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Abstract. In a cloud-edge system, mobile users submit comprehensive
service requests, on-the-fly service composition to orchestrate service
components from different edge nodes is a promising way to achieve a
quick response to these requests. Since several mobile applications con-
sume large amount of energy during waiting for the responses, it is crit-
ical to achieve less service delay for energy saving as well as improve
QoE (Quality of Experience). However, the service completion time in
an edge is quite unstable, which increases the overall response time of
the composite service. This paper argues that we may accelerate services
through service clone via different edges, so that we can guarantee the
overall response time of the composite service. And since the data fetch
is also time consuming, we propose an effective data-aware service com-
position algorithm via service cloning to minimize the overall response
time. We implement the algorithm and evaluate the performance with
extensive simulations. The simulation results show that the proposed
algorithm has a good performance improvement on service delay and
energy consumption reduction, compared to the traditional algorithms.

Keywords: Cloud-edge system · Edge computing · Energy efficient ·
Service composition · QoS

1 Introduction

With the rapid development of the Internet of Things (IoT) and wireless commu-
nication technology, the intelligent era of the Internet of Everything is acceler-
ating, with which the data volume grows quickly [1]. This situation poses a huge
challenge to the currently widely used cloud computing models [2–4]. Although
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the traditional cloud data center can provide powerful data analysis capabil-
ity, the large volume of data transmission from mobile users to far away data
center results in long service delay. In the meantime, mobile devices are energy-
aware, and long service delay actually significantly increases the energy consump-
tion, since most applications consume energy during waiting for the response [5].
Deploying services on the edges nearby is a promising way to reduce the service
delay, and it also reduces the waiting time of applications on mobile devices.
Thus, edge computing actually reduces the energy consumption via shorten the
service delay.

In a cloud-edge system, many edges are resource-limited and only suitable for
running certain service components. To achieve a comprehensive requirement,
several service components need to be composed into a composite service. When
a user’s request is submitted to an edge via a mobile device, the edge will be in
charge of this request and generate a composite service based on the predefined
business logic to achieve the composite service [6]. In the running time, the edge
orchestrates the composite service and coordinates involved edges to correctly
proceed the data and return the final results to mobile users.

Since the resource limitation, edges are usually unstable. When the workload
grows, the response time of edge increases, or even could not get response [7].
Thus, cloning service requests to more than one edge and could get response with
the earliest one, through which we may guarantee the service response time in an
uncertain environment. On the other hand, several services are data-intensive,
thus, the service response time is also closely related to data transmission delay.
The data transmission includes both data transfer among service components
and the other required data that needed during the processing. How to choose
suitable service components to construct an effective service path on-the-fly is a
non-trivial resource scheduling problem.

With the rise of cloud-edge system, researchers have proposed a variety of
service selection methods to support on-demand service composition. However,
they assume that the network resources are over-provisioned and do not consider
the use of these resources when making quality-aware service composition deci-
sions [8,9]. In [10], the authors proposed a collaborative filtering-based service
recommendation method applied in the mobile edge computing environment and
performing QoS prediction based on user mobility. This method first calculates
the similarity of users or edge servers and selects the k-nearest neighbours to
predict service QoS, and then performs service recommendation. Reference [11]
studied the task allocation problem of reducing service delay in cloud edge sys-
tems. The authors used W-DAG (Weighted Directed Acyclic Graph) to model
data-intensive services or business logic, and analyzed the tasks that constitute
integrated services.

In this paper, we investigate on-line service composition problem in a cloud-
edge system. We try to minimize the overall composite service response time to
reduce the energy consumption of mobile devices. Our main idea is to clone some
key service components and construct more than one service path to guarantee
the response time, with limited clone budget. And since the data fetch is also time
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and resource consuming, we also design a data-aware service selection strategy
to further accelerate the composite service.

The main contributions are as follows:

– Model and formalize the service composition problem in a cloud-edge system.
– An energy efficient data-aware service composition algorithm is proposed to

minimize the overall response time via service components cloning.
– Extensive simulations show that the proposed service composition algorithm

can achieve a good performance in reducing response time, compared with
the stochastic algorithm and the greedy algorithm.

This paper is organized as follows. Section 2 presents the system model and
formalizes the service composition problem and Sect. 3 is the energy efficient
service composition algorithm. We evaluate the performance of the algorithm in
Sect. 4. Finally, Sect. 5 concludes this paper.

2 Problem Statement

For a typical cloud-edge system, it consists of terminal layer, edge computing
layer and cloud computing layer [12–14], as shown in Fig. 1. There always be one
cloud data center (DC) and multiple edge nodes (EN) in the cloud-edge system.
Also, it is feasible to perform inter-layer and cross-layer communication through
the network for each layer.

Fig. 1. Cloud-edge system.

To accelerate the service response and reduce energy consumption, some
service component should be deployed on the edge, since the edge is close to
the mobile users who submit the service requests. However, the edge nodes have
limited resource and many service components must be placed on cloud data
center due to the security issues.
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To achieve a comprehensive service request, it is necessary to select some
service components to construct a composite service. The classical method is
to select some of the best service components with minimized service delay.
However, it is challenging to construct the service path due to the uncertainty
of edges, which may get unexpected long service delay.

In this paper, we aim to accelerate the service response by selecting more
service components, which can generate more service paths. Thus, we can get
the quick service response with high probability since any service path could
response the service request. But select more service components means more
computing and communication resources, hence, we need to investigate how to
select the service components in a cloud-edge system with quantitative limitation
due to budget constraint.

2.1 Service Path

We use the service path to represent the construction of a composite service,
represented by Fi. An example of a service path is shown in Fig. 2. This com-
posite service requires 4 service components. For each service component, several
duplicated instances may be deployed in different edges in a cloud-edge system.
Actually, what we need to do is to select a set of service component instances
to achieve the service response. In the Fig. 2, the number above the service
component indicates the number instance of the service component.

Fig. 2. An example of a service path.

2.2 Service Instance

The service instance is the service entity of each service component, represented
by s = <pos, ra, o, e>, which is described by 4 attributes: pos represents the
location of the service instance, and there are two options (DC/EN); ra repre-
sents the ratio of the amount of input and output data of the service instance,
that is, ra = amountoutput/amountintput; o represents the time that the service
instance spends processing unit data; e represents the effectiveness of the service
(0/1), whether it is available or not. The relationship between the settings of
o and e and the location of this instance is shown in Table 1. mEN(s) in the
table indicates the maximum number of service instances that can be selected
on the node where service instance s is located. pEN(s) represents the number
of selected services currently owned by the node where the service instance s is
located.
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Table 1. Setting of o and e

DC EN

o C0 No

(
μ, σ2

o

)

e 1 If pEN(pos) + 1 ≤ mEN(pos)e = 1

e 1 If pEN(pos)+ > mEN(pos)e = 0

2.3 Service Graph

The service (instance) is labeled as SG = < S,E, s0 >. s0 is the location of
the initial data required to complete the composite service. When the composite
service is requested, a corresponding SG will be generated according to the
service path of the composite service. S represents the set of all service instances
of the service components involved in the path; E represents the set of directed
edges between service instances in S. Note that s0 is added to S as a starting
point.

2.4 Service (Instance) Chain ω

ω represents a service instance chain of the service path. For example, for a
service path, s0 → sx

1 → sx
2 → sx

3 → sx
4(1 ≤ x ≤ N(Fi)) is an ω. The total

number of service chains of a service path path is denoted as L(path), and the
calculation method is shown in Eq. 1.

L(path) =
∏

Fi∈path

N(Fi) (1)

3 Service Composition Algorithm

The problem is to select some instances to form a composite service in the
cloud-edge system. The most noteworthy problem is that the edges (servers)
have limited resources, and the performance is unstable, which is different from
the cloud data center with stable performance. Meanwhile, the network status
between edge nodes and cloud data center is unstable. If only one instance chain
is selected for a composite service, we can not guarantee the response time. If
an edge is unable to respond due to limited resources or network communica-
tion terminals, etc., it will increase both service delay and energy consumption.
Because service execution is very energy-intensive, for this problem, the first
thing is to ensure that multiple chains are selected to complete a certain compo-
sition of tasks to prevent the above situation. For the selected multiple chains,
their structures may have intersections (there are common service instances) or
completely independent from each other (there are no common service instances),
and they can be executed simultaneously at the same time.
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3.1 The Delay of a Service Chain

In this paper, the delay of the instance chain set is used as the indicator to
evaluate different service composition algorithms, and define the delay of the
instance chain in the set that completes the composite task most quickly as the
delay of the instance chain set. Therefore, we need to consider a calculation
method of instance chain delay as shown in Fig. 3 (blue circle indicates that the
service instance is deployed in the cloud data center).

Fig. 3. Instance chain ω. (Color figure online)

D(ω) represents an ω delay, which consists of processing data time and trans-
mitting data time. In order to calculate the delay of the whole chain, we first
analyze the delay between two adjacent instances in the chain, as shown in Fig. 4.

Fig. 4. Schematic diagram of data transmission and processing.

In Fig. 4, m0 represents the initial amount of data at s0, x represents the
sequence number of the corresponding instance in its service class, 1 � x �
N (Fi). mx

i is the amount of data getting into the current service sx
i , mx

i rax
i

indicates the amount of data to be transferred to the subsequent service mx′
j after

the current instance sx
i has processed the data. Bxx′

i,j indicates the bandwidth of
data transmission. The setting of Bxx′

i,j is related to the location of sx
i and sx′

j .
When both sx

i and sx′
j are in the cloud data center or the same edge node,

set Bxx′
i,j to a larger value. If both sx

i and sx′
j are in two different edges, or one is

in the cloud center, the other is in the edge, then Bxx′
i,j is regarded as a random

variable, let it follow the Gaussian distribution of the mean and variance as the
corresponding values.

Therefore, the part of processing data in the delay between sx
i and sx′

j

(recorded as Di,j) is described by attribute o in Table. 1, and the part of trans-
mitting data is described by Bxx′

i,j . Therefore, the calculation method of Di,j is
shown in Eq. 2.

Di,j =
mx

i rax
i

Bxx′
i,j

+ mx
i rax

i ∗ ox′
j

= mx
i rax

i

(
1

Bxx′
i,j

+ ox′
j

) (2)
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In Eq. 2, ox′
j represents the time taken by sx′

j to process unit data. Di,j is
actually the sum of the time of data transmission between sx

i and sx′
j and the time

of data processing in sx′
j . At the same time, the mx

i rax
i in Eq. 2 can be determined

by the initial data amount m0, and the ra attribute of all service instances
passing from s0 to sx

i on the current ω, this paper assumes that all service
instances ra of an abstract service are the same, but their service processing
time and network environment are different, so another expression of mx

i rax
i is

shown in Eq. 3.

mx
i rax

i = m0 ∗
⎛

⎝
∏

sx
j ∈ωs0,sx

i

ra
(
sx

j

)
⎞

⎠ (3)

In Eq. 3, ra
(
sx

j

)
represents the ra attribute value of sx

i . Therefore, Di,j can
be expressed in the form of formula 4.

Di,j = m0

⎛

⎜⎝
∏

sx
j ∈ω

s0,sX
i

ra
(
sx

j

)
⎞

⎟⎠ ∗
(

1
Bxx′

i,j

+ ox′
j

)
(4)

For Eq. 4, let ηiω =
∏

sx
j ∈ωs0,sx

i

ra
(
sx

j

)
, according to the previous settings,

for a certain sx
i on a given chain ω, ηiω is a fixed constant. Set ωi,j = 1

Bxx′
i,j

+ ox′
j ,

note that except for the case that sx
i and sx′

j are in the center of the cloud,
other cases ωi,j are random variables subject to a certain distribution. And ωi,j

represents the comprehensive performance of the network environment where a
service is located and the data processing capability of the service. The smaller
the ωi,j , the better. Thus, the form of Di,j can be reduced to Eq. 5.

Di,j = m0ηiω ∗ ωi,j (5)

It should also be noted that s0 only represents the location of the initial data,
that is, only the data is transmitted and not processed. Based on the above, the
total delay D(ω) of a service instance chain ω can be described in the form shown
in Eq. 6.

D(ω) =
∑

eij∈ω

Di,j =
∑

eij∈ω

m0 ∗ (ηiω ∗ ωi,j)

= m0

∑

eij∈ω

(ηiω ∗ ωi,j)
(6)

According to Eq. 6, it is also mentioned above that for each service instance
of a specific chain, ηiω is a constant value, and m0 and o0 are known constants.
Therefore, in the intuitive form, to make the total delay of the selected instance
chain as small as possible, it is necessary to make ωi,j as small as possible.
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3.2 Data-Aware Service Composition Algorithm

Algorithm 1: locAwareSelect(chainNum, preNode, Ii, pEN)
Input: the number of the current chain chainNum , the previous instance

preNode , the candidate instance set Ii, the array pEN []
Output: Feasible service instance number

1 Ii ← rank(li);
2 prePos = preNode.getPos();
3 samePosNum = findSamePos(Ii);
4 if (samePosNum != -1) then
5 if (Ii.get(samePosNum).getPos() == 0 ‖

Ii.get(samePosNum).getRunFlag() == 1) then
6 return samePosNum;
7 else
8 while (pEN[Ii.get(samePosNum).getPos()] + 1 > MAX INS) do
9 samePosNum = random.nextInt(Ii.size() * 50%);

10 if (Ii.get(samePosNum).getPos() == 0 ‖
Ii.get(samePosNum).getRunFlag() == 1) then

11 break;
12 end

13 end
14 return samePosNum;

15 end

16 else
17 choice = random.nextInt(Ii.size() * 50%);
18 if (Ii.get(choice).getPos() == 0 ‖ Ii.get(choice).getRunFlag() == 1) then
19 return choice;
20 else
21 while (pEN[Ii.get(choice).getPos()] + 1 > MAX INS) do
22 choice = random.nextInt(Ii.size() * 50%);
23 if (Ii.get(choice).getPos() == 0 ‖ Ii.get(choice).getRunFlag() ==

1) then
24 break;
25 end

26 end
27 return choice;

28 end

29 end

We propose an energy efficient data-aware service composition algorithm.
In fact, from the perspective of the algorithm execution process, there are also
greedy algorithms and random ideas: when you want to select the next service
instance, first check whether there is one in the same place as the previous
instance (both in DC or the same EN) from the candidate set. If there is one, it
is preferred; if there is no such instance in the current candidate set, or because
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of some limiting factors, there is the same location as the previous instance, but
the instance cannot be selected, the greedy algorithm is used to select the better
one from the remaining instances. The pseudo code is shown in Algorithm 1.

Rank(Ii) in the first line of Algorithm 1 means that the current candidate
instance set is sorted from small to large according to its ωi,j ; prePos is the
location of the previous instance; findSamePos(Ii) is to find the same instance
sequence number in the candidate set as the preNode position, and return the
instance number if there is one, or −1 if it is not; line 9 means that the current
candidate set has the same instance as the preNode position, However, due to
conditional constraints, it is not possible to select an instance. Then randomly
select the first 50% of the set of instances in the instance set that have already
sorted the ωi,j according to the number of candidate instances, which combines
the stochastic algorithm and the greedy algorithm.

4 Evaluation

4.1 Simulation Settings

In the simulation environment, we set up one cloud data center (DC), and 5 edges
(1–5). Therefore, the value of pos for all service instances is 0∼5, where 0 repre-
sents the cloud data center; and 1 ∼ 5 represents the corresponding edge nodes.
Service path path:F1 → F2 → F3 → F4, and its N(Fi) is 3, 4, 2, 5, 3, which means
that the number of service instances is 3, 4, 2, 5, 3.

Besides, the parameters that need to be set for each instance in this experi-
ment are: location (pos), ratio of output to input data (ra), unit data processing
time (o); meanwhile, according to the previous delay analysis, in order to sim-
plify the programming model, the network environment of the instance (that is,
the bandwidth allocated to an instance) is also incorporated into the parameters
of the instance. Since the edges are closer to users, while the computing capacity
of a cloud is better, the general principle of parameter setting is that when the
service instance is deployed at the edge: the unit data processing time is longer,
the network bandwidth may be better; when the service instance is deployed at
the cloud center: the unit data processing time is short, the network bandwidth
may be poor.

4.2 Results Analysis

This section mainly introduces comparative experimental methods, processes,
and corresponding results display and analysis instructions. The purpose of the
experiment is to compare the performance of three service composition algo-
rithms including a stochastic algorithm, a greedy algorithm, and a data-aware
service composition algorithm under the same constraints and experimental sce-
nario settings. We investigate the performance of the algorithms by the delay
of service instance chain, which actually indicates the energy consumption of
the mobile devices. The comparison method is to simulate the running of the
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instance chain set selected by different methods more than 10,000 times, and the
parameters are randomly generated according to the respective obedience dis-
tribution, and the delay is plotted into a CDF (distribution function diagram).
Generally, the curve, that is closer to the y-axis, means less service delay and
less energy consumption.

The main factors that affect the delay of the instance chain set generated by
a service instance selection algorithm, includes the number of optional service
instance chains, and the total number of optional service instances. Two factors
are adjusted and the effects of these factors on the instance chain delay are
compared.

Fig. 5. The first set of experiments.

1# Experiments. For the first set of experiments, according to Fig. 5, intu-
itively, when the number of instance chains is 3 and 5, the performance of the
data-aware service composition algorithm is obviously better than the stochastic
algorithm and the greedy algorithm. The service delay of the proposed algorithm
is shorter, thus reducing the energy consumption of mobile devices. As the num-
ber of instance chains increases, the differences between algorithms become more
stable, and the performance of each algorithm become better and closer. How-
ever, in a real cloud-edge system, it is impossible to allow a service composition
algorithm to select a large number of instance chains because the resources at the
edge are limited. Therefore, the proposed algorithm still has a good performance
improvement on service delay and energy consumption reduction.

2# Experiments. As the total number of instances changes, according to Fig. 6,
the proposed algorithm is always better than the traditional algorithms in reduc-
ing service delay, which means that the proposed algorithm reduced the energy
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Fig. 6. The second set of experiments.

consumption of mobile devices. At the same time, the performance difference
between the three selection algorithms does not change significantly as the num-
ber of optional instances increases, because in most cases, the three selection
algorithms do not require many chains to select the specified number of instances.
Therefore, the proposed algorithm reduces service delay, and it also reduces the
waiting time of applications on mobile devices and the energy consumption of
mobile devices.

5 Conclusion

In this paper, we investigate service composition problem and propose an energy
efficient data-aware service composition algorithm, which is a new extension of
service composition in a cloud-edge system. To handle the uncertainty of a single
service, we propose an effective service instances selection mechanism to generate
multiple service paths to reduce service delay and energy consumption of mobile
devices. Extensive simulations show the effectiveness and stability of this method
in reducing service delay and energy consumption.
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