreover, the self-secure communication
is resistant to the key theft attacks. The attacker may obtain the key and compromise the
communication security for a short period of time. The communication security could
automatically recover as the communication goes on. All these security features are
based on the inevitable, random packet losses in the wireless communications among
IoT devices.

The self-secure communication involves two phases: key establishment and key
updates. In both phases, only symmetric key cryptography is needed. Without loss of
generality, this paper uses Alice-Bob-Eve model to illustrate the self-secure communi-
cation protocols. As shown in Fig. 1, the attacker Eve is allowed to eavesdropping and
injecting the communication between Alice and Bob.



162 B. Hao and S. Xiao

Fig. 1. Secure communication with the eavesdropping attacker

3.1 Notations

Table 1 summarizes the symbols used for the rest of the paper.

Table 1. Point to multipoint key negotiation situation

Symbol Definition

Pp The constructed plaintext packet

Pm The constructed temporary packet

Pc The constructed ciphertext packet

N Minimum number of random messages sent by the sender to negotiate the key

M Minimum number of random messages the receiver uses to negotiate the key

K0 Initial communication key

KD Derived key

Ki Communication encryption key

α Communication times parameter

W Number of communication rounds where the sender stores the key to the hard disk
during the communication phase

Kj∗w The jth W round key

Ω Maximum number of retransmissions of the sender during the communication phase

Figure 2 shows the packet format used in the self-secure communication proto-
cols. A data packet contains the following fields: phase identification (Phase), sequence
number (Seq), retransmission information (Retran), message length (Len), random data
(Rand), communication message (Message) and message authentication code (HMAC),
as shown in Fig. 2.

Fig. 2. Packet format



Self-secure Communication for Internet of Things 163

3.2 Key Establishment Stage

It is assumed that Alice and Bob are two IoT devices without any pre-shared secret
information, nor do they have any public key certificates installed. Figure 3 illustrates
the key establishment process.

– The sender Alice sends a request negotiation packet

Fig. 3. Key negotiation process

Alice wants to communicate with Bob, so construct a request packet named req_pkt,
and fills in the value of each field according to the format of the packet specified by
the protocol. At this time, the value of Phase(P) is set to 0; the Retran(R) field is set to
0; The Message(M) field is set to Alice’s identification information, such as the MAC
address; the Len(L) field is set according to the length of the value of the Message
field; the Seq(S) field is set from 0.
Then concatenate these fields to get the Plaintext(Pp):

Pp = (P‖S‖T‖L‖R) (1)

Next, the Pp is filled byOAEP function to get a temporary data packetMediantext(Pm),
to prevent short message attacks. As shown in formula (2):

Pm = fOAEP
(
Pp, a

)
(2)

A is a one-time random number generated by Alice.
Then calculate the hash value HashA according to formula (3).

HashA = fHash(Pm) (3)



164 B. Hao and S. Xiao

The req_pkt is constructed by connecting Pm and HashA.
Finally, Alice sends it to the receiver and starts a wait timer with the time set to TH .

– Receiver sends rcv_pkt
Bob receives and extracts the req-pkt to get Mediantextr(Pm·r) and Hashr . Then the
plaintext data packet Pp · r are calculated by the OAEP solution function whose
parameter is Pm · r. and the Hashlr is calculated according to formula (5), which is
used to compare with the received HMACr to verify the completeness.

Pp·r = f −1
OAEP(Pm·r) (4)

Hashlr = fHash(Pm·r) (5)

Bob determines whether the equation Hashlr = Hashr is true. If it is true, he will
extract the value of the Message field and verify that it conforms to the MAC address
format. If so, Bob will consider whether to agree to negotiate a key with Alice. When
Bob is unwilling to communicationwithAlice, hewill remain silent. If Bob frequently
receives Alice’s request packets later, he will reject each packet within Td time. If Bob
also wants to negotiate a key with Alice, he will construct an accept packet named
accept_pkt, set the value of theMessage field to Bob’s identification information, such
as the MAC address, and send it to Alice.

– The sender sends a random message to negotiate the key.
If Alice does not receive the accept_pkt sent by Bob within TH time, she will wait for
TW time before sending the next request. If Alice receives the accept_pkt and passes
verification, she will send random data packets as the key negotiation material. Alice
sends NS random message packets rand_pkti (i = 0, 1, 2 …, NS) within T1 time. The
Phase field of these packets is set to 0; the value of the Seq field are set from 0 to NS

in sequence according to the sending order, which are represented by Seqi (i = 0, 1, 2
…, NS); the value of the Message field are set by information randomly generated by
Alice, expressed in Randmsgi (i = 0, 1, 2 …, NS). After sending all the data packets,
a timer T1 is started to wait for Bob’s reply, so that Bob has enough time to receive
the data packets. The sender saves all random messages that have been sent and the
corresponding sequence numbers in memory and hard disk.

– Receiver sends serial number set and generates initial key
After receiving the first rand_pkt, Bob starts a timer with a time of 2T1. During this
period, each time Bob receives a rand_pkt, he extracts the content of each field and
performs integrity and sequence number check. During the period of verification, if
there are two packets that have the same sequence number, the two packets will be
directly discarded and the sequence number is added to the blacklist; If the random
message data packet passes the integrity and the sequence number check, the values
of Message field and Seq field will be stored in the memory. Bob keeps two linear
lists, m[.] and s[.], m[.] is used to store the value of the Message field, and s[.] is used
to store the value of the Seq field in the same order as m[.].
When the 2T1 timer expires, Bob starts a 2T2 timer and checks whether the number of
received packets M exceeds a preset threshold Nr . If M ≥ Nr is not true, Bob reports
to the upper layer: the negotiation fails and the initial key cannot be generated; If M
≥ Nr holds, Bob generates an initial key K0. Assume that all completely received



Self-secure Communication for Internet of Things 165

random data is represented as m[i] (i = 0,1,2, …, M), Bob uses the hash function,
such as sha256(.), to process m[i] to get the message digest mh[i] (i = 0, 1, 2, …, M).
As shown in formula (6):

mh[i] = fHash(m[i]) (6)

After obtaining the list mh[i], Bob calculates the Key0.

K0 = fHash(mh[0] + . . . + mh[i] + . . . + mh[M ]) (7)

In order to ensure the security of the initial key K0, the derived function is used to
encrypt the information to be transmitted, he uses the key derivation function kdf(.)
to generates the derived key KD:

KD = kdf (K0, 0, 1) (8)

Among them, the first parameter in kdf(.) is the initial key K0 obtained earlier; the
second parameter is the encryption salt, which is a random number and is set to 0 in
this protocol; the third parameter is the iteration the number of times, which is set to
1 in this formula.
Next, Bob uses digital compression technology, such as Zigzag, to compress the set
s[.] to obtain Cprs, and then uses the KD to generate the corresponding message
authentication code, which is calculated as shown in formula (9):

HMACrsp = hmacmd5(KD,Cprs) (9)

Finally, Bob fills Cprs into theMessage field, and fills themessage authentication code
HMACrsp into the HMAC field. After building the rsp_pkt, Bob sends it to Alice.

– The sender receives the serial number set and generates the initial key.
Alice starts a 2T2 timer after theT1 timer ends.Within 2T2, ifAlice does not receive the
rsp_pkt sent by Bob, she abandons the negotiation and reports to the upper layer: the
key was not successfully established and the negotiation failed. During this period of
time, if Alice receives the rsp_pkt from Bob, she will extract the content of each field.
Alice extracts and decompresses the Cprs·r to get the set s[.]r received by Bob. Then,
she takes the corresponding random message from the memory according to s[.]r ,
and calculates the initial key K0, the derived key KD, and the message authentication
digest HMACl

rsp according to formulas (6), (7), (8), and (9).

Next, Alice compares whether the calculated HMACl
rsp is the same as the HMACr·rsp

extracted from the rsp_pkt. If not the same, it means that the rsp_pkt was damaged or
attacked during transmission, Alice will report to the upper layer: Negotiation failed;
If same, it means that the calculated initial key K0 is also correct.
After the timer of 2T2 is over, Alice starts a timer with the time of T3 again. During
this time period, Alice constructs an acknowledgement packet ack_pkt indicating that
the initial key K0 has been generated, and then uses the derived key KD to calculate
the HMACack according to the formula (10) and form the ack_pkt and sends it to Bob.

HMACack = fHMAC(KD,RandData) (10)



166 B. Hao and S. Xiao

Then Alice needs to wait for T3 time again. After the T3 time ends, Alice enters the
waiting phase. At this stage, Alice cannot leave the effective communication range to
avoid missing the data packet sent by Bob indicating that the negotiation is over. If
during the waiting phase, Alice does not receive the end-of-negotiation packet, even
if both parties have established the initial password, the negotiation still fails. The
length of the waiting phase is the maximum time that Alice promises Bob, and it can
also be set according to the channel conditions, but the premise is that the length of
the waiting phase needs to be guaranteed to the maximum.

– Receiver sends negotiation end packet after the 2T2 timer expires, Bob starts another
timerwith a time of 2T3.During this period, if Bob receives the ack_pkt, hewill extract
the HMACr·ack , RandDatar , and the values of other fields. Then, Bob calculates the
HMACl

ack according to formula (10) based on the KD and the RandDatar . Determine
whether HMACl

acl = HMACr·ack is true. If it is true, it indicates that Alice has
successfully generated the initial key K0. After the 2T3 timer expires, Bob constructs
the end packet and sends it to Alice, indicating that the initial key K0 was successfully
generated. If the HMAC verification equation does not hold or Bob does not receive
the confirmation message packet within T3, the key negotiation fails.

– Negotiation successful
In the waiting phase, if Alice receives the end_pkt and passes the integrity authentica-
tion, both communicating parties know that the other party has successfully generated
the initial key and the negotiation is successful. Next, both parties can enter the secure
communication phase.

3.3 Secure Communication Stage

After obtaining the initial key, Alice and Bob could begin their secure communication.
Without loss of generality, we assume that Alice sends messages to Bob. A fully duplex
secure communication scheme could be naturally extended from the unidirectional
protocol.

This section will introduce the stop and wait mode for self-secure communication.
In this mode, each time Alice sends a data packet, she will not send the next data
packet until she have received the response packet from Bob. The receiver only needs
to process and respond to the received data packets. In order to ensure communication
efficiency, the protocol stipulates that Alice and Bob store some information needed
for communication in the hard disk and memory, respectively. Meanwhile, during the
communication process, Alice will retransmit the data packets which Bob did not receive
completely.

For the sender Alice, the content stored in memory contains the following
information:

– Sequence number of the packet to be sent Seqs;
– The latest communication key Ki;
– the latest data Msgi that have been sent and the corresponding ACKs·i;
– Communication times αs;
– The value of the Retran field of the current latest packet; The contents stored on the
hard disk include the following:



Self-secure Communication for Internet of Things 167

– The latest key obtained after eachW round of communication ends normally is called
the W-round key. Store the last two W-round keys K(j−1)∗W ,Kj∗W ;

– All data and corresponding serial numbers have been sent.

For receiver Bob, the content stored in memory includes the following information:

– The latest communication key Ki;
– The previous round communication key Ki−1;
– The sequence number of the next expected received packet Seqr ;
– Communication times αr ;
– The latest data Msgi−1 currently received and the corresponding ACKr·(i−1)

The contents stored on the hard disk include the following:

– The latest communication key Ki;
– The latest key obtained after eachW round of communication ends normally is called
the W-round key. Store the last two W-round keys K(j−1)∗W ,Kj∗W ;

– All message and serial numbers that have been completely received;

The communication flow between the two communicating parties is shown in Fig. 4:
First, the communication parties Alice and Bob need to initialize the parameters

required for communication. If they are communicating for the first time after negotiating
the key, the Seqs of packets that Alice wants to sent and the Seqr of packets that Bob
wants to receive will be initialized to 0; both parties use the key K0 established during
the negotiation phase as the key Ki for this communication.

Seqs = Seqr = 0
Ki = K0

If this is not the first communication, they will take out the latest packet sequence
numbers Seqs and Seqr and the communication key Ki stored in memory to initialize the
information parameters of this communication.At the beginning of each communication,
Alice and Bob set the parameters for recording the number of communication times to
0, that is, αs = αr = 0.

Next, the two parties began formal communication. First, Alice needs to create a
communication packet, The packet construction process is shown in Fig. 5.

She fills the contents of each field in the packet to get the packet Pp·s·i. According
to formula (2), the Pp·s·i is filled by the OAEP function to obtain the mediantext packet
Pm·s·i. Then, the key Ki is divided into three parts KH , KE , KA using a key splitting
function, to be used to calculate HMACs·i, Pc·s·i and ACKs·i respectively.

Pc·s·i = encryptedAES(KE,Pm·s·i) (11)

HMACs·i = fHMAC(KH ,Pm·s·i) (12)

ACKs·i = fHMAC((KA, exchange(Pm·s·i)) (13)



168 B. Hao and S. Xiao

Fig. 4. Stop and wait protocol communication process

Then, the Pc·s·i and HMACs·i are connected to get the send packet sent_pkt, and the
ACKs·i is stored to the specified location in memory. Finally, Alice sends send_pkti over
the wireless channel and starts the timer at the same time.

For the receiver Bob, he extracts communication messages according to the process
shown in Fig. 6.

He extracts Pc·r·i and HMACr·i from the data packet according to the length specified
by the protocol. Samely, Ki is divided into three parts KH , KE , KA. Next, according to
formulas (6) and (7), Bob uses KE to decrypt the Pc·r·i to obtain the Pp·r·i, and then
further extracts the content of each field according to the length of each field. According
to formula (12), the message authentication code HMACl

r·i is obtained.
Next, Bob performs error checking. If HMACl

r·i = HMACr·i Bob can consider that
the received data packet is complete. Then, Bob checks whether the Seqtemp in the Seq
field of the received data packet is not greater than the sequence number Seqr stored in
memory. Bob will perform a parameter update operation. If the equation Seqtemp = Seqr
holds, Bob will perform the parameter update operation as follow:



Self-secure Communication for Internet of Things 169

Fig. 5. Packet construction process

Fig. 6. Packet extraction process

– Seqr = Seqr + 1;
– According to the formula (13), calculate the acknowledgement message ACKr based

on Pm·r·i;
– According to the different values of the Retran field, Bob updates the key differently.
When Retran = 0, update the key of this communication according to the following
formula (14):

Ki+1 = sha256(Ki ⊕ (Msgi ⊕ Randi)) (14)



170 B. Hao and S. Xiao

When Retran = 1, update the key of this communication according to the following
formula (15):

Ki+1 = sha256(Ki ⊕ (Msgi ⊕ Randi) ⊕ (seqr − 1)) (15)

After the parameter update is completed, Bob will stores the Ki+1, the communication
data, the Seqr-1, and Seqr to the corresponding location in the memory.

– Determine whether the equation αr = W is established, that is, whether the current
communication is theWth communication. If it is true, store the Ki to the correspond-
ing location on the hard disk, and update the other information stored in the hard disk
to the current information, meanwhile set αr to 0. If it is not true, increase αr by 1.

– Bob sends a acknowledgment packet with the Seq field set to the updated Seqr , and
the value of the Message field set to ACKr·i.

If Seqr > Seqtemp, Bob will not perform the update operation, leaving the parameter
values in memory unchanged. But Bob still need to calculate the value of ACKr·i mean-
while sends an acknowledgement packet, setting the Seq field to Seqr , the value of the
Message field to ACKr·i and the number of communications αr .

For the sender Alice, if Alice receives the acknowledgment packet from Bob before
the timer expires, she will extract the SeqACK and ACKr·i in the acknowledgment packet,
and check whether the received ACKr·i is the same as the ACKs·i stored in the memory.
If the same, Alice can determine that the acknowledgement packet was sent by Bob.
Then perform sequence number verification.

If SeqACK =SeqS + 1, it means that this is the receiver’s confirmation of the currently
sent data packet, then Alice will perform a parameter update operation:

– SeqS = SeqS + 1;
– αs = αs + 1; if αs = W, save the Ki in the hard disk, and set αs to 0.
– Calculate a new round of communication key Ki+1 according to formulas (14) or (15),
and update the corresponding value in memory;

If SeqACK > SeqS + 1, it means that Bob went to receive the packet whose sequence
number is SeqACK . Alice sets αs = αr , SeqS = SeqACK , and store SeqS in memory and
SeqS-1 is stored in the hard disk.

If after the timer expires, Alice has not received Bob’s acknowledgement packet, the
send packet will be retransmitted and retimed. During the retransmission, the value of
the Retran field needs to be set to 1, and the random data is regenerated and filled in the
Rand field. Connectαs to the communication data, and recalculateHMACandACK.The
values of other fields remain unchanged. If the number of data packet retransmissions
exceeds Ω , this communication will end, and Alice reports a communication failure to
the upper layer.

4 Experiment

To verify that the proposed protocol is feasible and stable in practical application envi-
ronments, we use Raspberry 3 to design experiments based on Bluetooth channels, and



Self-secure Communication for Internet of Things 171

use wireshark software installed in a laptop to simulate an attacker to capture packets.
The experiment is divided into two parts: verifying the feasibility and the robustness of
the protocol. Next, the experimental content and results will be introduced.

Fig. 7. Pcket loss rate with different number of packets at different distances

– Feasibility experiment
The key agreement algorithm of this protocol uses the characteristics of unavoidable
packet loss and error of the wireless channel. Therefore, to verify the feasibility of the
protocol, it is necessary to prove that random events such as packet loss and error will
occur in the wireless channel. First, we set up a wireless Bluetooth channel between
two raspberry 3 s and transfer packets between them. We set the amount of data
packets sent by the sender to 200 each time, and the length of the data packet is 64
bytes. The distance between the twoparties of the communication is set to 0.5m, 1.5m,
3 m, 4.5 m, and 6 m, respectively. Observe the number of correctly and completely
received packets by the receiver to calculate the corresponding packet loss rate. Each
experiment was repeated 10 times, and the average value were calculated. The sender
sends a packet every 10 ms and sends it continuously. Then we changed the number
of packets sent again: 400 and 800. The Fig. 7 shows the relationship between the
packet loss rate of the wireless Bluetooth channel, the number of packets sent, and the
distance. From the Fig. 7 we can observe that as the distance increases, the packet loss
rate increases; meanwhile,as the number of sent data packets increases, the packet loss
rate also increases to a certain extent. This proves that packet loss events exist in each
case. Thus we proved that our protocol is feasible in practical application scenarios.

– Overhead compare
This article also compares the overhead with three key update protocols that have been
proposed in the reference. The experimental scenario is that one node in the network
is compromised and the key needs to be updated to ensure communication security.
We compared the transmission overhead, calculation overhead, and space overhead,



172 B. Hao and S. Xiao

Table 2. Overhead comparison

Update algorithm Transmission overhead Calculation overhead Space overhead

[2] O(n) O(n) O(n)

[4] O(n) O(1) O(log n)

[19] O(log n) O(n) O(log n)

Propose 0 O(n) O(n)

as shown in the Table 2. We have found that, compared with other protocols, the
computational and space overheads of this protocol are relatively large, but because no
key or key material needs to be transmitted, the transmission overhead is 0. Compared
with other protocols, it has a great advantage in the limited bandwidth and highly
dynamic IoT scenarios.

5 Conclusion

This paper proposed a self-secure communication scheme to address the challenges in
IoT secure communications. The scheme contributes new ides in the key distribution and
the key update processes, so that IoT device nodes could establish secure communication
without relying on the pre-shared key materials or the inter-operable public key infras-
tructure. More importantly, the proposed scheme is resilient to the key theft attacks. The
scheme would force the stolen key to become invalid as the communication goes on. The
IoT device nodes do not need to intervene and the communication security is recovered.
This paper further illustrates a fail-safe implementation strategy for the propose scheme
that allows the scheme to be readily converted into an engineering solution.

References

1. Ashton, K.: That ‘Internet of Things’ thing. RFID J. 101-1 (2009)
2. Xia, F., Yang, L.T., et al.: Internet of Things. Int. J. Commun. Syst. 25, 1101–1102 (2012)
3. Alabaa, F.A., Othmana, M., et al.: Internet of Things security: a survey. J. Netw. Comput.

Appl. 88, 10–28 (2017)
4. Romana, R., Alcaraza, C., et al.: Key management systems for sensor networks in the context

of the Internet of Things. Comput. Electr. Eng. 37, 147–159 (2011)
5. Jie,C., Liang,Y.-C., et al.: Intelligent reflecting surface: a programmablewireless environment

for physical layer security. IEEE Access 7, 82599–82612 (2019)
6. Pinto, T., Gomes, M., et al.: Polar coding for physical-layer security without knowledge of

the eavesdropper’s channel. In: 2019 IEEE 89th Vehicular Technology Conference (VTC
2019-Spring), pp. 1–5, IEEE, Kuala Lumpur (2019)

7. Xiang, Z., Yang,W., et al.: Physical layer security in cognitive radio inspiredNOMAnetwork.
IEEE J. Sel. Top. Sig. Process. 13(3), 700–714 (2019)

8. Melki, R., et al.: A survey on OFDM physical layer security. Phys. Commun. 32, 1–30 (2019)
9. Shen, J., Moh, S., et al.: A novel key management protocol in body area networks. In: ICNS

2011: The Seventh International Conference onNetworking and Services, pp. 246–251 (2011)



Self-secure Communication for Internet of Things 173

10. Li, Y.: Design of a key establishment protocol for smart home energymanagement system. In:
2013 Fifth International Conference on Computational Intelligence, Communication Systems
and Networks, pp. 88–93. IEEE, Madrid (2013)

11. Sciancalepore, S., Capossele, A., et al.: Key management protocol with implicit certificates
for IoT systems. In: IoT-Sys 2015, Proceedings of the 2015 Workshop on IoT Challenges in
Mobile and Industrial Systems, pp. 37–42. Association for Computing Machinery, New York
(2015)

12. Saied, Y.B., Olivereau, A.,: D-HIP: a distributed key exchange scheme for HIP-based Internet
of Things. In: 2012 IEEE International Symposium on a World of Wireless, Mobile and
Multimedia Networks (WoWMoM), pp. 1–7. IEEE, San Francisco (2012)

13. Riyadh, M., Affiliated, A., Djamel, T.: A cooperative end to end key management scheme for
e-health applications in the context of Internet of Things. Ad-hoc Netw. Wirel. 8629, 35–46
(2015)

14. Porambage, P., Braeken, A., et al.: Proxy-based end-to-end key establishment protocol for the
Internet of Things. In: 2015 IEEE International Conference on Communication Workshop
(ICCW), pp. 2677–2682. IEEE, London (2015)

15. Veltri, L., Cirani, S., et al.: A novel batch-based group key management protocol applied to
the Internet of Things. Ad Hoc Netw. 11(8), 2724–2737 (2013)

16. Abdmeziem, M.R., Tandjaoui, D., et al.: A decentralized batch-based group key manage-
ment protocol for mobile Internet of Things (DBGK). In: 2015 IEEE International Con-
ference on Computer and Information Technology; Ubiquitous Computing and Communica-
tions;Dependable,Autonomic andSecureComputing; Pervasive Intelligence andComputing,
pp. 1109–1117. IEEE, Liverpool (2015)

17. Jing, Q., Vasilakos, A.V., Wan, J., Lu, J., Qiu, D.: Security of the Internet of Things: perspec-
tives and challenges. Wirel. Netw. 20(8), 2481–2501 (2014). https://doi.org/10.1007/s11276-
014-0761-7

18. He, X., Niedermeie, M., et al.: Dynamic key management in wireless sensor networks: a
survey. J. Netw. Comput. Appl. 36(2), 611–622 (2013)

19. Varalakshmi, R., Uthariaraj, V.R.: Huddle hierarchy based group key management protocol
using gray code. Wirel. Netw. 20(4), 695–704 (2013). https://doi.org/10.1007/s11276-013-
0631-8

20. Conti, M., Dehghantanha, A., et al.: Internet of Things security and forensics: challenges and
opportunities. Future Gener. Comput. Syst. 78, 544–546 (2018)

21. Al-Sarawi, S., Anbar,M., et al.: Internet of Things (IoT) communication protocols: review. In:
2017 8th International Conference on Information Technology (ICIT), pp. 685–690. IEEE,
Amman (2017)

22. Li, Y.: Design of a key establishment protocol for smart home energymanagement system. In:
2013 Fifth International Conference on Computational Intelligence, Communication Systems
and Networks, Madrid, , pp. 88–93 (2013)

23. Nguyen, K.T., Laurent, M., et al.: Survey on secure communication protocols for the Internet
of Things. Ad Hoc Netw. 32, 17–31 (2015)

24. Abdmeziem, M.R., Tandjaoui, D.: An end-to-end secure key management protocol for e-
health applications. Comput. Electr. Eng. 44, 184–197 (2015)

https://doi.org/10.1007/s11276-014-0761-7
https://doi.org/10.1007/s11276-013-0631-8

	Self-secure Communication for Internet of Things
	1 Introduction
	2 Related Work
	3 Self-secure Communication
	3.1 Notations
	3.2 Key Establishment Stage
	3.3 Secure Communication Stage

	4 Experiment
	5 Conclusion
	References




