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Abstract. Due to the broadcast nature of radio transmission, both authorized and
unauthorized users can access the network, which leads to the increasingly promi-
nent security problems of wireless network. At the same time, it is more difficult to
detect and identify users in wireless network environment due to the influence of
noise. In this paper, the performance of energy detection (ED), matched filtering
(MF) and K-nearest neighbor algorithm (KNN) are analyzed under different noise
and uncertain noise separately. The Gaussian noise, α-stable distribution noise and
Laplace distribution noise models are simulated respectively under the different
uncertainty of noise when the false alarm probability is 0.01. The results show
that the performance of the detectors is significantly affected by different noise
models. In any case, the detection probability of KNN algorithm is the highest; the
performance of MF is much better than ED under different noise models; KNN is
not sensitive to noise uncertainty; MF has better performance on noise uncertainty
which makes ED performance decline fleetly.
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1 Introduction

The amount of Internet of Things (IoT) devices based on wireless cellular network
architecture has been increasing explosively with the advent of the 5G era, and the
security of IoT has attractedmuch attention. Iot devices often suffer from various attacks,
such as Denial of Service Attack (DoS), the User to Root Attack (U2R), Remote to Local
Attack (R2L), and Probing Attack which may disrupt device workflow, impair product
quality, and even lead to serious privacy issues and economic losses [1, 2]. In addition,
the rapidly increasing IoT devices will not only bring convenience to daily life, but also
bring greater consumption of mobile bandwidth, putting forward a higher requirement
for radio spectrum safety and making radio monitoring particularly important. Identify
the unauthorized radio users effectively is the basis of radio spectrum management [3].

Generally, the common methods for signal detection are cyclostationary feature
detection [4], matched filter detection [5, 6], energy detection [7–9] and its improved
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algorithms [10–12]. ED and MF detection are the two most commonly used detection
methods in radio monitoring [13], which have a good performance under Gaussian
noise. However, there are many electromagnetic interferences in complex environment,
resulting inmanymonitoring data accompanied by non-Gaussian noise. For example, the
non-Gaussian noise that has a long tailed is described by α-stable distribution model [14,
15]; the impulse noise that generated by the electromechanical switches in the indoor
environment, the lightning in the air and the wires in the outdoor environment [16],
etc. A signal detection method based on matched filter under α-stable distribution noise
is proposed in [17], which improves the detection performance of traditional matched
filter in non-Gaussian noise environment; the method in [18] uses hyperbolic tangent
function to suppress impulse noise, which obtains an improved robustness of detection
under non-Gaussian noise. More unfortunately, the time-varying intensity of these non-
Gaussian noises makes the noise change in a certain range, which seriously interferes
with the signal detection process. And when the signal-to-noise ratio (SNR) of the signal
detected is smaller than the threshold, the detector is no longer robust [19]. Different
from the traditionalmethods, KNN algorithm based onML learns from training samples,
compares the new-coming signal sample with the training set, then labels the new-
coming signal sample to reflect the specific attribute information, such as amplitude,
phase, energy, frequency.

In this paper, the models of ED, MF and KNN under different noises are established
and simulated to analyze the influence of different noises and noise with uncertain
variance on the performance of the detectors (model). The remainder of this paper is
organized as follows. Section 2 gives the signal model and detectors, Sect. 3 presents
the simulation and analysis and Sect. 4 summarizes the whole paper.

2 Signal Model and Detectors

In this section, signal model and three detectors: ED,MF and the detector based on KNN
algorithm are introduced respectively.

2.1 Signal Model

Signal existence detection mainly focuses on whether the signal exists in the channel.
A binary hypothesis can be used to represent the detection problem of the signal:

H0 : x[n] = w[n]
H1 : x[n] = s[n] + w[n] . (1)

Here n = 1, 2, 3,…, N is the sampling time; H0 refers to the absence of signal; H1
refers to the occurrence of signal; w[n] is the noise sequence; s[n] is the radio signal
sequence; x[n] refers to the signal received by the radio monitoring station.
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(a) (b)

Fig. 1. Different noises wave with length of 100 (a) and their PDF (b). For the Gaussian noise, it
has the parameters of μ = 0, σ2 = 1; the α-stable noise has the α = 0.5, β = 0, γ = 0.223, μ = 0,
which has an obvious peak; Laplace noise with μ = 0, σ2 = 1, which has a heavy tail.

For convenience, we assume that {s[n]}, {w[n]} are both independent and identi-
cally distributed, and they are independent of each other [20, 21]. In this paper, w[n] is
studied by taking Gaussian noise [22], α-stable distribution noise [23] and Laplace noise
[22] respectively. As shown in Fig. 1, the time-domain waveforms (a) and probability
distribution curves (b) of the three noise models are given.

2.2 Detectors

ED Detector. ED is the best detection scheme when the radio signal information is
unknown, which is widely used in the field of radio monitoring [13]:

x[n]

TED

Busy Free

TED>ε?
Y N

Fig. 2. Energy detection.
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Figure 2 shows the processing of classical energy detection. After receiving x[n], the
energy statistic TED is calculated and compared with the threshold ε. When the energy
statistic is bigger than ε, the channel is busy; otherwise, the channel is free. TED is
calculated by the Eq. (2):

TED = 1

N

N∑

i=1

|x[i]|2, (2)

where the N is the length of signal sequence x[n].

MF Detector. MF is the best way when the radio signal is known [24, 25]:

x[n]

TMF

Busy Free

y[n]

TMF> ?

Fig. 3. Matched filter detection.

Figure 3 illustrates the process of matched filter detection. Assuming that the signal
received by the matched filter is x[n]; the output of the matched filter is denoted as y[n],
and the energy statistics is compared with the threshold γ to determine the state of the
channel. TMF is calculated by the following equation [25]:

TMF = 1

N

N∑

i=1

|Cmy[n]s[n]|, (3)

where theCm is the channel state information (CSI); s[n] is the radio signal sequence.

KNN Detector. KNN algorithm based on machine learning is a supervised learning
algorithm [26], which needs to build training set and label.
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s[n] w[n] t[n]

di, i=1,3,...,k

M0, M1

M0>M1?

Busy   L=1

Ts   1 Tw 0 Tt L=?

Free   L=0

Y N

Fig. 4. Detection based on KNN algorithm.

Figure 4 depicts the process of method based KNN algorithm. The energy statistics
are calculated form radio signal s[n] and labeled as 1; for noise w[n], the energy statistics
are labeled as 0. In this way, we build a training set that includes data and tags showed
as dotted box in Fig. 4, 75% of them are used as training data, 25% are used as testing
data to test the performance of KNN. In addition, t[n] is the sample signal to be tested.
Energy statistics are given by Eq. (4):

Ts = 1

N

N∑

i=1

|s[i]|2,Tw = 1

N

N∑

i=1

|w[i]|2,Tt = 1

N

N∑

i=1

|t[i]|2 (4)

Euclidean distance is widely used as the measure distance of KNN algorithm. The
Euclidean distance between any two samples X, Y is given by Eq. (5):

disy(X ,Y ) =
√√√√

n∑

i=1

(xi − yi)2 (5)

Distance between the energy statistics of t[n] and each sample in the training set is
calculated, then K samples that is closest to the Tt is selected to calculate the number
M0 and M1 of Tw and TS. Finally, t[n] will be labeled with 0 when M0 >M1, otherwise
with 1.

3 Simulation and Analysis

In order to analyze the performance of different detectors, we assume that the channel
state information (CSI) is fixed, Cm = 1. The signal sequence is BPSKmodulated signal,
and the noise sequence is established according to the SNR.
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3.1 Performance of Detectors Under Ideal Conditions

ED andMF have the best performance under Gaussian noise. The following experiments
are performed at different false alarm probabilities:

(a) (b)

Fig. 5. Performance of detectors under Gaussian noise. (a) depicts the ROC curve of ED andMF;
(b) describes the performance of detectors under different SNR. The detection probability of KNN
is the highest; with the increase of false alarm probability, the detection probability of ED and MF
is also increasing; under the same false alarm probability, the detection probability of MF is much
higher than ED.

Figure 5 (a) indicates that probability of false alarm is helpful to improve the proba-
bility of detection, the detection probability of ED orMF is increased with the increasing
of false alarm probability. On the other hand, under a certain false alarm probability, the
higher the SNR is, the higher the detection probability will be.

Figure 5 (b) shows that under the simulated signal-noise environment, when PFA is
equal to 0.01, the detection probability of MF reaches 1 near SNR = −2.7 db, and ED
is 1 near SNR = −1.5 dB; the detection probability of MF reaches 1 near SNR = −
5 dB, ED is 1 near SNR= −1 dB when PFA = 0.1. In addition, the detection principle of
KNN algorithm is very different from ED and MF, the probability of detection of KNN
depends on the quality of the sample to be tested and the actual detection. KNN detector
has excellent performance when the SNR = −15 dB, and the detection probability
reaches 0.56, while the detection probability of ED and MF detector is smaller than 0.2;
in any cases of PFA, detection probability of KNN is the fastest detector to reach 1, which
shows the great potential of KNN in radio monitoring.

3.2 Performance of Detectors Under Non-Gaussian Noise

Compared with the ideal Gaussian channel shown in Fig. 5, the performance of detectors
changes greatly under non-Gaussian noise like α-stable distribution noise and Laplace
distribution noise. The parameter configuration of the simulation experiment is shown
in Table 1.
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Table 1. Parameter configuration

Items Parameter/statement Value Items Parameter/statement Value

s[n] BPSK – Gaussian
Noise

μ (mean value) 0

K Parameter of KNN
algorithm

3 σ2(Variance) 1

PFA Target false alarm
probability

0.01 α-stable
Noise

α (Characteristic
index)

1

Laplace
noise

μ (mean value) 0 β (Symmetrical
coefficient)

0

σ2( (Variance) 1 γ (Dispersion
coefficient)

0.223

λ (scale parameter) 0.7 μ(Positional
arguments)

0

ρ Noise uncertainty [0, 3] SNR Signal to noise ratio [−15, 15]

In Table 1, the radio signal sequence s[n] is the BPSK modulated signal with length
N = 100, which has a power 1; the noise power is calculated according to the SNR, and
the noise sequence w[n] is obtained by multiplying the Gaussian noise with mean of
0 and variance of 1; K is the only parameter of KNN algorithm, and is the number of
nearest neighbors; PFA is the target false alarm probability set in the following simulation
experiment; there are threemain parameters of Laplace noise:μ is the position parameter
of Laplace noise, λ is related to the variance of noise (σ2 = 2λ2); Generally, the larger
λ is, the longer the tail is when the position parameter μ is fixed; The α-stable noise
has a serious towing and the parameter α ∈ (0,2] determines the towing; The smaller α

is, the more serious towing is. The symmetric parameter β determines the inclination of
the distribution. The larger the dispersion coefficient γ, the more dispersed the sample
is relative to the mean value.

Taking the Gaussian noise detection probability curve as the baseline, the perfor-
mance of both ED and MF decrease under the Laplace noise; under the α-stable noise,
the detection performance of MF improves rapidly, while the detection probability of
ED decreases sharply. In addition, the detection probability of MF is higher than ED,
which shows that MF has higher flexibility than ED in dealing with different noises.
KNN has the highest detection probability under different noises. When the noises are
non-Gaussian noises, the detection probability is maintained at 1 (Fig. 6).
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Fig. 6. Performance of detectors under different noise

Observingly, the detection probability curves of ED and MF under α-stable noise
have a jump from 0 to 1 without any transition. Trying to adjust the parameters of
a-distribution many times, but nothing is changed. Consider that it’s related to noise
characteristics, three kinds of noise waveforms are given in Fig. 1(a), which shows that
α-stable noise only has a single pulse with a small amplitude in a limited range, while
in other ranges its amplitude is generally close to 0.

3.3 Performance of Detectors with Uncertain Noise Variance

In practice, the noise is uneven and time-varying, which causes the variance to fluctuate
in a certain range [20]. Analysis of the influence of noise uncertainty on the performance
of three detectors under different noise.

Fig. 7. Detection probability of three detectors under noise uncertainty in ideal Gaussian channel.
The dotted line in the figure represents the detection probability curve of ED and the solid line
represents the detection probability curve of MF.
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Figure 7 points out that KNN has a good performance against noise uncertainty, and
the increase of noise uncertainty does not reduce the detection probability of KNN. Even
in an ideal Gaussian channel, the detection performance of ED andMF will be degraded
due to the small uncertainty of Gaussian noise variance. With the uncertainty = 0 dB
as the baseline, when the uncertainty of Gaussian noise was 0.1 dB, the ED detection
probability curvemoved down significantly and reached 1 at SNR= 0 dB,while the trend
of MF detection probability curve was not as obvious as that of ED, and the detection
probability reached 1 at SNR = −1.5 dB When the uncertainty of Gaussian noise is
3 dB, the ED detection probability curve drops significantly, the detection probability
reaches 1 at SNR = 4 dB, and the MF detection probability reaches 1 at SNR = 0.

(c)

(a)                                                                   (b)

Fig. 8. Detection performance of three kinds of noisewith uncertainty of ρ. (a) shows the detection
probability of ED, MF and KNN when under Gaussian noise with uncertainty; (b) shows the
detection probability of detector under Laplace noise with uncertainty; (c) shows the detection
probability of detector under uncertain α-stable noise.

The simulation results in Fig. 8 show that whether Gaussian noise or non-Gaussian
noise, once there is a small uncertainty in the noise variance, itwill cause a great change in
detection performance. As a result, the detection performance of ED and MF decreases;
MF has a stronger ability to resist the uncertainty of noise than ED; KNN has a detection
probability of 1 under non-Gaussian noise.
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4 Conclusions

In this paper, the detection performance of ED, MF and KNN under different noise
models are analyzed and simulated. The simulation results show that: 1) KNN is not
sensitive to noise uncertainty, and the detection probability stays at 1 when dealing
with non-Gaussian noise; 2) the detection probability of MF and ED under Gaussian
noise model is higher than that under non Gaussian noise model; 3) under Gaussian or
non-Gaussian noise model, MF has a higher detection probability than ED, MF holds a
better performance to resist all kinds of noise; 4) considering the uncertainty of noise,
the detection performance of MF and ED declines no matter what noise model; 5) under
the same noise uncertainty, MF has a better detection probability than ED, MF holds a
better performance to resist the noise with uncertainty of variance.
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