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Abstract. Machine Learning (ML)-based Network Intrusion Detection
Systems (NIDSs) have become a promising tool to protect networks
against cyberattacks. A wide range of datasets are publicly available and
have been used for the development and evaluation of a large number of
ML-based NIDS in the research community. However, since these NIDS
datasets have very different feature sets, it is currently very difficult to
reliably compare ML models across different datasets, and hence if they
generalise to different network environments and attack scenarios. The
limited ability to evaluate ML-based NIDSs has led to a gap between the
extensive academic research conducted and the actual practical deploy-
ments in the real-world networks. This paper addresses this limitation, by
providing five NIDS datasets with a common, practically relevant feature
set, based on NetFlow. These datasets are generated from the following
four existing benchmark NIDS datasets: UNSW-NB15, BoT-IoT, ToN-
IoT, and CSE-CIC-IDS2018. We have used the raw packet capture files
of these datasets, and converted them to the NetFlow format, with a
common feature set. The benefits of using NetFlow as a common for-
mat include its practical relevance, its wide deployment in production
networks, and its scaling properties. The generated NetFlow datasets
presented in this paper have been labelled for both binary- and multi-
class traffic and attack classification experiments, and we have made
them available for to the research community [1]. As a use-case and
application scenario, the paper presents an evaluation of an Extra Trees
ensemble classifier across these datasets.

Keywords: Network intrusion detection system · NetFlow · Machine
learning · Network datasets · Network features

1 Introduction

Anomaly-based Network Intrusion Detection Systems (NIDSs) aim to learn and
extract complex network behaviours to classify incoming traffic into various
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attacks and benign classes [2]. Network attack vectors can be obtained from var-
ious features transmitted through network traffic, such as packet counts/sizes,
protocols, services and flags. Each network attack’s type has a different iden-
tifying pattern, known as a set of events that may compromise the security
principles of networks if undetected [3]. The fact that these patterns are learnt
from network traffic data shows the importance of data collection for Machine
Learning (ML) training and evaluation stages. Real network data is challenging
to obtain due to security and privacy issues. Also, production networks do not
generate labelled flows, which is necessary for following a supervised ML learning
approach.

As such, researchers have used network testbeds to create synthetic datasets
that are publicly available for research purposes [4]. These NIDS datasets contain
labelled network flows that are made up of certain features extracted from net-
work traffic. These features are pre-determined by the datasets’ authors based
on their domain knowledge and tools used during their extraction. Network
data features have a great impact on the performance of ML-based NIDSs [5].
Over the past few years, researchers have evaluated their proposed models on
datasets using their original sets of features. However, as these features are very
different, evaluating ML models often is not reliable, as each ML-based NIDS is
trained and validated using different data features. Moreover, due to their com-
plex techniques of extraction, these network feature sets might not be feasible
for collection or storage in real-production networks.

In order to address this gap, we have created five NIDS datasets, which all
have the same sets of features that facilitate reliable NIDS evaluation over mul-
tiple datasets. These datasets are created by converting four well-known mod-
ern NIDS datasets into NetFlow format. NetFlow is a widely deployed protocol
of network flow collection [6]. Obtaining NetFlow features from existing NIDS
datasets will enable researchers to evaluate ML models across various datasets
using the same set of features. Moreover, it will also determine the performance
of NetFlow features in detecting various attack types present in the datasets.

The rest of this paper is organised as below. Section 2 illustrates the lim-
itations faced by existing datasets and how they can be overcome. Section 3
explains the importance and methodology of creating NetFlow datasets as well
as the distribution of various benign/attack flows in the newly created datasets.
Finally, the new datasets are evaluated in Sect. 4, by comparing their binary-
class and multi-class classification performance to the original features of their
corresponding datasets. The main contribution of this paper is to provide the
research community with five NetFlow datasets, with the same feature sets, using
four existing benchmark datasets, along with an initial set of results collected
while evaluating the new datasets using binary-class and multi-class classifica-
tion experiments.

2 Limitations of Existing Datasets

Due to the complexity in obtaining labelled real-world network flows, researchers
have generated synthetic benchmark NIDS datasets. These datasets are made
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publicly available for use in the training and testing stages of the ML-based
NIDSs. Currently, there are more than 15 NIDS datasets available in the
field [7] containing labelled network flows. These datasets reflect network benign
behaviour combined with synthetic attack scenarios. Each dataset contains a
few attack categories conducted over a testbed network. The packets are cap-
tured, during the experiments, in the packet capture (pcap) format, and then
pre-determined network features are extracted from these pcap files. A key stage
of designing an ML-based NIDS is the selection of these features. The selected
features must be feasible in count and extraction’s complexity for efficient stor-
age and collection. The sets should also provide adequate information for the
efficient classification by the ML model.

Due to lack of a standard set of features for generating NIDS datasets, the
authors of these datasets have applied their own domain knowledge to create
network features, which they believe would aid in the classification process. As
a result, each available dataset has been created with an almost exclusive set of
network features. The variance of information represented in each dataset has
caused limitations in the field that keeps aggravating with the new releases and
production of NIDS datasets. The two main issues of having different feature sets
in benchmark datasets are 1. dimensional overload due to collection and storage
of various features, some of which are irrelevant and 2. inability to evaluate
an ML model’s generalisation across multiple NIDS datasets using a targeted
or a proposed feature set. We believe the unreliable evaluation methods have
caused a gap between the extensive academic research conducted and the actual
deployments of ML-based NIDS models in the real-world.

Identifying the ideal set of network features to be used in NIDS datasets has
been an ongoing research topic over the last decade. However, due to the sub-
jection to the datasets used in the experiments, the identified feature sets have
been custom to each dataset. These sets are also subjected to the feature selec-
tion techniques and ML models used to identify and evaluate them respectively.
Moreover, due to the differences in datasets’, the selected or identified features
can not be evaluated using other datasets, simply due to their absence. The rest
of this section discusses four of the most recent and common publicly available
NIDS datasets. These datasets have been released within the last five years so
they represent modern behavioural network attacks.

• UNSW-NB15. The Cyber Range Lab of the Australian Centre for Cyber
Security (ACCS) released the widely used, UNSW-NB15, dataset in 2015.
The IXIA PerfectStorm tool was utilised to generate a hybrid of testbed-
based benign network activities as well as synthetic attack scenarios. Tcp-
dump tool was implemented to capture a total of 100 GB of pcap files. Argus
and Bro-IDS now called Zeek, and twelve additional algorithms were used to
extract the dataset’s original 49 features [8]. The dataset contains 2,218,761
(87.35%) benign flows and 321,283 (12.65%) attack ones, that is, 2,540,044
flows in total.

• BoT-IoT. The Cyber Range Lab of the Australian Centre for Cyber Security
(ACCS) designed a network environment in 2018 that consists of normal and
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botnet traffic [9]. The Ostinato and Node-red tools were utilised to generate
the non-IoT and IoT traffic respectively. A total of 69.3GB of pcap files were
captured and Argus tool was used to extract the dataset’s original 42 features.
The dataset contains 477 (0.01%) benign flows and 3,668,045 (99.99%) attack
ones, that is, 3,668,522 flows in total.

• ToN-IoT. A recent heterogeneous dataset released in 2020 [10] that includes
telemetry data of Internet of Things (IoT) services, network traffic of IoT
networks and operating system logs. In this paper, we utilise the portion
containing network traffic flows. The dataset is made up of a large number of
attack scenarios conducted in a representation of a medium-scale network at
the Cyber Range Lab by ACCS. Bro-IDS, now called Zeek, was used to extract
the dataset’s original 44 features. The dataset is made up of 796,380 (3.56%)
benign flows and 21,542,641 (96.44%) attack samples, that is, 22,339,021 flows
in total.

• CSE-CIC-IDS2018. A dataset released by a collaborative project between
the Communications Security Establishment (CSE) & Canadian Institute for
Cybersecurity (CIC) in 2018 [11]. The victim network consisted of five differ-
ent organisational departments and an additional server room. The benign
packets were generated by network events using the abstract behaviour of
human users. The attack scenarios were executed by one or more machines
outside the target network. The CICFlowMeter-V3 tool was used to extract
the original dataset’s 75 features. The full dataset has 13,484,708 (83.07%)
benign flows and 2,748,235 (16.93%) attack flows, that is, 16,232,943 flows
in total.

Figure 1 illustrates all the shared and exclusive features of these datasets.
As seen, the list of features shared by all four datasets includes only 3 features,
and the pairwise shared features numbers vary from 1 to 5. Most of the features
are exclusive to individual datasets. This has made it challenging for researchers
to measure the performance of their proposed ML models using the same set of
features across the four datasets. Apart from the small number of shared fea-
tures, other differences make it even more difficult for using these datasets in the
evaluation of ML-based NIDSs. The first issue is the vast differences in the ratio
of the benign/attack flows. The UNSW-NB15 and CSE-CIC-IDS2018 datasets
have very high benign to attack ratios (20 and 7.2 respectively) whereas for the
ToN-IoT and BoT-IoT datasets this ratio is about 0.2 and 0.02 respectively.

The next issue is the number and type of features in each dataset. The
UNSW-NB15 and ToN-IoT datasets have approximately the same number of
original features. The CSE-CIC-IDS2018 dataset has almost double the num-
ber of their features and the BoT-IoT dataset has a slightly lower number. The
original feature sets in UNSW-NB15, BoT-IoT and CSE-CIC-IDS2018 contain
handcrafted features that are not present in network traffic but are statistically
measured from other features, such as the average or sum of the number of bytes
transferred over the last 100 s. All these differences, and the necessity of having
multiple NIDS datasets with the common ground feature set, to generalise the
evaluation of NIDSs, has led to the generation of the new datasets. This will
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Fig. 1. List of the shared and exclusive features of four NIDS datasets

enable researchers to evaluate their proposed ML-based NIDS model’s perfor-
mance across various network designs and attack scenarios to make sure their
measured model performance well generalises.

3 NetFlow Datasets

3.1 NetFlow

Collecting and recording network traffic is necessary to monitor and analyse
network environments. There are two main trends for this process, capturing
the complete network packets, and extracting a summary in the form of flows.
While packet capturing provides full access to the network information, it is
not scalable as it might necessitate large-capacity data storage to record a short
period of traffic. The large volume of such data not only makes it difficult for
the analysis, but it also faces privacy and security concerns. The alternative
method is extracting network traffic summary as flows, which is very common
in the networking industry due to its practical relevance and scaling properties.
A network flow identifies a sequence of packets between two endpoints sharing
a number of attributes. The packets flow can be unidirectional or bidirectional.
These common attributes include; source/destination IP address and L4 (trans-
port layer) ports, and the L4 protocol. These shared attributes are often referred
to as the five-tuple.
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The information provided by network flows are essential to analyse network
traffic for security events [12]. The network flows can be represented in various
formats where the NetFlow is the de-facto industry standard developed and
proposed by Darren and Barry Bruins from Cisco in 1996 [13]. Other network
hardware manufacturers have also implemented and adopted their protocols such
as NetStream by Huawei, Jflow by Juniper, Cflow by Alcatel-Lucent, Rflow
by Ericsson and s-flow that is supported by 3Com/HP, Dell, and Netgear. In
response to the need for a universal standard of flow information, the Internet
Engineering Task Force (IETF) has developed a new protocol, named Internet
Protocol Flow Information Export (IPFIX) which is based on Cisco NetFlow.
Similar to NetFlow, IPFIX considers a flow to be any number of packets sharing
certain characteristics observed in a specific time-frame. NetFlow evolved over
the years, where version 9 is the most common due to its larger variety of features
and bidirectional flow support [14].

NetFlow makes it possible to convert any available dataset into a common
ground feature set. Accomplishing that, researchers would be able to compare
datasets efficiently and most importantly evaluate their proposed ML-based
NIDS models using the same set of features across various datasets and attack
types. Most of the production network devices such as routers and switches are
capable of extracting NetFlow records. This is a great motivation for evaluating
the performance of NetFlow features in terms of attack detection, as the level of
complexity and resources required to collect and store them is lower. Moreover,
the generated datasets sharing the same set of features can be merged together
to generate a universal NIDS dataset containing data flows from various network
environments consisting of various attack scenarios. Finally, the same set of fea-
tures can be extracted from any future generated NIDS dataset and be merged
into the current ones, increasing the value of the datasets.

3.2 Conversion

Figure 2 shows the procedure of creating the NetFlow datasets by extracting
flows (in NetFlow format) from the pcap files of the original datasets, and
labelling extracted flow records based on the grand truths provided by dataset
authors. We utilised the publicly available pcap files of each dataset to generate

Fig. 2. NetFlow datasets’ extraction and labelling procedure
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Table 1. List of NetFlow fields included in the datasets proposed in this paper

Feature Description

IPV4 SRC ADDR IPv4 source address

IPV4 DST ADDR IPv4 destination address

L4 SRC PORT IPv4 source port number

L4 DST PORT IPv4 destination port number

PROTOCOL IP protocol identifier byte

TCP FLAGS Cumulative of all TCP flags

L7 PROTO Layer 7 protocol (numeric)

IN BYTES Incoming number of bytes

OUT BYTES Outgoing number of bytes

IN PKTS Incoming number of packets

OUT PKTS Outgoing number of packets

FLOW DURATION MILLISECONDS Flow duration in milliseconds

the NetFlow datasets. The nProbe tool by Ntop [15] was utilised to convert the
pcaps into NetFlow version 9 format and selecting 12 features to be extracted.
Table 1 lists the extracted NetFlow features along with their brief description.
Using nProbe we create a text file listing the pcaps path of the original datasets.
We specify NetFlow version 9 due to its popularity.

The dump format is chosen as text flows, in which each feature is separated by
a comma (,) to be utilised as CSV files. The maximum number of flows in a file is
100 m dumped in a maximum of 100 m seconds, and nProbe is set not to modify
the original pcaps timestamps. In the last step, we create two label features by
matching the five flow identifiers; source/destination IPs and ports and protocol
to the ground truth attack events published with the original datasets. If a flow
is located in the attack events it would be labelled as an attack, class 1, in the
binary label and its respective attack’s type would be recorded in the attack
label, otherwise, the record is labelled as a benign flow, class 0.

3.3 Datasets

Table 2 lists the NetFlow datasets, and compares their properties to the original
datasets, in terms of Feature Extraction (FE) tool, number of features, files size
and the benign to attack samples ratio. As illustrated, there is one NetFlow
dataset corresponding to each original NIDS dataset, and the fifth NetFlow
dataset is the comprehensive dataset that combines all the four.

• NF-UNSW-NB15. The NetFlow-based format of the UNSW-NB15 dataset,
named NF-UNSW-NB15, has been developed and labelled with its respective
attack categories. The total number of data flows are 1,623,118 out of which
72,406 (4.46%) are attack samples and 1,550,712 (95.54%) are benign. The
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Table 2. Specifications of the datasets proposed in this paper, compared to the original
datasets that have been used to generate them

Dataset Release

year

Feature

extraction tool

Number

of

features

CSV size

(GB)

Benign to

attack samples

ratio

UNSW-NB15 2015 Argus, Bro-IDS and MS SQL 49 0.55 8.7 to 1.3

NF-UNSW-NB15 2020 nProbe 12 0.11 9.6 to 0.4

BoT-IoT 2018 Argus 42 0.95 0.0 to 10

NF-BoT-IoT 2020 nProbe 12 0.05 0.2 to 9.8

ToN-IoT 2020 Bro-IDS 44 3.02 0.4 to 9.6

NF-ToN-IoT 2020 nProbe 12 0.09 2.0 to 8.0

CSE-CIC-IDS2018 2018 CICFlowMeter-V3 75 6.41 8.3 to 1.7

NF-CSE-CIC-IDS2018 2020 nProbe 12 0.58 8.8 to 1.2

NF-UQ-NIDS 2020 nProbe 12 1.0 7.7 to 2.3

attack samples are further classified into nine subcategories, Table 3 repre-
sents the NF-UNSW-NB15 dataset’s distribution of all flows.

• NF-BoT-IoT. An IoT NetFlow-based dataset generated using the BoT-IoT
dataset, named NF-BoT-IoT. The features were extracted from the publicly
available pcap files and the flows were labelled with their respective attack
categories. The total number of data flows are 600,100 out of which 586,241
(97.69%) are attack samples and 13,859 (2.31%) are benign. There are four
attack categories in the dataset, Table 4 represents the NF-BoT-IoT distri-
bution of all flows.

• NF-ToN-IoT. We utilised the publicly available pcaps of the ToN-IoT
dataset to generate its NetFlow records, leading to a NetFlow-based IoT
network dataset called NF-ToN-IoT. The total number of data flows are
1,379,274 out of which 1,108,995 (80.4%) are attack samples and 270,279
(19.6%) are benign ones, Table 5 lists and defines the distribution of the
NF-ToN-IoT dataset.

• NF-CSE-CIC-IDS2018. We utilised the original pcap files of the CSE-
CIC-IDS2018 dataset to generate a NetFlow-based dataset called NF-CSE-
CIC-IDS2018. The total number of flows are 8,392,401 out of which 1,019,203
(12.14%) are attack samples and 7,373,198 (87.86%) are benign ones, Table
6 represents the dataset’s distribution.

• NF-UQ-NIDS. A comprehensive dataset, merging all the aforementioned
datasets. The newly published dataset represents the benefits of the shared
dataset feature sets, where the merging of multiple smaller datasets is pos-
sible. This will eventually lead to a bigger and more universal NIDS dataset
containing flows from multiple network setups and different attack settings.
It includes an additional label feature, identifying the original dataset of each
flow. This can be used to compare the same attack scenarios conducted over
two or more different testbed networks. The attack categories have been mod-
ified to combine all parent categories. Attacks named DoS attacks-Hulk, DoS
attacks-SlowHTTPTest, DoS attacks-GoldenEye and DoS attacks-Slowloris
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Table 3. NF-UNSW-NB15 distribution

Class Count Description

Benign 1550712 Normal unmalicious flows

Fuzzers 19463 An attack in which the attacker sends large
amounts of random data which cause a system
to crash and also aim to discover security
vulnerabilities in a system

Analysis 1995 A group that presents a variety of threats that
target web applications through ports, emails
and scripts

Backdoor 1782 A technique that aims to bypass security
mechanisms by replying to specific constructed
client applications

DoS 5051 Denial of Service is an attempt to overload a
computer system’s resources with the aim of
preventing access to or availability of its data

Exploits 24736 Are sequences of commands controlling the
behaviour of a host through a known
vulnerability

Generic 5570 A method that targets cryptography and
causes a collision with each block-cipher

Reconnaissance 12291 A technique for gathering information about a
network host and is also known as a probe

Shellcode 1365 A malware that penetrates a code to control a
victim’s host

Worms 153 Attacks that replicate themselves and spread
to other computers

Table 4. NF-BoT-IoT distribution

Class Count Description

Benign 13859 Normal unmalicious flows

Reconnaissance 470655 A technique for gathering information about
a network host and is also known as a probe

DDoS 56844 Distributed Denial of Service is an attempt
similar to DoS but has multiple different
distributed sources

DoS 56833 An attempt to overload a computer system’s
resources with the aim of preventing access
to or availability of its data

Theft 1909 A group of attacks that aims to obtain
sensitive data such as data theft and
keylogging
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have been renamed to the parent DoS category. Attacks named DDOS attack-
LOIC-UDP, DDOS attack-HOIC and DDoS attacks-LOIC-HTTP have been
renamed to DDoS. Attacks named FTP-BruteForce, SSH-Bruteforce, Brute
Force -Web and Brute Force -XSS have been combined as a brute-force cat-
egory. Finally, SQL Injection attacks have been included in the injection
attacks category. The NF-UQ-NIDS dataset has a total of 11,994,893 records,
out of which 9,208,048 (76.77%) are benign flows and 2,786,845 (23.23%) are
attacks. Table 7 lists the distribution of the final attack categories.

Table 5. NF-ToN-IoT distribution

Class Count Description

Benign 270279 Normal unmalicious flows

Backdoor 17247 A technique that aims to attack remote-access
computers by replying to specific constructed
client applications

DoS 17717 An attempt to overload a computer system’s
resources with the aim of preventing access to or
availability of its data

DDoS 326345 An attempt similar to DoS but has multiple
different distributed sources

Injection 468539 A variety of attacks that supply untrusted inputs
that aim to alter the course of execution, with
SQL and Code injections two of the main ones

MITM 1295 Man In The Middle is a method that places an
attacker between a victim and host with which
the victim is trying to communicate, with the
aim of intercepting traffic and communications

Password 156299 covers a variety of attacks aimed at retrieving
passwords by either brute force or sniffing

Ransomware 142 An attack that encrypts the files stored on a host
and asks for compensation in exchange for the
decryption technique/key

Scanning 21467 A group that consists of a variety of techniques
that aim to discover information about networks
and hosts, and is also known as probing

XSS 99944 Cross-site Scripting is a type of injection in
which an attacker uses web applications to send
malicious scripts to end-users
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Table 6. NF-CSE-CIC-IDS2018 distribution

Class Count Description

Benign 7373198 Normal unmalicious flows

BruteForce 287597 A technique that aims to obtain usernames
and password credentials by accessing a list
of predefined possibilities

Bot 15683 An attack that enables an attacker to
remotely control several hijacked computers
to perform malicious activities

DoS 269361 An attempt to overload a computer system’s
resources with the aim of preventing access
to or availability of its data

DDoS 380096 An attempt similar to DoS but has multiple
different distributed sources

Infiltration 62072 An inside attack that sends a malicious file
via an email to exploit an application and is
followed by a backdoor that scans the
network for other vulnerabilities

Web Attacks 4394 A group that includes SQL injections,
command injections and unrestricted file
uploads

4 Evaluation

For the evaluation of the newly published NetFlow datasets, we use an ML
classifier and compared the classifier performances with the corresponding
measures on the original datasets. We drop the flow identifiers such as IDs,
source/destination IP and ports, timestamps and start/end time to avoid bias
towards attacking or victim nodes. For UNSW-NB15, we additionally drop Time
To Live (TTL) based features i.e., sttl, dttl and ct state ttl, due to their
extreme correlation with the labels. Furthermore, we utilise the min-max normal-
isation technique to scale all datasets’ values between 0 to 1. Finally, we apply
an Extra Trees ensemble classifier, made up of 50 randomised decision trees esti-
mators. The chosen classifier belongs to the ‘trees’ family and has proven to
achieve reliable performances on NIDS datasets. Due to the extreme imbalance
in all datasets’ binary-class and multi-class labels, we set a custom class weight
parameter, using Eq. 1.

Class Weight =
Total Samples Count

Number Of Classes× Class Samples Count
(1)

To reliably evaluate the datasets, we conduct five cross-validation splits and
collect the average metrics such as accuracy, Area Under the Curve (AUC),
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F1 Score, Detection Rate (DR), False Alarm Rate (FAR) and time required to
predict a single test sample in microseconds (µs).

Table 7. NF-UQ-NIDS distrubution

Class Count Class Count

Benign 9208048 Scanning 21467

DDoS 763285 Fuzzers 19463

Reconnaissance 482946 Backdoor 19029

Injection 468575 Bot 15683

DoS 348962 Generic 5570

Brute Force 291955 Analysis 1995

Password 156299 Shellcode 1365

XSS 99944 MITM 1295

Infilteration 62072 Worms 153

Exploits 24736 Ransomware 142

4.1 Binary-Class Classification

In this experiment, we evaluate the attack detection performance of the Net-
Flow datasets compared to the original datasets. Table 8 lists the accuracy,
AUC, F1 score, DR, FAR and prediction time results for both, the original and
the NetFlow versions. The NF-UNSW-NB15 dataset achieved slightly lower per-
formance than the UNSW-NB15 dataset, with almost the same DR but higher
FAR, however, it used less time to predict the samples. The overall accuracy
achieved by the NF-UNSW-NB15 dataset is 98.62% compared to 99.25% when
using the UNSW-NB15 dataset. The NF-BoT-IoT dataset has achieved slightly
lower classification performance, i.e. 93.70% DR and 0.97 F1 Score, compared
to its parent BoT-IoT dataset which achieved a 100% DR and 1.00 F1 Score.
The almost perfect results achieved by BoT-IoT has been deemed unreliable in
a recent study [16], due to its extreme class imbalance of attack and benign
samples which is unrealistic in a real-world network.

The NF-ToN-IoT dataset’s performance was superior to its original ToN-IoT
dataset, achieving a 99.67% DR and 0.37% FAR, it also consumed less predic-
tion time. The accuracy achieved is 99.66% proving its significance compared to
the ToN-IoT dataset, 97.86%. The NF-CSE-CIC-IDS2018 dataset performance
was less efficient than the CSE-CIC-IDS2018 dataset achieving a similar DR of
94.71% but a higher FAR of 4.59%, however significantly less time was consumed
in prediction. The overall accuracy achieved is 95.33%, significantly lowering the
98.31% accuracy of the CSE-CIC-IDS2018 dataset. The merged NF-UQ-NIDS
dataset achieved an accuracy of 97.25%, a DR of 95.66% and a FAR of 2.27%,
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achieving a reliable classification performance of 20 different attack categories.
Figure 3 shows the AUC achieved using the Extra Trees classifier on the four
newly published NetFlow-based datasets. This comparison is conducted by using
the same set of features across all datasets.

This fair comparison demonstrates the benefit of the newly published
datasets, which was not possible to achieve due to each dataset’s unique set
of features. Overall, the NetFlow datasets containing only eight features used
in the classification experiments achieved a very similar attack detection per-
formance compared to the original 36 features of the BoT-IoT, 38 features of
both the UNSW-NB15 and ToN-IoT datasets and the 77 features of the CSE-
CIC-IDS2018 dataset. We noticed a consistent prediction time decrease in using
all the NetFlow datasets. Therefore, in terms of feasibility and practicality in
real-world networks, using NetFlow features might lead to an overall superior
performance if additional metrics are measured such as storage and computation
power required to extract and store the utilised features.

Table 8. Binary-class classification results

Dataset Accuracy AUC F1 score DR FAR Prediction time

(µs)

UNSW-NB15 99.25% 0.9545 0.92 91.25% 0.35% 10.05

NF-UNSW-NB15 98.62% 0.9485 0.85 90.70% 1.01% 7.79

BoT-IoT 100.00% 0.9948 1.00 100.00% 1.05% 7.62

NF-BoT-IoT 93.82% 0.9628 0.97 93.70% 1.13% 5.37

ToN-IoT 97.86% 0.9788 0.99 97.86% 2.10% 8.93

NF-ToN-IoT 99.66% 0.9965 1.00 99.67% 0.37% 6.05

CSE-CIC-IDS2018 98.31% 0.9684 0.94 94.75% 1.07% 23.01

NF-CSE-CIC-IDS2018 95.33% 0.9506 0.83 94.71% 4.59% 17.04

NF-UQ-NIDS 97.25% 0.9669 0.94 95.66% 2.27% 14.35

Fig. 3. Binary-class classification’s AUC
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Table 9. NF-UNSW-NB15 multi-class classification results

Class name UNSW-NB15 NF-UNSW-NB15

DR F1 score DR F1 score

Benign 99.72% 1.00 99.02% 0.99

Analysis 4.39% 0.03 28.28% 0.15

Backdoor 13.96% 0.08 39.17% 0.17

DoS 13.63% 0.18 31.84% 0.41

Exploits 83.25% 0.80 81.04% 0.82

Fuzzers 50.50% 0.57 62.63% 0.55

Generic 86.08% 0.91 57.13% 0.66

Reconnaissance 75.90% 0.80 76.89% 0.82

Shellcode 53.61% 0.59 87.91% 0.75

Worms 5.26% 0.09 52.91% 0.55

Weighted average 98.19% 0.98 97.62% 0.98

Prediction time (µs) 9.94 9.35

4.2 Multi-class Classification

In this experiment, we measure the DR and F1 score of each attack’s type
present in each dataset. Tables 9, 10, 11, 12 and 13 list the DR and F1 score of
each attack type for the NF-UNSW-NB15, NF-BoT-IoT, NF-ToN-IoT, NF-CSE-
CIC-IDS2018 and NF-UQ-NIDS datasets respectively. The average accuracy and
prediction time are calculated and the results are compared to their respective
original datasets. In Table 9, we can conclude that by using the NF-UNSW-NB15
dataset, we can increase the DR of analysis, backdoor, DoS, fuzzers, shellcode
and worms attacks, however, it was inefficient against generic attacks. The over-
all accuracy achieved which is 97.62% is slightly lower than the UNSW-NB15
dataset, 98.19%, due to the number of miss-correctly classified samples, however,
the prediction time consumed was slightly lower.

Table 10 shows that the BoT-IoT dataset is achieving almost perfect multi-
classification performances of a 100% accuracy and 1 F1 Score. Again, these
results might be unreliable due to the extreme imbalance mentioned in [16]. In
addition, there might be certain ‘hidden label’ features, such as the TTL-based
features in the UNSW-NB15 dataset, that are extremely correlated to the attack
types present in the dataset. The NF-BoT-IoT dataset was unreliable in the
detection of the DDoS and DoS attacks. However, it achieved a 90% DR against
reconnaissance and theft attacks. Although it achieved a lower DR of 73.58%
and F1 Score of 0.77, the NetFlow dataset maintained the lower prediction time
compared to the BoT-IoT dataset.

In Table 11, the NF-ToN-IoT dataset increased the DR of DoS attacks but
lowered the DDoS, injection, MITM, password, scanning and XSS attacks com-
pared to the ToN-IoT dataset. Further analysis is required to identify which fea-
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Table 10. NF-BoT-IoT multi-class classification results

Class name BoT-IoT NF-BoT-IoT

DR F1 score DR F1 score

Benign 99.58% 0.99 98.65% 0.43

DDoS 100.00% 1.00 30.37% 0.28

DoS 100.00% 1.00 36.33% 0.31

Reconnaissance 100.00% 1.00 89.95% 0.90

Theft 91.16% 95.37 88.06% 0.18

Weighted average 100.00% 1.00 73.58% 0.77

Prediction time (µs) 12.63 9.19

tures of the original dataset were critical in the detection of the missed attacks
and to be added to the NetFlow dataset. Overall, in multi-class classification,
the NF-ToN-IoT dataset was not as effective in terms of overall accuracy and
prediction time compared to the ToN-IoT dataset. It achieved a low prediction
accuracy of 56.34% and a high prediction time of 21.21 µs. However, a binary-
class classification deemed it was very efficient, therefore, it seems like the ML
classifier is detecting the overall pattern of attacks present in the dataset, but
not the pattern of individual attacks. We suspect that specific features present
in the original dataset contain payload information that was enabling the ML
classifier to detect certain attack types. Further analysis is required to inves-
tigate which features from the ToN-IoT dataset are necessary to identify each
attack’s type.

In Table 12, the performance of the NF-CSE-CIC-IDS2018 dataset can prove
that attacks such as FTP-bruteforce and infiltration were better detected using
the NetFlow features compared to the CSE-CIC-IDS2018 features. However,
Brute Force -Web, Brute Force -XSS, DDOS attack-HOIC and SQL injection
attack samples were mostly undetected by using the NetFlow features. The DoS
attacks-SlowHTTPTest attack samples were fully undetected by the ML clas-
sifier. Similar to the NF-ToN-IoT dataset, the ML classifier was unable to effi-
ciently detect the pattern of certain attack types. Overall, the accuracy and
prediction time achieved while using the NF-CSE-CIC-IDS2018 dataset being
71.92% and 17.29 µs respectively were lower compared to the CSE-CIC-IDS2018
dataset.

Table 13 displays the full attack identification results of the merged dataset
named NF-UQ-NIDS. The chosen ML classifier was efficient in the detection
of certain attack’s types such as backdoor, bot, bruteforce, exploits, shellcode,
DDoS and ransomware. However, attacks such as analysis, DoS, fuzzers, generic,
infiltration, worms, injection, MITM, password, scanning and XSS were not reli-
ably detected. Further analysis is required to identify the features that are critical
in identifying these attacks and to add them to the NetFlow features. The overall
accuracy of 70.81% and prediction time 14.74 (µs) were achieved.
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Table 11. NF-ToN-IoT multi-class classification results

Class name ToN-IoT NF-ToN-IoT

DR F1 score DR F1 score

Benign 89.97% 0.94 98.97% 0.99

Backdoor 98.05% 0.31 99.22% 0.98

DDoS 96.90% 0.98 63.22% 0.72

DoS 53.89% 0.57 95.91% 0.48

Injection 96.67% 0.96 41.47% 0.51

MITM 66.25% 0.16 52.81% 0.38

Password 86.99% 0.92 27.36% 0.24

Ransomware 89.87% 0.11 87.33% 0.83

Scanning 75.05% 0.85 31.30% 0.08

XSS 98.83% 0.99 24.49% 0.19

Weighted average 84.61% 0.87 56.34% 0.60

Prediction time (µs) 12.02 21.21

Table 12. NF-CSE-CIC-IDS2018 multi-class classification results

Class Name CSE-CIC-IDS2018 NF-CSE-CIC-IDS2018

DR F1 score DR F1 score

Benign 89.50% 0.94 69.83% 0.82

Bot 99.92% 0.99 100.00% 1.00

Brute Force -Web 71.36% 0.01 50.21% 0.52

Brute Force -XSS 72.17% 0.72 49.16% 0.39

DDOS attack-HOIC 100.00% 1.00 45.66% 0.39

DDOS attack-LOIC-UDP 83.59% 0.82 80.98% 0.82

DDoS attacks-LOIC-HTTP 99.93% 1.00 99.93% 0.71

DoS attacks-GoldenEye 99.97% 1.00 99.32% 0.98

DoS attacks-Hulk 100.00% 1.00 99.65% 0.99

DoS attacks-SlowHTTPTest 69.80% 0.60 0.00% 0.00

DoS attacks-Slowloris 99.44% 0.62 99.95% 1.00

FTP-BruteForce 68.76% 0.75 100.00% 0.79

Infilteration 36.15% 0.08 62.66% 0.04

SQL Injection 49.34% 0.30 25.00% 0.22

SSH-Bruteforce 99.99% 1.00 99.93% 1.00

Weighted average 90.28% 0.94 71.92% 0.80

Prediction time (µs) 24.17 17.29
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Table 13. NF-UQ-NIDS multi-class classification results

Class name NF-UQ-NIDS

Detection rate F1 score

Analysis 69.63% 0.21

Backdoor 90.95% 0.92

Benign 71.70% 0.83

Bot 100.00% 1.00

Brute Force 99.94% 0.85

DoS 55.54% 0.62

Exploits 80.65% 0.81

Fuzzers 63.24% 0.54

Generic 58.90% 0.61

Infilteration 60.57% 0.03

Reconnaissance 88.96% 0.88

Shellcode 83.89% 0.15

Theft 87.22% 0.15

Worms 52.97% 0.46

DDoS 77.08% 0.69

Injection 40.58% 0.50

MITM 57.99% 0.10

Password 30.79% 0.27

Ransomware 90.85% 0.85

Scanning 39.67% 0.08

XSS 30.80% 0.21

Weighted average 70.81% 0.79

Prediction time (µs) 14.74

5 Conclusion

This paper provides the research community with five new NIDS datasets based
on NetFlow features as shown in Table 2. These datasets can be used in ML-
based NIDS training and evaluation stages. The datasets are showing positive
results by achieving similar binary-class detection performance compared to the
complete set of their corresponding original datasets. Though, in the case of
multi-class detection experiments, the NF-BoT-IoT, NF-ToN-IoT and NF-CSE-
CIC-IDS2018 datasets were not similarly efficient. Further feature analysis is
required to identify the strength of each NetFlow feature, and how these datasets
can be improved by adding key features from the original datasets to aid in the
detection of missed attack types.
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These published NetFlow datasets offer a promising performance, and serve
three advantages; 1. the level of complexity and resources required to collect
and store NetFlow features are lower, 2. proposed ML models can be evaluated
using the same set of features across various attack types, and 3. datasets can
be merged to generate a more comprehensive data source including collected
over various network environments. Overall, the practicality and initial perfor-
mance of NetFlow features’ collection and attack detection, requires increased
attention and interest by researchers in applying them into the real-world mod-
els for ML-based NIDS. Future works include enhancing the current datasets
with additional NetFlow features which can potentially improve both the binary
and multi-class classification performances. Finally, key features from the orig-
inal datasets required to detect certain attack types must be identified to be
included in NetFlow features.
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