
Modeling Interactions Among Microservices
Communicating via FIFO or Bag Buffers

Fei Dai1, Jinmei Yang1, Qi Mo2(B), Hua Zhou1, and Lianyong Qi3

1 School of Big Data and Intelligent Engineering, Southwest Forestry University,
Kunming, China

daifei@swfu.edu.cn
2 School of Software, Yunnan University, Kunming, China

3 School of Information Science and Engineering, Qufu Normal University, Jining, China

Abstract. Interactions among individual microservices communicating asyn-
chronously via FIFO or bag buffers vary significantly even for the same buffer
size. Different interactions among microservices will lead to different interac-
tion behaviors, which can make microservices systems malfunction during their
execution. However, these two asynchronous communication models with FIFO
or bag buffers are seldom distinguished. In this paper, we present new results for
the interaction differences between one asynchronous communication model with
FIFO buffers and another asynchronous communication model with bag buffers.
First, we propose a framework to uniformly define two asynchronous commu-
nication models. Second, we model interaction behaviors among microservices
as sequences of send and receive message actions under these two asynchronous
communication models. Finally, we compare these two asynchronous communi-
cation models using refinement checking to show their differences. Experimental
results show that the asynchronous communication model with FIFO buffers is
included in the asynchronous communication model with bag buffers.

Keywords: Interactions · Microservice · Asynchronous communication · FIFO
buffers · Bag buffers

1 Introduction

The cloud computing paradigm drivesmany IT companies to buildmicroservice systems
[1, 2]. A microservices system consists of a set of individual microservices that interact
with each other via exchanging messages [3]. Compared with traditional web services,
these microservices are much more fine-grained and are independently developed and
deployed. These characteristics of microservices drive many IT company’s software
systems to migrate from monolithic architecture to microservice architecture [4, 5].

In a microservices system, most of the interactions among microservices are asyn-
chronous since synchronous interactions are considered to be harmful due to the mul-
tiplicative effect of downtime [4]. These interactions among individual microservices
communicating asynchronously via FIFO or bag buffers vary significantly even for the

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2021
Published by Springer Nature Switzerland AG 2021. All Rights Reserved
H. Song and D. Jiang (Eds.): SIMUtools 2020, LNICST 370, pp. 505–518, 2021.
https://doi.org/10.1007/978-3-030-72795-6_41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72795-6_41&domain=pdf
https://doi.org/10.1007/978-3-030-72795-6_41

506 F. Dai et al.

same buffer size. These different interactions will lead to different interaction behaviors,
which can make microservices systems malfunction or deadlock during their execution.
However, these two asynchronous communication models with FIFO or bag buffers are
seldom distinguished [6].

Most of the existing works are restricted to asynchronous communication via FIFO
buffers [7], e.g. [10–16]. However, asynchronous communication via bag buffers is
meaningful [7–9] when the ordering of consuming messages does not matter. To
ensure the sound execution of microservices systems, it is necessary to distinguish the
differences between two asynchronous communicationmodelswith FIFOor bag buffers.

In this paper, we present new results for the interaction differences between one
asynchronous communication model with FIFO buffers and another asynchronous com-
munication model with bag buffers. Specifically, the contributions of this paper are as
follows.

1) Define two asynchronous communication models with FIFO buffers and bag buffers
uniformly.
2) Model interactions among microservices under these two different asynchronous
communication models uniformly.
3) Compare these two asynchronous communication models using refinement checking
to show their differences.
4) Conduct experiments to show the effectiveness of our proposed results.

The rest of this paper is organized as follows. Section 2 discusses related work.
Section 3 presents formal definitions of two asynchronous communication models
with FIFO or bag buffers. Section 4 formally model interaction behaviors among
microservices under two asynchronous communication models. Section 5 compares
asynchronous communication models with trace refinement. Section 6 discusses the
implementation of our approach and experimental results. Section 7 concludes this paper.

2 Related Work

There have been many works on modeling interactions among peers communicating
asynchronously via FIFO buffers. In [10, 11], Bultan et al. first proposed a framework
to model interactions of e-service as a sequence of send messages, which is called a
conversation. In their model, an e-service is composed of a set of peers where each peer is
equippedwith one FIFO queue for storingmessages sent from other peers. Subsequently,
Bultan et.al used to conversation protocol to model interactions of a composite Web
service that consists of a set of peers under asynchronous communication with FIFO
buffers [12]. In [13, 14], Basu et al. also used conservation protocols tomodel interactions
of four distributed systems that consist of a set of peers communicating via FIFO queues.
In [15, 16], Salaün et al.modeled interactions of asynchronously communicating systems
with unbounded buffers as a sequence of sending messages via FIFO buffers.

Compared to these works above, we not only consider an asynchronous commu-
nication model with FIFO buffers but also consider an asynchronous communication
model with bag buffers. Besides, we are particularly interested in modeling interactions

Modeling Interactions Among Microservices Communicating via FIFO 507

among microservice as sequences of send and receive message actions rather than send
message actions.

Recently, some research has begun to consider an asynchronous communication
model with bag buffers. In [17], Clemente et al. studied the reachability problem for
finite-state automata communicating via both FIFO and Bag buffers. In [7], Akroun
et al. studied the verification problem for finite-state automata communicating via FIFO
and bag buffers. However, our work focuses on the interaction differences between two
asynchronous communication models with FIFO or bag buffers.

3 Asynchronous Communication Models

This section presents two asynchronous communicationmodelswith FIFOor bag buffers
in a unified way.

In a microservices system, microservices interact with each other via messages.

Definition 1 (Message Set). A message set M is a tuple (Σ, p, send, rec) where:

• Σ is a finite set of letters.
• p ≥ 1 is a non-negative integer number which denotes the numbers of participating
microservices.

• src and dst are functions that associate message m ∈ Σ nonnegative integer numbers
send(m) �= rec(m) ∈ {1, 2, …, p}.

We often write mi→j for a message m such that send(m) = i and rec(m) = j.

Definition 2 (Microservice). A microservice MSp = (Sp, s0p, Fp, Ap, δp) is an LTS,
where:

• p ∈ {1,2,…,N}.
• Sp is the finite set of states.
• s0p ∈ Spis the initial state.
• Fp ⊆ Sp is the finite set of final states.
• Ap is a set of actions
• δp ⊆ Sp × (Ap ∪ {tau}) × Sp is the transition relation.

For a microservice p, an action overM is either send message action !mi→j or receive
message action ?mi→j, withm ∈Mp. The function peer(a) of an action a ∈ Ap is defined
as peer(!mi→j) = i and peer(?mj→i) = i.

In a microservice, a transition t ∈ δp can be one of the following three types:

(1) a send message transition (s1, !m1→2, s2) denotes that the microserviceMS1 sends a
message m to another microservice MS2 where m ∈ M1.
(2) a receive message transition (s1, ?m1→2, s2) denotes that the microservice MS1
consumes a message m from the microservice MS2 where m ∈ Mp.
(3) an ε-transition (s1, ε, s2) denotes that the invisible action ofMS1.

508 F. Dai et al.

s0,1 s1,1 s2,1 s3,1
!a1 !a1 ?d3

MS1

s0,2 s2,3
!c2

MS2

MS3

s0,3 s1,3

s3,2

!d1

s3,1
s6,3

s1,2

s2,3

s3,3

s5,3

s4,3

?a1

?c2

?b1 ?c2

?c2
?b1

?a1

Fig. 1. Motivating example

We often write sm
!m1→2−→ sk to denote that (sm, !m1→2, sk).

Figure 1 gives a motivating example where microservices are modeled LTS. The
initial states of each microservice are subscripted with 0 and marked with an incoming
half-arrow. The final states of each microservice are marked with double circles. Each
transition of eachmicroservice is labeledwith send action (exclamationmarks) or receive
message action (question marks).

Definition3 (Actions). Let amicroservices system is composedof a set ofmicroservices
MSs = (MS1, MS2, …,MSn), the set of actions is:

As � {!mi→j| !mi→j ∈ MS.A ∧ MS ∈ MSs} ∪ {?mj→i|?mj→i ∈ MS.A ∧ MS ∈ MSs}
Definition 4 (Execution Sequences). The execution sequences ES is set of all finite
or infinite sequences of send and receive message actions over As such that a received
message action is preceded by the send message action.

ES �

⎧
⎪⎨

⎪⎩

σ ∈ As∗|∀i, j ∈ dom(σ) : σ [i] =!mx→y ∧ σ [j] =!m ⇒ i = j

∧∀i, j ∈ dom(σ) : σ [i] =?m ∧ σ [j] =?m ⇒ i = j

∧ ∀j ∈ dom(σ) : σ [j] =?m ⇒ ∃i ∈ dom(σ) : σ [i] =!m ∧ i < j

⎫
⎪⎬

⎪⎭

If an action a ∈ As occurs in an execution sequence σ , we write a ∈ σ and have ∃j
∈ dom(σ) such that σ [j] = a.

Concerning an execution sequence σ ∈ ES, we define the total order.

Definition 5 (Total Order).

a1 ≺t a2 � ∃i, j ∈ dom(σ) : i ≤ j ∧ σ [i] = a1 ∧ σ [j] = a2

In the following, we define two asynchronous communication models in terms of
message ordering and buffer number, that are summed up in Table 1.

Modeling Interactions Among Microservices Communicating via FIFO 509

Table 1. Overview of two asynchronous communication models

ACMFIFO ACMBag

Message
ordering

!mi→j
1 ≺t !mk→j

2

∧peer(?mi→j
1) = peer(?mk→j

2)

⇒ ?mi→j
1 ≺t ?m

k→j
2

!mi→j
1 ≺t !mk→j

2

∧peer(?mi→j
1) = peer(?mk→j

2)

⇒ (?mi→j
1 ≺t ?m

k→j
2) ∨ (?mi→j

2 ≺t ?m
k→j
1)

Buffer
types

FIFO buffers Bag buffers

3.1 Asynchronous Communication Model with FIFO Buffers

An asynchronous communication model with FIFO buffers that is called ACMFIFO
requires that the order of receiving message actions is the order of sending message
actions and that each microservice has one buffer which is used to store all messages
sent from other microservices in a FIFO fashion. The FIFO fashion means that the buffer
can be viewed as a queue of messages. In other words, a send message action is to add a
message at the tail of the buffer of the destination microservice while the corresponding
receive message action is to consume a message at the head of the buffer of the receiver.
This asynchronous communication model is used in [10–16].

Figure 2 (a) illustrates ACMFIFO, where each microservice has one FIFO buffer.
Figure 2 (b) illustrates an interaction scenario, where the microservice MS1 sends a
message a to the microservice MS3 before sending a message b to MS3 and then the
microservice MS3 consumes a from its buffer3, and later b. Note that the messages a
and b are stored in the buffer buffer3 in the order they are sent.

s0,1 s1,1 s2,1 s3,1
!a1 !a1 ?d3

MS1

s0,2 s2,3
!c2

MS2

MS3

s0,3 s1,3

s3,2

!d1

s3,1

s6,3

s1,2

s2,3

s3,3

s5,3

s4,3

?a1

?c2

?b1 ?c2

?c2
?b1

?a1

buffer1

buffer2

buffer3

MS1

MS2

MS3

!a1 !b1

?a1 ?b1

(a) (b)

Fig. 2. Asynchronous communication model with FIFO buffers

510 F. Dai et al.

Definition 6 (Asynchronous communication model with FIFO buffers).

ACMFIFO �
{

σ ∈ A∗|∀m1,m2 ∈ M , ∃i, j, k ∈ N : !mi→j
1 ≺t !mk→j

2 ∧ Bufferj(m1) ∧ Bufferj(m2) ⇒?m
i→j
1 ≺t ?m

k→j
2

}

3.2 Asynchronous Communication Model with Bag Buffers

An asynchronous communication model with bag buffers that is called ACMBag requires
that the order of receiving message actions is the order of sending message actions and
that all messages sent to one microservice from the other microservices are stored in a
buffer in a bag fashion. The bag fashion means that the buffer can be viewed as a set. In
other words, a receiver microservice can consume messages from its buffer in any order.
This asynchronous communication model is used in [7, 17].

s0,1 s1,1 s2,1 s3,1
!a1 !a1 ?d3

MS1

s0,2 s2,3
!c2

MS2

MS3

s0,3 s1,3

s3,2

!d1

s3,1

s6,3

s1,2

s2,3

s3,3

s5,3

s4,3

?a1

?c2

?b1 ?c2

?c2
?b1

?a1

buffer1

buffer2

buffer3

MS1

MS2

MS3

!a1 !b1

?a1?b1

a

!b1

?a1 ?b1

!a1b
MS1

MS2

MS3

c

Fig. 3. Asynchronous communication model with bag buffers

Figure 3 (a) illustratesACMBag, where eachmicroservice has one bag buffer. Figure 3
(b) and (c) illustrate two interaction scenarios separately, where the microservice MS1
sends a message a to the microserviceMS3 before sending a message b toMS3 and then
the microservice MS3 consumesa and b in any order.

Definition 7 (Asynchronous communication model with bag buffers).

ACMBag �

⎧
⎨

⎩

σ ∈ A∗|∀m1,m2 ∈ M , ∃i, j, k ∈ N : !mi→j
1 ≺t !mk→j

2 ∧ Bufferj(m1) ∧ Bufferj(m2)

⇒ (?mi→j
1 ≺t ?mk→j

2) ∨ (?mi→j
2 ≺t ?mk→j

1)

⎫
⎬

⎭

Modeling Interactions Among Microservices Communicating via FIFO 511

4 Modeling Interactions

In this section,wemodel interactionbehaviors amongmicroservices as sequences of send
and receive message actions under two asynchronous communication models defined in
Sect. 3.

4.1 Modeling Interactions Among Microservices Under the Asynchronous
Communication Model with FIFO Buffers

Definition 8 (FIFO buffer). A FIFO buffer is a queue of messages, where a send
message action is to add a new message at the tail of the queue and a receive message
action is to consume a message from the head of the queue.

Definition 9 (Interaction behavior under the asynchronous communication model
with FIFO buffers). An interaction behavior among a set of microservices (MS1,MS2,
…, MSN) with MS = (Si, s0i , Fi, Ai, δi) and Qi being its associated buffer under the
asynchronous communication model with FIFO buffers is a labeled transition system
IBFIFO = (S, s0, F, A, δ) where:

• S ⊆ S1 × Q1 × S2 × Q2 × … × SN × QN where ∀i ∈ {1,2, …,N}, Qi ∈ M* withM
= MS1.M1 ∪ MS2.M2 ∪ … ∪ MSN.MN.

• s0 ∈ S such that s0 = (s01, ε, s
0
2, ε, …, s0N , ε).• F ⊆ S.

• A = MS1.A1 ∪ MS2.A2 ∪ … ∪ MSN.AN.
• δp ⊆ S × (A ∪ {tau}) × S for s = (s1, Q1, s2, Q2, …,sn, Qn) and s’ = (s’1, Q’

1, s’2,
Q’

2, …, s’n, Q’
n).

(a) send message action

s
!mi→j−→ s′ ∈ δ if ∃i, j ∈ {1,2,…,N}∧m ∈ M:

(i) send (m) = i∧rec(m) = j∧i �= j,

(ii) si
!mi→j−→ s

′
i ∈ δi,

(iii) Q’j= Qjm,
(iv) ∀k∈ {1,2, …,N}:k �= i ⇒ s’k = sk,
(v) ∀k∈ {1,2, …,N}:k �= i ⇒Q’k = Qk .
(b) receive message action

s
?mi→j−→ s′ ∈ δ if ∃i, j ∈ {1,2,…,N}∧m ∈ M:

(i)send (m) = i∧rec (m)= j∧i �= j,

(ii) sj
?mi→j−→ s

′
j ∈ δj,

(iii)mQ’j =Qj,
(iv) ∀k∈ {1,2,…,N}: k �= j ⇒s’k =sk,

512 F. Dai et al.

(v) ∀k∈ {1,2,…,N}:Q’k =Qk.
(c) internal action

s
ε−→ s′ ∈ δ if ∃i, j ∈ {1,2,…,N} ∧m ∈ M:

(i) si
ε−→ s

′
i ∈ δi,

(ii) ∀k∈ {1,2,…,N}: k �= i ⇒ s’k = sk,
(iii) ∀k∈ {1,2,…,N}:Q’k= Qk.

According to Definition 9, there are three following interaction types among
microservices communicating asynchronously via FIFO buffers:

(1) a send message action s
!mi→j−→ s′ denotes that microservice MSi sends a message

m to another microservice MSj where m ∈ Mi (9a-i). After that, the state of the sender
is changed (9a-ii), the message will be inserted to the tail of the bufferj of the receiver
(9a-iii), the other microservices’ states do not change (9a-iv), and the other buffers do
not change (9a-v).

(2) a receive message action s
?mi→j−→ s′ denotes that microservice MSj consumes a

message m sent from microserviceMSi where m ∈ Mi (9b-i). After that, the state of the
receiver is changed (9b-ii), the message at the head of the bufferj of the receiver will be
consumed (9b-iii), the other microservices’ states do not change (9b-iv), and the other
buffers do not change (9b-v).

(3) an internal action s
ε−→ s′ denotes that microservice MSi executes an internal

action (9c-i). After that, the other microservices’ states do not change (9c-ii) and the
other buffers also do not change (9c-iii).

We use IBk
FIFO= (Sk , sk0,F

k ,Ak , δk) to define the interaction behavior of a microser-
vices system under the asynchronous communication model via FIFO buffers, where
each buffer’s bound is set to k. This IBk

FIFO can be obtained fromDefinition 9 by allowing
executing send message actions if the buffer of the receiver is not full (i.e., the buffer
has less than k messages).

4.2 Modeling Interactions Among Microservices Under the Asynchronous
Communication Model with Bag Buffers

Definition 10 (Bag buffer). A bag buffer is a multiset of messages.

Given a set messages{m1, m2, m3}, We often write B(m1) = 2, B(m2) = 2, and
B(m3) = 1 to denote that a bag B = {m1, m1, m2, m2, m3}.

Definition 11 (Interaction behavior under the asynchronous communication model
with bag buffers). An interaction behavior among a set of microservices (MS1, MS2,
…, MSN) with MSi = (Si, s0i , Fi, Ai, δi) and Bi being its associated buffer under the
asynchronous communication model with bag buffers is a labeled transition system
IBBag

Mailbox = (S, s0, F, A, δ) where:

Modeling Interactions Among Microservices Communicating via FIFO 513

• S ⊆ S1 × B1 × S2 × B2 × … × SN × BN where ∀i ∈ {1,2, …,N}, Bi ⊆ M* with M
= MS1.M1 ∪ MS2.M2 ∪ … ∪ MSN.MN.

• s0 ∈ S such that s0 = (s01, ε, s
0
2, ε, …,s0N , ε).• F ⊆ S.

• A = MS1.A1 ∪ MS2.A2 ∪ … ∪ MSN.AN.
• δp ⊆ S × (A ∪ {tau}) × S for s = (s1, B1, s2, B2, …,sn, Bn) and s’ = (s’1, B’

1, s’2,
B’

2, …, s’n, B’
n).

(a) send message action

s
!mi→j−→ s′ ∈ δ if ∃i, j ∈ {1, 2,…,N} ∧ m ∈ M:

(i)send (m) = i ∧ rec (m) = j ∧ i �= j,

(ii) si
!mi→j−→ s

′
i ∈ δi,

(iii)B’j= Bj∪ {m},
(iv) ∀k∈ {1,2,…,N}: k �=i ⇒s’k = sk,
(v) ∀k∈ {1,2,…,N}:k �= i ⇒ B’k =Bk .
(b) receive message action

s
?mi→j−→ s′ ∈ δ if ∃i, j ∈ {1, 2,…,N} ∧ m ∈ M:

(i)send (m) = i ∧ rec (m) = j ∧ i �= j,

(ii) sj
?mi→j−→ s

′
j ∈ δj,

(iii)B’j = Bj-{m},
(iv) ∀k∈ {1,2,…,N}: k �= j ⇒ s’k = sk,
(v) ∀k∈ {1,2,…,N}:B’k =Bk.
(c) internal action

s
ε−→ s′ ∈ δ if ∃i, j ∈ {1, 2,…,N}∧m ∈ M:

(i) si
ε−→ s

′
i ∈ δi„

(ii) ∀k∈{1,2,…,N}:k �=i⇒s’k=sk,
(iii) ∀k∈{1,2,…,N}:B’k= Bk.

Note that the differences between Definition 9 and Definition 11 are the condition
(11a-iii) and the condition (11b-iii).

Similarly, we use IBk
Bag= (Sk , sk0,F

k ,Ak , δk) to define the interaction behavior of
a microservices system under the asynchronous communication model via bag buffers,
where each buffer’s bound is set to k.

5 Comparison of Two Asynchronous Communication Models

This section compares these two asynchronous communicationmodels defined in Sect. 3
using refinement checking [18].

514 F. Dai et al.

Definition 12 (Trace Refinement). Let ACM i where i ∈ {1,2} be two asynchronous
communication models, for any a set of microservices (MS1, MS2, …, MSn), ACM1 is
a trace refinement of ACM2 if and only if traces(IB1) ⊆ traces(IB2), where IB1 is the
interaction behavior among microservices (MS1, MS2, …, MSN) with under the ACM1
and IB2 is the interaction behavior among microservices (MS1, MS2, …, MSN) with
under the ACM2:

ACM1 ≺r ACM2 � for any a set of microservcies (MS1, MS2, ...MSn) traces(IB1) ⊆ traces(IB2)

Definition 13 (Model Inclusion). Let ACM i where i ∈ {1,2} be two asynchronous
communication models. ACM1 is included in ACM2 iff ACM1 is a trace refinement of
ACM2 and ACM2 is not a trace refinement of ACM1:

ACM1 ⊆ ACM2 � (ACM1 ≺r ACM2) ∧ (ACM2! ≺r ACM1)

Theorem 1 (Comparison of ACMFIFO and ACMBag with regard to Refinement).

Proof. The proof follows directly from Definition 9 and 11. Since the FIFO buffers are
the special case of bag buffers, for any a set of microservices (MS1, MS2, …, MSn),
traces(IB1) ⊆ traces(IB2) is always true, but not vice versa, where IB1 is the interaction
behavior among microservices (MS1,MS2, …,MSN) with under the ACMFIFO and IB2
is the interaction behavior among microservices (MS1, MS2, …, MSN) with under the
ACMBag.

6 Implementation and Experiments

6.1 Implementation

We have implemented our approach under the support of the Process Analysis Toolkit
(PAT) tool [19]. The snapshot of the comparison result of the running example using
refine checking can be found in Fig. 4. This figure shows that the running example with
FIFO buffers is included in that with bag buffers.

For the asynchronous communication model via FIFO buffers, we can use channel

communication to implement it. More specifically, for a send message action (s
!mi→j−→ s′),

the operation of channel output can be written as bufferij!m, where bufferij is a channel.

For a receive message action (s
?mi→j−→ s′), the operation of channel input can be written

as bufferij?m.
For the asynchronous communication model via bag buffers, we define a new data

typeBag using theC# library editor and compiler in the PAT to implement it. TheBag has
two important operations to support message emission and reception, namely add and
remove. For the add operation bufferij.add(m) which is used to denote a send message
action, the message m is stored in the Bag bufferij if the bufferij is not full yet. For the
remove operation bufferij.reomve(m) which is used to denote a receive message action,
the message m in the Bag bufferij is retrieved and if the buffer is not empty.

Modeling Interactions Among Microservices Communicating via FIFO 515

Fig. 4. The snapshot of comparison results of the running example

6.2 Experiments

For validating our approach, we use two datasets. The first dataset is obtained from [7],
which contains more than 6 hundred examples. The second dataset contains more than
1 hundred examples, which are collecting from the literature on the close subject.

We conducted several modeling and comparing experiments on these two datasets.
All the experiments were performed on the sameWindows laptop running on a 2.5 GHz
Intel Core i7 processor with 8 GB of memory.

Table 2 shows some of these examples, where we use FIFO buffers and bag buffers as
asynchronous communication models and compare these two models using refinement
checking in the PAT tool. The second column describes each case, where cases (1), (2),
(3), (4) and (5) are from the first dataset and the other cases are from the second dataset.
The third column shows the number of microservices in each case. The fourth column
shows the number ofmessages exchanged amongmicroservices. The fifth column shows
the interaction behavior with buffers of size 2 under the ACMFIFO(each tuple (X, Y)
denotes the number of states X and transitions Y in the IB2

FIFO), the interaction behavior
with buffers of size 2 under the ACMBag (IB2

Bag), and the comparisons of these two

interaction behaviors, where “ →” denotes whether IB2
FIFO is a trace refinement of

IB2
Bag and “←” denotes whether IB2

Bag is a trace refinement of IB2
FIFO. The fifth column

shows IB3
FIFO, IB

3
Bag , and their comparisons. It should be noted that the word “large” in

the fifth column means that we cannot build the state space of interaction behavior using
PAT.

The experimental results show that IBk
FIFO is a trace refinement IBk

Bag where k ∈
{2,3}, but not vice versa (see, e.g., case (1), (2), (3), (5) and (6)). Furthermore, the
experimental results also show that the ACMFIFO with FIFO buffers is included in the
ACMBag with bag buffers

516 F. Dai et al.

Table 2. Experimental results

Id Description |MSs| |MS| k = 2 k = 3

IB2FIFO IB2Bag
→ ← IB3FIFO IB3Bag

→ ←

(1) EX31 3 4 35/56 35/62 ≺r ! ≺r 44/75 44/87 ≺r ! ≺r

(2) EX38 3 3 13/15 13/16 ≺r ! ≺r 13/15 13/16 ≺r ! ≺r

(3) EX43 4 5 large large ≺r ! ≺r large large ≺r ! ≺r

(4) EX152 4 6 23/31 23/31 ≺r ≺r 23/31 23/31 ≺r ≺r

(5) EX155 3 6 34/47 large ≺r ! ≺r 45/65 large ≺r ! ≺r

(6) Train
station [20]

4 8 67/117 67/129 ≺r ! ≺r 94/171 94/192 ≺r ! ≺r

(7) Figure 1 [8] 3 4 16/21 16/21 ≺r ≺r 16/21 16/21 ≺r ≺r

(8) Booking
system [21]

4 7 24/31 24/31 ≺r ≺r 24/31 24/31 ≺r ≺r

(9) Online
shopping
[22]

3 6 13/13 13/13 ≺r ≺r 13/13 13/13 ≺r ≺r

(10) Figure 8
[23]

3 3 16/20 16/20 ≺r ≺r 16/20 16/20 ≺r ≺r

7 Conclusions

In this paper, the interaction differrences between one asynchronous communication
mod-el with FIFO buffers and another asynchronous communication model with bag
buffers are discussed. First, we formally define two asynchronous communication mod-
els with FIFO or bag buffers in terms of message ordering and buffer number. Second,
we model interactions among microservices as sequences of send and receive message
actions under these two asynchronous communication models. Third, we compare these
two asynchronous communication models using refinement checking. Our experiments
show that the asynchronous communication model with FIFO buffers is included in the
asynchronous communication model with bag buffers.

The future work is to study whether our proposed results are suitable for peer-to-peer
communication rather than mailbox communication and compare more asynchronous
communication models using refinement checking.

Acknowledgment. This work has been supported by the Project of National Natural Science
Foundation of China under Grant No. 61702442 and 61862065, the Application Basic Research
Project in Yunnan Province Grant No. 2018FB105, the Major Project of Science and Technology
of Yunnan Province under Grant No. 202002AD080002 and No. 2019ZE005.

Modeling Interactions Among Microservices Communicating via FIFO 517

References

1. Qi, L., Chen, Y., Yuan, Y., Fu, S., Zhang, X., Xu, X.: AQoS-aware virtual machine scheduling
method for energy conservation in cloud-based cyber-physical systems. World Wide Web
23(2), 1275–1297 (2019). https://doi.org/10.1007/s11280-019-00684-y

2. Xiaolong, X., et al.: A computation offloading method over big data for IoT-enabled cloud-
edge computing. Future Gener. Comput. Syst. 95, 522–533 (2019). https://doi.org/10.1016/j.
future.2018.12.055

3. Zhou, X., et al.: Poster: benchmarking microservice systems for software engineering
research. In: Proceedings of the International Conference on Software Engineering: Com-
panion Proceedings (ICSE 2018), pp. 323–324 (2018)

4. Zhou, X., et al.: Delta debugging microservice systems with parallel optimization. IEEE
Trans. Serv. Comput. 99, 1 (2019)

5. Zhou, X., et al.: Delta debugging microservice systems. In: Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineering, pp. 802–807
(2018)

6. Chevrou, F., Hurau, A., Quéinnec, P.: On the diversity of asynchronous communication.
Formal Aspects Comput. 28(5), 847–879 (2016)

7. Akroun, L., Salaün, G.: Automated verification of automata communicating via FIFO and
bag buffers. Formal Methods Syst. Des. 52(3), 260–276 (2017). https://doi.org/10.1007/s10
703-017-0285-8

8. Finkel, A., Lozes, É.: Synchronizability of communicating finite state machines is not decid-
able. In: Proceedings of the 44th International Colloquium on Automata, Languages, and
Programming ICALP 2017, vol. 122, pp. 1–14 (2017)

9. Barbanera, F., van Bakel, S., de Liguoro, U.: Orchestrated session compliance. J. Logical
Algebraic Method Program. 86(1), 30–76 (2017)

10. Bultan, T., Fu, X., Hull, R., Su, J.: Conversation specification: a new approach to design
and analysis of e-service composition. ACM 1–58113–680–3/03/0005, WWW, May 20–24,
Budapest, Hungary (2003)

11. Xiang, F., Bultan, T., Jianwen, S.: Conversation protocols: a formalism for specification and
verification of reactive electronic services. In: Ibarra, O.H., Dang, Z. (eds.) CIAA 2003.
LNCS, vol. 2759, pp. 188–200. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-
45089-0_18

12. Bultan, T., Su, J., Fu, X.: Analyzing conversations of web services. IEEE Internet Comput.
10(1), 18–25 (2006)

13. Basu, S., Bultan, T., Quederni, M.: Deciding choreography realizability. ACM SIGPLAN
Notices 47(1), 191–202 (2012)

14. Basu, S., Bultan, T.: Automated choreography repair. In: Stevens, P., Wąsowski, A. (eds.)
FASE 2016. LNCS, vol. 9633, pp. 13–30. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-49665-7_2

15. Ouederni, M., Salaün, G., Bultan, T.: Compatibility checking for asynchronously commu-
nicating software. In: Fiadeiro, J.L., Liu, Z., Xue, J. (eds.) FACS 2013. LNCS, vol. 8348,
pp. 310–328. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07602-7_19

16. Akroun, L., Salaün, G., Ye, L.: Automated analysis of asynchronously communicating sys-
tems. In: Bošnački, D., Wijs, A. (eds.) SPIN 2016. LNCS, vol. 9641, pp. 1–18. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-32582-8_1

17. Clemente, L., Herbreteau, F., Sutre, G.: Decidable topologies for communicating automata
with FIFO and bag channels. In: Baldan, P., Gorla, D. (eds.) CONCUR 2014. LNCS, vol.
8704, pp. 281–296. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44584-
6_20

https://doi.org/10.1007/s11280-019-00684-y
https://doi.org/10.1016/j.future.2018.12.055
https://doi.org/10.1007/s10703-017-0285-8
https://doi.org/10.1007/3-540-45089-0_18
https://doi.org/10.1007/978-3-662-49665-7_2
https://doi.org/10.1007/978-3-319-07602-7_19
https://doi.org/10.1007/978-3-319-32582-8_1
https://doi.org/10.1007/978-3-662-44584-6_20

518 F. Dai et al.

18. Yang, L., Chen, W., Liu, Y.A., Sun, J., Zhang, S., Less, J.: Verifying linearizability via
optimized refinement checking. IEEE Trans. Softw. Eng. 39(7), 1018–1039 (2013)

19. Sun, J., Liu, Y., Dong, J.S.: Model checking CSP revisited: introducing a process analysis
toolkit. In: Margaria, T., Steffen, B. (eds.) ISoLA 2008. CCIS, vol. 17, pp. 307–322. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-88479-8_22

20. Salaün, G., Bultan, T., Roohi, N.: Realizability of choreographies using process algebra
encodings. IEEE Trans. Serv. Comput. 5(3), 290–302 (2012)

21. Poizat, P.: Checking the realizability of BPMN 2.0 choreographies. In: Proceedings of the
27th Annual ACM Symposium on Applied Computing, pp. 1927–1934 (2012)

22. Bultan, T.: Modeling interactions of web software. In: International Workshop on Automated
Specification and Verification of Web Systems, pp. 45–52 IEEE (2006)

23. Bultan, T., Chris, F., Xiang, F.: A tool for choreography analysis using collaboration diagrams.
In: Proceedings of the 7th IEEE International Conference on Web Services (ICWS 2009),
Los Angeles, CA, July 6–10, pp. 856–863 (2009)

https://doi.org/10.1007/978-3-540-88479-8_22

