l‘)

Check for
updates

Spectrum Sensing and Prediction for 5G
Radio

Malgorzata Wasilewska ™)@, Hanna Bogucka®, and Adrian Kliks

Institute of Radiocommunications, Poznan University of Technology, Poznan, Poland
{malgorzata.wasilewska,hanna.bogucka,adrian.kliks}@put.poznan.pl

Abstract. In future wireless networks, it is crucial to find a way to pre-
cisely evaluate the degree of spectrum occupation and the exact param-
eters of free spectrum band at a given moment. This approach enables a
secondary user (SU) to dynamically access the spectrum without inter-
fering primary user’s (PU) transmission. The known methods of signal
detection or spectrum sensing (SS) enable making decision on spectrum
occupancy by SU. The machine learning (ML), especially deep learning
(DL) algorithms have already proved their ability to improve classic SS
methods. However, SS can be insufficient to use the free spectrum effi-
ciently. As an answer to this issue, the prediction of future spectrum
state has been introduced. In this paper, three DL algorithms, namely
NN, RNN and CNN have been proposed to accurately predict the 5G
spectrum occupation in the time and frequency domain with the accu-
racy of a single resource block (RB). The results have been obtained
for two different datasets: the 5G downlink signal with representation
of daily traffic fluctuations and the sensor-network uplink signal char-
acteristic for IoT. The obtained results prove DL algorithms usefulness
for spectrum occupancy prediction and show significant improvement in
detection and prediction for both low signal-to-noise ratio (SNR) and
for high SNR compared with reference detection/prediction method dis-
cussed in the paper.
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learning - 5G - LTE - Convolutional neural network - Recurrent neural
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1 Introduction

According to the Ericsson Mobility Report [3], there will be 8,9 billion mobile
subscriptions in 2025, out of which 2.8 billion 5G subscriptions are forecast. This
number adds to 24,6 billion of machines and devices comprising future Internet
of Things (IoT). Moreover, data traffic increased by 20-100% as a consequence
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of COVID-19 lockdowns. Particularly in times of crisis, digital communication
capabilities need to be supported. Future IoT communication also poses chal-
lenges, never encountered before. Regarding 5G wireless communication, it aims
at achieving 1000 times the system capacity; 10 times the data rate, and spec-
tral efficiency, and 25 times the average mobile cell throughput compared with
4G [2]. One of the enablers of meeting these requirements is system’s spectrum
awareness and flexible spectrum reuse, the concept contained in the notion of
cognitive radio. Cognitive features of 5G are indicated already in [2], and become
subject of many publications, e.g. [7], even now, after the 3GPP standardiza-
tion group announced the completion of 3GPP Release 15 — the first full set of
5G standards in 2018, and its update in 2019 [1] and Release 16 in 2020. The
mentioned cognition and wireless intelligence is also envisioned as one of the
prerequisites for future 6G communication systems [13].

The main issue regarding spectrum occupancy awareness is how to assure its
accuracy, i.e. precision (in terms of high probability of detection and low prob-
ability of false alarm) and granularity of detected spectrum opportunities, as
well as to efficiently take these opportunities for the transmission purposes. An
important direction of research to address these challenges is to apply machine
learning (ML) methods to detect and predict the spectrum gaps (temporarily
unused frequency bands). This is because spectrum occupation has some time-
patterns reflecting daily traffic variations. Moreover, patterns in frequency can
be observed due to propagation-dependent resource (channels) allocation among
the cells, while spatial correlation reflects shadowing effect in the radio communi-
cation channel. ML methods can, thus, be efficient in recognizing these patterns
in time, frequency and space.

This paper considers the application of neural networks to improve spec-
trum sensing and spectrum prediction based on energy values calculation. The
energy calculation is used in energy detection (ED) sensing method. i.e. [4,10,15],
which is simple and is considered as semi-blind, it does not require any knowl-
edge on signal’s properties, however, the noise-level cognition is essential [14]. In
this paper the noise estimation is not mandatory, as an information on Signal-
to-Noise Ratio (SNR) can be obtained in other ways, for example as a value
associated with a given location and formerly calculated. Also the noise level is
not important in the decision making process, as a calculated energy is not com-
pared with any threshold to decide on spectrum occupancy - this task belongs to
the machine learning algorithm. The considered ML algorithms involve a neural
network (NN) with dense-layers, a recurrent neural network (RNN) structure
with Long Short-Term Memory (LSTM) layers, and a convolutional neural net-
work (CNN). CNNs are broadly used for image recognition, whilst in our paper,
the novelty is to consider them for spectrum sensing and prediction using two-
dimensional images formed of energy values and additional features in time and
frequency dimensions. As far as it is known to authors, the CNN algorithm for
spectrum occupancy prediction are usually used as a sensing or prediction tool
for two dimensional data in cooperative sensing [11,12,21], where data collected
from each of sensing SUs is merged into a set of input information for CNN algo-
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rithm. In [16] also NN, RNN and CNN are applied to predict the type, form and
number of transmitting users in a frequency band, but data used for detection
and prediction is a one-dimensional time-series data. The long-term prediction
that has been based on spatial-spectral-temporal data has been addressed in
[19], where a hybrid convolutional long short-term memory has been proposed
for future spectrum state prediction. Another interesting hybrid DL approach
has been presented in [18] which also exploits CNN and LSTM combination.
Here, as an input data a set of IQ samples is considered for each moment in
time.

The rest of the paper is organized as follows. In Sect. 2, we first define the
system model and the spectrum sensing and prediction problem. In Sect. 3, we
describe NN-based algorithmic solutions of the stated problem. In Sect. 4, we
present computer-simulation results, whilst in Sect. 5, we derive the conclusions.

2 System Model and Problem Definition

Below, we consider a certain area in which an unlicensed user (called secondary
user — SU) aims at detecting and predicting 5G transmission activity of the
licensed 5G /4G users (called primary users — PUs) in time and frequency. (Note
that 4G LTE-A transmission can be considered as a special case of 5G.) Since
5G numerology allows for high flexibility in resource blocks (RBs) assignment,
the goal is to opportunistically make use (by SU) of the spectrum gaps (created
by PUs).

In order to define the spectrum occupation state, two hypotheses can be con-
sidered. Hypothesis H applies to the situation, when the received signal consists
of just the Additive White Gaussian Noise (AWGN). Furthermore, hypothesis
‘H; is that the received signal consists of the PU’s transmitted signal distorted
by the radio fading channel and AWGN. Both hypotheses can be described as:

Ho = y(t) = n(t),
Hy o y(t) = h(t) * s(t) + n(t),

where y(t) is the received signal, n(t) depicts AWGN, s(2) is a transmitted signal,
and h(t) is an impulse response of a radio fading channel.

A given sensing algorithm chooses the most probable of the two hypotheses.
In order to do so, the algorithm defines test function T'(y), which is applied
on collected received signal samples y. A decision on spectrum occupancy is
made by comparing the value of the test function to threshold value A defined
by algorithm. If the test function value is higher or equal to the threshold, the
spectrum is considered to be occupied, otherwise, the spectrum is considered free.
The spectrum sensing algorithm’s performance is determined by the probability
of detection Py (the probability of correctly detecting a present signal) and the
probability of false alarm P, (the probability that signal presence is detected,
even though it is not true), i.e.:

(1)
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Pa =Pr{T(y) > A[H1},

P, = Pr{T(y) > MHo} @

Transmission detection is the decision regarding the present state of spectrum
occupation, i.e., at time moment t, while SU may be interested in prediction of
the future states. For the prediction, the main issue is to make a decision on a
future spectrum state, i.e. at the next, or several next time moments in the time
interval [t, t+7], where 7 > 0. This decision, however, is based on the current
signal data, i.e., collected at time moment t.

Although there are multiple well known spectrum detection methods, ML
algorithms have proved their usefulness in spectrum sensing area. Future spec-
trum state prediction is another area in which machine learning performs well
thanks to its adaptability and ability to find patterns in input data.

In the problem described in the paper, SU is collecting data samples of a
received, distorted by channel signals. We assume a system consisting of one
base station (BS) transmitting to multiple users. The considered SU is receiving
the BS’s signal and is trying to decide by employing machine learning (ML)
techniques whether it is possible to transmit now or in near future. SU is col-
lecting signal samples and calculates energy for every RB in every first OFDM
symbol in a given time slot. Having this information, SU tries to make a decision
whether a considered slot is occupied. By calculating energy in a single OFDM
symbol SU has time to make a decision and transmit in the remaining part of
the time slot. It would be beneficial however, to simultaneously gain knowledge
of occupancy of the same RBs in the future time slots in order to prepare for
longer transmission. Proposed ML algorithms try to evaluate occupancy for cur-
rent and six next time slots. The ML input data is calculated based on energy
values per RB. The ML algorithms are trained separately for different signal to
noise ratio (SNR) values.

3 Deep Learning for Spectrum Sensing and Prediction -
Algorithmic Solution

Deep Learning (DL) algorithms are known for their ability of finding complicated
dependencies in input data [8]. In the prediction problem, it is crucial to recognize
any patterns that may occur in the receiving signal and DL algorithms should
be a good choice. Three DL algorithms have been implemented for spectrum
sensing and prediction. First, NN algorithm has been implemented as an example
of a simplest algorithm. The second algorithm is a RNN algorithm. The RNNs
are usually used in language and audio signal processing, as a tool of predicting
sequences [6]. Their particular usefulness in this field is due to the fact that basic
elements of RNNs layers called cells feedback their own output as an additional
input information which makes possible for RNNs to notice intricate patterns
occurring in input data in time. The last algorithm implemented is a CNN.
CNNs are broadly used for image recognition, processing and classification [17].
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Fig. 1. First dataset - cyclical intensity of RBs occupancy

All of the proposed algorithms are supervised classification algorithms. Each
one of them is trying to establish an occupancy status of a current of future RBs,
so it indicates a binary classification problem. The proposed NN-based method is
the simplest and requires least calculations, but is able to perform only a single
RB classification. This means that based on the current input data, the NN
classifies one current or one of the future RBs’ as free or occupied. On the other
hand, the RNN as a more complicated method, is able to perform a detection
and prediction for several next RBs, but only for single frequency range. The
CNN is able to perform most complex calculations and classify multiple RBs
both in time and in frequency.

Each proposed algorithm receives slightly different input data based on RB
energy values. A single input dataset for NN algorithm consists of four values
that characterize a single RB: frequency index (values from range 0-49), time slot
index (values from range 0-79), energy value for the considered RB, and sum of
energies of neighboring RBs. Each element of an input sequence of RNN consists
of 3 values: time slot index, energy value, and sum of neighboring RBs’ energy
values. To take full advantage of CNN advantages, the input data in proposed
algorithm is constructed as an 2D image, whose first dimension is frequency,
second dimension is time, and pixels contain RB energy values. Input images
also have three layers, similarly as color images have three RGB components.
The first layer consists of aforementioned RBs’ energy values, the second layer
contains frequency index values, and the third one, the time slot indexes.

4 Simulation Experiment

4.1 Assumptions and Settings

Two different cases of signals received by SU are considered. First signal is a
symbolic representation of daily fluctuations in traffic intensity typical to wireless
communication systems. Figure 1 presents signal for 400 slots as RBs in frequency
and time. The yellow areas indicates occupied RBs, and blue means free RBs.
The intensity dependency in time is clearly visible, as an intensity rises and drops
every 80 slots. The signal is correlated in time, also, probability of occupied
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Fig. 2. Second dataset - sensor network signals

RB in frequency is not uniform, which is dictated by the fact that the channel
may prevent effective transmission on certain frequencies to some users. In this
example it is assumed, that signal is most probable to appear on the middle
frequencies, and least probable on the marginal frequencies.

The second considered case concerns a system, where there are multiple
sensor-like devices that need to transmit information in the form of short signals
and with high periodicity. The signal occurs in every cycle with high probability,
although from time to time devices hold back the transmission. The simulated
sensors’ transmitted signal is presented on Fig.2a. Additionally to the sensors’
signals, a random signal which is characterized by a certain correlation over time
is transmitted with uniform probability throughout the band. The random signal
with sensors signal is presented on Fig. 2b.

As mentioned before, three DL algorithms have been implemented. Figure 3
shows a structure of the NN model. It consists of three dense layers, proceeded
by a Softmax layer [5], which convert received data into probability values. First
two dense layers consist of 10 neurons. The last dense consists of two neurons.

Neural network is used here for classification problem, so as a loss function,
Sparse Categorical Cross Entropy [8] has been used. The output data consists
of two probabilities — probability of a considered RB belonging to ‘occupied’
category and probability of belonging to ‘free’ category. Those two probability
values sum up to one. In order to achieve a classification result for current RB’s
signal detection or for further RB occupancy prediction, separate NNs must be
trained. In the experiments shown in the paper, detection, and prediction from
first to sixth next time slot is performed, which required to create seven NNs



182 M. Wasilewska et al.

Input data Output data

Dense - 10 neurons

Dense - 10 neurons

Dense - 2 neurons
Softmax layer

Fig. 3. NN algorithm model

one four each application. The Stochastic Gradient Descent optimizer [20] has
been used in training process.

The proposed RNN model consists of three Long Short-Term Memory
(LSTM) layers [9]. A dropout of 0.5, 0.3 and 0.2 is applied after each of LSTM
layers respectively to prevent overfitting. The last layer is a time distributed
dense layer consisting of 4 neurons. A sequence consisting of 100 feature sets is
provided as input. The output consists of sequence of probabilities. First prob-
ability value concerns probability of current RB being occupied. The three next
probabilities are for predicting occupancy of next RBs for the same frequency,
but future time slots. Since the RNN accepts as an input a one-dimensional data,
there is a need of training separate RNNs for each frequency separately. The
Adam optimizer [20] has been used, with learning rate 0.001. As a loss function,
binary cross entropy has been implemented. Figure4 portrays the RNN model.

Dropout 0.5
Dropout 0.3
Dropout 0.2
neurons
[None, 100, 7]

Output data
[100, 7]

Time Distributed
Dense layer - 7

g 8
g &)
o [

Fig. 4. RNN algorithm model

The last implemented algorithm is a CNN. Figure5 shows proposed algo-
rithm’s model. This method accepts as an input a spectrogram-like image of
energy values and other features per each RB. The input data is padded with
zero values on the top, bottom and on the right side. Output results achieved
by this network, are two-dimensional layers of the size of 50 pixels by 7 pix-
els. It means that a results is a detection and prediction results for each of 50
frequencies for current and next 7 time slots. One pixel represents one RB.

The created CNN model consists of four convolutional layers. The first one
has 8 kernels (filters) are the size of 9 by 80 pixels. This layer returns image of
the same size as input. The second layer uses 16 kernels of size 5 by 50, and
the third one uses 32 kernels of size 3 by 25. The growing number of kernels in
each layer is to ensure better recognition of any more abstract features of input
data. The output layer has only two kernels, each for every RB’s occupancy
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category - free or occupied. The filters are the size of 1 by 27, to ensure a
proper output image size. Each of the layers uses rectifier function (ReLU) as
an activation function, except of the last layer, which uses softmax function. As
an optimizer, Adam algorithm is implemented with learning rate equal 0.0001.
Since the output consists of two categorical probabilities, the Sparse Categorical
Crossentropy is used as a loss function.
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Fig. 5. CNN algorithm model

4.2 Simulation Results

In order to test algorithms’ performance on detection and future spectrum state
prediction, experiments have been conducted for different SNR values. Addi-
tionally a primitive algorithm (PA) for prediction has been proposed in order
to evaluate whether DL algorithms introduce any improvement into prediction.
This primitive method uses detection results of a currently considered ML and
assumes that all RBs for a given frequency in every future time slot that is con-
sidered will have the same occupancy state as those that just have been detected.
A simple prediction method as that can give quite good results if the spectrum
is occupied most of the time, or it is occupied in continuous in time groups of
RB. The latter case is true in both of considered datasets.

For all of the considered ML algorithms and their corresponding PA results,
plots of Py and P, for a range of SNR values have been obtained. To facilitate the
interpretation of the results, the bar charts have been drawn of the probabilities
Py and P, for each of prediction steps. These charts are created for highest SNR
value, where the difference between ML and PA is the biggest. Additionally, an
overall measure of improvement - a total difference between both probabilities
has been determined, according to the formula:

Dtotal = PdML - PdpA + PfapA - PfaML7 (3)

where Dioiq; is a total evaluation measure, Pq,;, , Prayy, Pdpas Praps are proba-
bilities of detection and false alarm for a considered ML and for a corresponding
PA respectively.
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Fig. 6. NN and PA results depending on SNR for first dataset

First Dataset. Results for first dataset have been achieved by applying all
of the proposed DL algorithms. Figure6 shows plots of probabilities of detec-
tion and false alarm for detection and prediction for next three slots. Figure 6a
shows probabilities for NN algorithm, while Fig. 6b contains results for primitive
prediction based on NN detection results. It can be observed that for low SNR
values, NN algorithm is able to achieve probability of detection equal around
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50%, while keeping lower values of probability of false alarm around 20%. Typ-
ical detection algorithms like ED method usually achieve the same values of Py
and Py, for low SNR, so results achieved by NN are beneficial, although P, could
be considered as high depending on the detection/prediction requirements for
transmission. The results for prediction and detection for both NN and PA are
the same for low SNR. This is a common rule among all of the following results.
For low SNR, the noise prevents any time-depending sequences being found,
hence there are no differences in the detection and prediction results. At the
same time, there are some dependencies of resource allocation in time, which is
a reason for a significant difference between Py and P,. All of the results of NN
and PA for high SNR, are very similar, although PA shows a slight advantage.

The differences in results for SNR =12 dB are much easier to compare on
Fig.9. Here, all of the blue bars correspond to Py and P, NN results on top
and bottom plot respectively. The grey bars overlapping blue bars represent PA
results based on NN detection. It can be observed that Py for all predictions
for NN is lower than PA results, but at the same time P, results are lower.
The overall prediction evaluation is presented on Fig. 10. Figures9 and 10 are
described in more detail below.

For second set of results, the RNN results are presented on Fig.7. Here,
the differences between RNN and PA results are more visible, especially for Py,
which is significantly higher for RNN for prediction of next second and third
slots. The gap between Py and P, results for low SNR is even more substantial
than for the NN. Here, the P, stays on value of 20%, while P4 reaches values of
even 70%. For high SNR values and for bigger number of prediction steps, RNN
results are also compared in more detail on Fig. 9.

CNN results are presented on Fig.8. It can be expected, that CNN would
work as good or even better than RNN algorithm. The achieved results prove
it’s true. The results of P4 for high SNR are almost as good as those of RNN,
and P, are even lower. Although the Py values for low SNR are not as high as
RNN Py, the P, are lower, which ensures that the difference of these results is
preserved, and still equal to around 50%.

As mentioned above, all of the detection and prediction results for high SNR
are compared collectively in order to evaluate which of the algorithms works best
on the first dataset. On Fig. 9 one can observe differences between Py (top chart)
and P, (bottom) for each of DL algorithms and their corresponding PA. Each
of the DL bars has a corresponding overlapping grey PA bar. It can be observed
that PA results of prediction are very dependent on ML algorithm detection
that they are based on. For instance PA based on NN are significantly worse
than PA based on RNN and CNN, although all three ML algorithms reach very
similar results for detection (prediction = 0). The P, for NN based PA grow
much faster with each prediction step. In fact for sixth predicted slot, the P,
and Py values of PA are only 15% apart.

The NN P, results are usually a few percent worse than PA results, but
since Prp, values grow fast with each prediction step, Pry, reach lower values,
although are still higher than P, of other DL algorithms. It is also quite clear
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Fig. 7. RNN and PA results depending on SNR for first dataset

that the best Py results are achieved by RNN, but the best P, belong to CNN
algorithm. Either way, both methods work comparably for first dataset.

The top graph of Fig. 10 shows how each of DL algorithms performs compar-
ing to it’s PA. These results were obtained through use of Eq. 3. This bar graph
represents whether it is better to use simple PA method based on a chosen ML
algorithm and how much better or worse performance can be achieved. Figures 9
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and 10 provide the complete set of information needed for the assessment of
a given method. The negative results indicate that a PA is better than a ML
for a given prediction step. The bottom part of Fig. 10 presents also comparison
between ML results and PA results, although only one set of PA results is chosen
to be compared with every ML result. It is dictated by the fact that some PA
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results for a given DL can be much worse than ML and give false impression on a
top graph that a given ML performs better than the others. The example of this
phenomenon is evaluation result for NN algorithm for prediction 6, where the
P, are so high that NN appears to achieve significant improvement, when it
fact it still performs much worse than RNN and CNN. To address this issue, on
the bottom graph, all of the DL results have been compared, to the PA results of
CNN, which are the best. It is clearly visible now that NN is the worst algorithm
for this dataset.
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Second Dataset. As a second dataset a signals from sensor network has been
considered. Unlike the results of first dataset, this time the gap between Py
and P, for low SNR for all of the considered DL algorithms. Figure 11 presents
results for NN and NN-based PA. The Py for low SNR is equal only around 12%,
while Py equals 5%.
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Fig.12. RNN and PA results depending on SNR for second dataset

Figure 12 presents results for RNN algorithm. Same as for the first dataset, in
case of the second dataset RNN also performs generally better in terms of both
Py and P, than NN. The RNN is better suited for recognizing the patterns in
signal despite the noise and random signals. For low SNR values it is not possible
anymore to associate a specific time with higher or lower communication traffic
intensity, but it is still possible to predict sensor’s activity, hence the gap between
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Py and P,. It is worth noting that for high SNR, values P, of RNN are lower
than corresponding values of P, for RNN-based PA.

Figure 13 shows results for CNN. In this case, the differences between the
two CNN and CNN-based PA results can be seen more clearly than before. The
advantage of the CNN algorithm over PA in terms of high SNR Py is growing
with each prediction step. Also it is very clear that P, can be achieved much
lower thanks to the use of CNN than PA.
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Just like in case of first dataset, the comparison of high SNR Py and P,
results for multiple prediction steps has been collectively compared on Fig. 14. As
previously, the top graph presents evaluation results of each ML results compared
to their corresponding PA results and the bottom graph shows evaluation of each
ML results compared with the best PA results, which are in this case RNN-based
PA. Also in that case, the CNN algorithm appears to be the best choice in terms
of overall Py and P, performance in compare to other two algorithms, which
is clearly visible on Fig.15. The NN is not able to outperform RNN-based PA
for any prediction step higher than 0 although it does outperform its own PA

results for prediction from 1 to 3.

Fig. 14. Comparison of probability of detection and probability of false alarm values
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5 Conclusions

In this paper, we considered three deep learning algorithms for 4G/5G spec-
trum detection and prediction. Two datasets have been investigated. The chosen
datasets represent different cases of communication systems, namely the periodic
changes in communication traffic intensity and sensor networks with repeating
signals. Neural Network, Recurrent Neural Network and Convolutional Neural
Network have been used for detection and future spectrum state prediction.
All of them present different set of advantages and disadvantages, although the
CNN turned out to be the best fitting method in both of the considered cases.
All three of the algorithms have been compared to the very simple detection/
prediction method based on each of the machine learning methods, called as
primitive algorithm in the paper. In the paper, there has been derived an overall
evaluation of proposed algorithms in order to facilitate the selection of the most
appropriate algorithm for specific needs.
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