
A Simulation Environment
for Autonomous Robot Swarms

with Limited Communication Skills

Alexander Puzicha(B) and Peter Buchholz

Informatik 4, TU Dortmund, Dortmund, Germany
{alexander.puzicha,peter.buchholz}@cs.tu-dortmund.de

Abstract. We present a novel real-time simulation tool for modeling
and analyzing a swarm of distributed autonomous mobile robots com-
municating over an unreliable and capacity restricted communication
network. The robots are setup as ground vehicles and use C-PBP [8]
as model predictive closed loop controller. This tool offers the ability to
simulate rural as well as completely urban scenarios with static obsta-
cles, dynamic obstacles with scripted movement, soil condition, noise
floor, active jammers and static and dynamic obstacles for the links with
adjustable damping. The goal of this simulation is the analysis of swarm
behavior of robots for given missions such as terrain exploration, convoy
escorting or creation of a mobile ad hoc network in disaster areas under
realistic environmental conditions.

Keywords: Autonomous robots · Model predictive control · Real-time
simulation · Swarm behavior

1 Introduction

Swarms of autonomous robots are used for a wide variety of missions during
disasters. Typical tasks are the exploration of an area, the escorting of convoys
or the set up of MANETs if infrastructure breaks down. The autonomous control
of robots is a challenging task in particular under tough environmental conditions
that limit the possibilities of the robots to communicate. This implies that each
robot has only a local view with limited information about the rest of the swarm
and of its environment. Before the robot swarm can be deployed in disaster
areas, the control software has to be tested carefully. Unfortunately, field tests
are expensive and sometimes almost impossible. Thus, the only viable alternative
are simulations. However, the test of software with real-time requirements has
to be done in an real-time environment which puts very strict demands on the
simulation software. The control software has to be part of the simulator, the
dynamics of the robots has to be simulated realistically, environmental conditions
have to be described and the mobile communication has to be modeled including
limited communication ranges and packet losses. All this should be done in user-
friendly way and implemented efficiently to allow the real-time simulation of
larger swarms as they are used in practice.
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Related Work: The presented approach uses model predictive control which has
been applied for autonomous robots in several papers [4,18]. However, the con-
trol algorithms often work under unrealistic assumptions like the availability of
complete information for every robot or the existence of a central instance which
computes the trajectories for every member of the swarm [3,16]. Only recently,
feedback control algorithms over wireless networks have been published [2,14].
Several other simulators of autonomous robots exist, but only those related to
our work are presented in this paper. [12] describe a simulation environment
for swarms of robots without a detailed communication model. In [19], a co-
simulation approach for communicating autonomous vehicles is introduced. The
approach combines the robotic simulator Gazebo and the network simulator
OMNeT++. In contrast to our tool, the software combines several tools and is
mainly tailored to autonomous driving.

Contribution of this Paper: In this paper we present a new modular structured sim-
ulation environment for swarms of autonomous robots. The software allows one to
describe complex environments in which the robots have to perform their mission.
The environment may contain different types of obstacles which hinder the move-
ment of robots and possibly also the communication between robots. A graphical
interface shows the movement of the robots in their environment and allows the
user to interact with the robots, e.g. by modifying the mission during operation.
The simulator performs a detailed simulation of the swarm by exploiting the paral-
lel features of contemporary processors. Some examples show that with the simu-
lation software swarms of a realistic size can be simulated in real time on a modern
workstation. The whole approach has been developed in [15].

Structure of the Paper: In the following section we describe the basic model of
an autonomous robot and the model predictive control algorithm. Furthermore,
modeling of the environment using appropriate cost functions and the commu-
nication model are introduced. Section 3 describes the simulation software. In
Sect. 4 some example runs of the simulator are presented. The paper ends with
a short summary and some topics for future research.

2 A Model of Autonomous Robots

At first we have to model the autonomous swarm robots. Their key behavior is
adapted from people’s strategic planning techniques. First, a robot gathers infor-
mation from the environment, then a plan is created based on the information,
mission target, communication possibilities and the prediction of states of the
other robots and dynamic objects in world. Due to optimization, this results in
a local plan that forms a trajectory in space and time. It is sent to other robots
so their plan will be created with respect to this one. The plan leads to an action
that causes a change of the environment which in turn produces new informa-
tion for the sensors. This closed loop can be transformed to a model predictive
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controller. Therefore, it has to be split into parallel working threads. One thread
tackles the problem of sensor evaluation and object detection, another one serves
as communication module to handle and filter messages and data packages from
other robots. To maintain the connections and to be aware of signal losses it is
important that this module is able to monitor and predict the connection quality
(see Sect. 2.3). Furthermore, the actuator has to be represented by a separate
thread as well as the planning algorithm.

mission & communication

cost function
and constraints

optimization system

sensormodel

disturbance

reward action
change of
environemt

measurementtrajectory

plan

MPC

actuator

Fig. 1. Four components of the robot: communication module, model predictive con-
troller (MPC), actuator and sensor

2.1 Autonomous Robots and Their Control

As shown in Fig. 1 the model predictive control (MPC, see [7]) algorithm needs
a kinematic model of the system and due to the focus on ground based mobile
robots and tracked vehicles, we use a simple discrete, nonlinear model for non-
holonomic systems that have the ability to turn on the spot. Ground vehicles have
less degrees of freedom than flying drones, but there are many more obstacles
on the ground with limited possibilities to avoid those. Based on this model,
a trajectory is created by the predicted control values and rated through cost
functions and constraints which are presented in the next section. The basic
model is time discrete and will be briefly described first.

xk = fk(xk−1,uk) + ξ =

⎡
⎣

xk
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θk

⎤
⎦
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xk

=

⎡
⎣
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yk−1

θk−1

⎤
⎦

︸ ︷︷ ︸
xk−1

+
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vk · sin(θk−1)
vk · cos(θk−1)

θ̇k

⎤
⎦ · Δk + ξ (1)

with uk =
[
vk

θ̇k

]
and ξ ∼ N (0,Q) (2)

The state space vector xk for discrete time k consists of the x ∈ R and y ∈ R

coordinates and the orientation angle θ ∈ [0, 2π]. The discrete transfer function
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fk : X × U → X describes the transfer from xk−1 ∈ X to xk by using uk ∈ U.
The control vector uk for the actuator describes velocity v ∈ IR into current
direction and rotation speed θ̇ ∈ R. Since knowledge about the current state
is always faced with some uncertainty, let ξ be zero mean Gaussian noise with
covariance matrix Q. With this function it is possible to predict a trajectory
x1,x2, . . . ,xk from a starting point x0 in state space by using a control vector
sequence u1,u2, . . . ,uk (see [7]).

As Model Predictive Control (MPC) we used the Control Particle Belief
Propagation (C-PBP) algorithm [8]. It combines a Markov Random Field fac-
torization and multimodal, gradient-free sampling to perform simultaneous path
finding and smoothing in high-dimensional spaces. A drawback of this sample
based MPC is some noise in the output signal that causes a slightly modified
trajectory after each calculation. In general, the algorithm can be divided into
three functional steps. C-PBP starts with an initial point in state space. Then
it samples the control space with additional information like upper and lower
bounds for each control dimension and a normal distribution at the mean control
value. The drawn control value samples are applied to the system model to pre-
dict the following states. This generates a tree of trajectories, known as guided
random walkers (see Fig. 2). These are evaluated by cost functions. If the costs
are normal, then the algorithm will proceed in the same way, otherwise it per-
forms a resampling step (see blue lines in Fig. 2). This step prunes all expensive
trajectories and copies the cheap ones up to the current step. Then the algo-
rithm can proceed as before. After the maximum number of time steps, known
as control horizon, is exceeded, the best trajectory selected by total minimal
costs is chosen (see violet trajectory in Fig. 3). Then a backward local refine-
ment algorithm smooths it to gain the optimal trajectory (see red trajectory in
Fig. 3). The resulting trajectory does not need to be globally optimal, but it is
the optimum of all sampled trajectories. After this calculation, the first control
vector is applied to the system and the sensors update the real physical state.
The former optimal trajectory will be shifted by one time step and used as initial
guess for the next trajectory planning call (see Fig. 4).

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

Fig. 2. Step 1 and 2 (see [2,8]) (Color
figure online)

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

Fig. 3. Step 3 (see [2,8]) (Color figure
online)
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k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

Fig. 4. Knowledge transfer (see [2,8])

A cost function based on the robot state and control vector has to be created
to evaluate optimality of the control. However, no goal state or reference trajec-
tory is available to evaluate the distance to the optimum. This is different from
classic control tasks where the optimum is known. Since the only assumption of
C-PBP is that the cost function l(xk,uk, k) can be split into a function for the
state space and one for the control space, problems because of discontinuities
do not appear. Moreover, the functions have to be defined for the whole state,
control and time space:

l(xk,uk, k) = s(xk, k) + c(uk, k) (3)

Let zk = [xk uk]T denote the optimization vector consisting of state vector
xk and control vector uk at time step k. For minimization, the cost function is
transformed to maximize the probability density P(z) of the complete trajectory
z = [z0, z1, ..., zK ]. Let K be the planning horizon. The transformation is done
through exponentiation of the cost function to approximate sampling from P(z).

P(z) = 1
Z

∏
k

exp [− 1
2 (s(xk, k) + c(uk, k))]

=
∏
k

αk(xk)βk(uk) =
∏
k

ψk(zk) (4)

Z is a normalization constant and αk and βk denote state and control potential
functions. Equation 4 assumes that the trajectory fragments zk always form a
valid trajectory. Each zk is a separated random variable, so it has to be connected
to its adjacent neighbors. In general terms it can be written as Markov Random
Field (MRF) model (see [9]):

P(z) =
1
Z

(
∏
s

ψs(zs))(
∏

{s,t}∈E

Ψs,t(zs, zt)) (5)

Based on the formulation as MRF we analyze how the Particle Belief Prop-
agation (PBP), as a general sample based belief propagation method, can be
applied. The main reason for the application of this method is the combination
of global sampling to explore multimodal optimization landscapes “and dynamic
programming to fight the curse of dimensionality” [8]. The method evaluates
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Pk(zk) instead of much higher-dimensional P(z), so it processes trajectory seg-
ments and not the whole trajectory at once. The segments themselves are not
interesting, but they offer the possibility to gain a set of complete trajectories
due to the help of belief propagation. Equivalent to other belief propagation
methods, PBP tries to calculate the beliefs Bk(zk) of the graph variables. If the
graph is free of cycles, then the beliefs are proportional to the marginal probabil-
ity density Pk(zk). Thus, messages ms→k(zk) from other nodes form the belief
of node k:

Bk(zk) = ψk(zk)
∏

s∈Γk

ms→k(zk) (6)

ms→k(zk) =
∑

zs∈Zs

Ψs,k(zs, zk)ψs(zs)
∏

u∈Γs\k

mu→s(zs) (7)

“Here Γs denotes the set of neighbors of node s, and Zs is the domain of zs.
The messages ms→k from node s to node k can be considered as (unnormalized)
probability density functions of the target node variables zk. The potentials
ψk(zk) represent the evidence for zk (here based on the state and control costs),
which propagate through the graphical model via the messages. The belief Bk(zk)
equals the product of the direct and propagated evidence. In Particle Belief
Propagation, the messages and beliefs of Eqs. 6 and 7 are estimated by samples
z(i)k ∼ qk(z(i)k ), where i denotes the sample index and qk(z(i)k ) is an arbitrary pro-
posal distribution. Division by the proposal then gives the importance-weighted
sample messages and beliefs [8,9]:

m̂s→k(z(i)k ) =
1
N

N∑
j=1

Ψs,k(z(j)k , z(i)k )
ψs(z

(j)
s )

qs(z
(j)
s )

∏
u∈Γs\k

m̂u→s(z
(i)
k ) (8)

B̂k(z(i)k ) =
ψk(z(i)k )

qk(z(i)k )

∏
s∈Γk

m̂s→k(z(i)k ) (9)

Let N be the sample size. The sample belief B̂k(z(i)k ) represents the marginal
probability density of the trajectory segment that is generated by a simula-
tion step ending in xk using uk. PBP has already the ability to approximate
the multimodal marginal distributions corresponding to different paths to pass
obstacles.

CPBP extends the basic PBP algorithm in several aspects for control [8]:

1. Selection of proposals to sample feasible trajectories.
2. Adaptive resampling to adjust between local and global search.
3. A local refinement backward pass.
4. Information propagation between function calls, to use the old optimal tra-

jectory as optimizer warm start.

2.2 Cost Functions

After the model and optimization has been introduced, we tackle the last ele-
ment of the model predictive controller. In classic control theory exists a working
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state, a goal state or a reference trajectory, thus an error value can be calcu-
lated by metric distances. In a completely unknown environment there exists in
principle a global minimum as desired working state and often an optimal path
towards it, but both are unknown. Therefore, a relative rating is impossible.
Consequently, the environment will be modeled with absolute cost referring to
time and space. The C-PBP method does not require continuity nor differentia-
bility of cost functions because it works gradient free, so the only assumption is
that the functions are defined on the whole space created by the product of state
space, control space and time. Here, a high positive value represents repulsive
unwanted locations in the state space and low values or high negative values
represent recommended locations of the cost function l.

l(xk,uk, k) = s(xk, k) + ct(uk, k) (10)

with l : X × U × R
+
0 → R

For most of the objects in the environment as well as for collision avoidance, a
linear or quadratic function based on the distance is suitable to prevent collisions.

d = ‖pk − xk‖2D =
√

(Δx)2 + (Δy)2

with pk =

⎡
⎣
x
y
θ

⎤
⎦ ,xk =

⎡
⎣

x
y
θ

⎤
⎦ and a, b ∈ R, d, r, γ ∈ R

+
0 (11)

llin, lquad : R+
0 → R

llin(d) =

{
−a
r · d + a , if d ≤ r

0 , else
(12)

lquad(d) =

{
−a
r2 · d2 + a , if d ≤ r

0 , else
(13)

To form a global attractive point, for example as desired goal position, a rational
function is more appropriate. However, the function should always be bounded
to a maximum value.

lim
d→∞

lunbounded(d) = 0 (14)

lim
d→0

lunbounded(d) = ±∞ (15)

lunbounded : R+
0 → R

lunbounded(d) =

{
b
d , if | b

d | ≤ |a|
a , else

(16)

If entities like convoy vehicles have a repulsive area to prevent collision and
an attractive area so that the robots surround vehicles, then the robot social
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Fig. 5. Quadratic bounded cost function
width radius r = 10 and maximum a = 25
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Fig. 6. Robot social function with desired
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ddesired = 10 for the minimum

function can be used. This is a rational function too, but with some additional
constraints (Figs. 5 and 6):

lsocial(d) =

{
b1

dγ1 − b2
dγ2 , if | b1

dγ1 − b2
dγ2 | ≤ |a|

a , else

with b1, b2 ≥ 0, γ1 > γ2 > 0 (17)

Multidimensional functions for complex polygons and obstacles like sectors for
towers, or complex missions like setting up a MANET or connection awareness are
implemented as well, but they are often aggregations of the presented functions.

Furthermore, we developed a cost function considering energy consumption
and accessibility of the terrain to cover different types of ground like rocks, mud,
streets, fields, etc.

lmovement(xk,uk, k) = v2 · G(xk) · ρT + θ̇2 · G(xk) · ρR (18)

G(xk) denotes a position depending influence factor of the ground. ρT and ρR

describe the effect of this influence factor on the translation and rotation move-
ment. The velocity values are squared values to prefer slower actions.

2.3 Communication Model

A necessary condition for entities to form a swarm is the information transfer
via communication. Therefore, we created a network simulation model based on
signal power dissemination depending on the used frequency including free space
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damping and radiation obstacles like walls. In addition to that, a noise floor and
active signal jammers can be created. This realistic network simulation serves to
analyze and implement strategic behavior to signal changes and losses of single
swarm agents or of the whole swarm. Furthermore, one mission is to create a
MANET. Therefore, it is mandatory to predict the connection status and quality.
To filter the messages, each message gets an unique identification number and
to create a logical as well as temporal order on the messages, lightly modified
Lamport clocks [13] are used.

2.4 Bandwidth Prediction

Signals which are transmitted via orthogonal frequency-division multiplexing
(OFDM) like Long-Term-Evolution (LTE) are divided into subcarriers. Using a
channel width of Δfc = 10 MHz, a carrier distance of Δft = 15 kHz and includ-
ing protection distances lead to #carrier = 600 subcarriers. Thus, the number
of subcarriers is proportional to 60 1

MHz . The carrier distance determines the
symbol time:

ts =
1

Δft
≈ 66, 7µs (19)

Once per symbol time each subcarrier is modulated with one symbol. The symbol
width wsymbol depends on the modulation method. In the simulation environ-
ment Quadrature Phase-Shift Keying (QPSK), 16 Quadrature Amplitude Modu-
lation (QAM), 64 QAM and 256 QAM are available. The maximum bandwidth
for a channel width 10 MHz, carrier distance 15 kHz and 256 QAM modulation
method is for example given by:

Δfc ÷ Δft = 10 MHz ÷ 15 kHz → 600 = #carrier (20)
#carrier · wsymbol

ts
= #carrier · wsymbol · Δft = 600 · 8 bit · 15 kHz = 72 Mbit/s

(21)

To increase this bandwidth Multiple Input Multiple Output [1] methods are
supported. Based on the maximum, we use the received signal strength index
(RSSI) and the signal to noise ration (SNR) to estimate the real bandwidth.

RSSI = Pt + Gt + Gr︸ ︷︷ ︸
transmission power

+20 · log10(
c

f · 4π · d
)

︸ ︷︷ ︸
free space damping

−
i∑

P i
obstacle︸ ︷︷ ︸

obstacle damping in line of sight

(22)

The extended Friis Eq. 22 [5] describes the RSSI of the receiver in decibel based
on one milliwatt (dBm). Pt denotes the sending power, Gt and GR denote the
antenna gain of the sender and receiver. The free space damping depends on
the speed of light c, the sending frequency f and the distance d between the
modules. For calculating the SNR, a noise floor power Pnoise has to be given.

SNR = RSSI − Pnoise (23)
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The software module can be easily extended by more complex reflection models
for electromagnetic waves or interface OMNeT++ [11] for other models.

3 Structure of the Simulator

The simulation software is structured in a graphical visualization with an inter-
face and the simulation core because this core should be usable for other simu-
lation tools and visualization engines. Core functions can be used on real world
robots to validate the simulation and to create digital twins of them in the
visualization.

3.1 Structure of the Simulation Software

The software is implemented in C++ because of its efficiency, the available
libraries and OpenMP support. We used an existing implementation of C-PBP
as the optimization part for the model predictive controller (see [8]). In addi-
tion to OpenMP, Eigen [10] is included as a fast numeric library. Moreover, a
yaml-cpp library offers the possibility to read YAML configuration files for the
simulated scenarios. These files configure the whole scenario and all parameters
of each entity. Furthermore, the appearance of the interface and images can be
configured as well. Consequently, no programming knowledge is necessary to use
the simulator.

The application is divided into two domains (see Fig. 7). The first domain
is visualization of simulation results. It consists of one thread for rendering and
a few callbacks for interaction with the user. The second domain is the simu-
lation core. It has one thread to calculate the physics of the objects and one
thread to calculate the network states like bandwidth. Furthermore, each robot
creates four threads on his own. These are needed to realize a realistic simulation
implementation of the hardware and software components in real world. A robot
consists of a communication module, an actuator, a sensor unit and a planning
component (see Fig. 1).

rendering simulation core

network state

physics

robot

communication

planning

sensors

actuator

1, 2, . . . , n

Fig. 7. Thread structure of the simulator

For analysis purposes, the software offers the possibility to display the value
of cost functions in vicinity of a selected robot by using Gnuplot. In addition
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to this function, the scenario data such as noise floor and terrain accessibility
values and all robot states including planned trajectories, network states, cost
function values of the surrounding area and calculation times can be exported
as CSV and text files with a special format for easy processing in statistic tools,
e.g. Matlab R©.

3.2 Graphical User Interface

The graphical user interface uses the Cocos2d-x game engine. It is a lightweight
cross-platform game engine written in C++ and optimized for 2D applications.
The application can only be controlled via keyboard at the moment.

Fig. 8. Screenshot of the simulator (Color figure online)

Figure 8 shows a screenshot of the running simulation. The following descrip-
tion of the simulator is done clockwise. A representation of a robot is shown in
area 1. The robot is located in the middle of the red approximated circle which
corresponds to the sensor range of the robot and has a diameter of 60 m. The
wavy line, which starts from the circle center towards the right side, is the
planned trajectory of the robot. All other connected lines with colors between
light green and red represent the active network connection and their quality.
The green color denotes maximum bandwidth, and completely red the lowest
possible bandwidth. The size of the robot images are so small because its real
world dimension is less than 1m2 and the displayed area is 600 m by 275 m.
The area number 2 shows a minimap and the current rendered extract of the
simulated region which is 25 km2 in total. The next section displays at first
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the simulated time in seconds, then the actual running time of the application.
Thus, the division result describes the real-time factor. Area number 4 presents
an identification number of the currently selected robot and its coordinates as
well as its logical Lamport clock state for messages. At the lower right corner,
control information is given to the user. The 6th section highlights a radial obsta-
cle with a bounded effect radius which is shown as a black approximated circle.
The obstacle uses one of the distance based cost functions. Then a line based
obstacle follows that represents a wall which shall not be passed. A guidance
vehicle to send data or missions to the robots is presented in the lower left cor-
ner denoted by 8. This vehicle demonstrates the different connection qualities.
Normally, the quality decreases with distance so it is dyeing from green to red.
But some of the shorter connection lines intersect one of the orange lines. They
represent obstacles which causes a damping on the transmission power. So, the
bandwidth is significantly reduced. The last area number 9 shows the accessi-
bility of the terrain. The darker a ground tile is, the harder is the access and
movement, so it increases the use of energy and cause the robots to try to move
slower. Additional features are zooming, hiding entities and displaying the noise
floor instead of the terrain accessibility (see Fig. 9). Furthermore, the obstacles
can move with scripted behavior and the guidance vehicles can be controlled by
a script or the user and send missions to the robots.

Fig. 9. Screenshot of the simulator (Color figure online)

Figure 9 shows the noise floor of the environment. Equal to the terrain acces-
sibility, the noise level increases, the darker the cyan tiles are. The dark circular
discoloration at almost the center of the screenshot indicates the position of an
active jammer. Moreover, the qualities of the connections of the robot next to
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the jammer is significantly reduced, although the connection module distances
are as short as the light green connections with higher bandwidth between the
other robots.

3.3 Simulation Internals

To solve the given missions each robot creates for each other known robot a
model to maintain the data it receives from that robot and to do predictions
concerning its states in the future.

3.4 Exploration Mission

The goal of the exploration mission is to discover a dynamic environment. Since
the dynamic information becomes obsolete, it has to be renewed from time to
time. The area covered by a robot sensor is deemed to be explored. Here, the
precision of exploration decreases with the sensor distance, so peripheral areas
are less discovered. In addition to that, the robot should create a vanishing trace
of the discovered area. This specification leads to the use of radial cost functions
with a limited effect radius, which represent the sensor range. Each robot model
as well as the robot itself gets a FIFO list with 18 elements per default. After a
specified time, the default is 10 s because of the given maximum speed, such an
radial cost function object is added to this list. If the list is already filled, the
oldest object gets deleted. Moreover, the cost of each object decreases during
simulation time.

Fig. 10. Visualization
of the trace. Gray scale
represents terrain acces-
sibility. (Color figure
online)
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Fig. 11. Visualization of the cost function for exploration
at the same time. The robot is located in the center.

In Fig. 10 the blue filled circles visualize the created cost function objects.
The lighter the color is, the older is the object. The color as well as the height
represent the costs in Fig. 11. The rectangular surfaces visualize the costs which
are generated through movement on terrain with different accessibility.
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3.5 Convoy Escorting Mission

During the escorting of a convoy the robots should place themselves around the
specified target vehicle in an optimal distributed way. To maintain the desired
distance, the robot social function is used. Therefore, the target vehicle sends
its position and velocity vector to the robots Thus, they are able to predict the
movement, even when the connection gets lost. To gain an optimal distribution
around the target, each robot calculates the intersecting sensor area with other
robots and tries to minimize it by using the robot model. This leads to a max-
imized covered area at the desired distance. Figure 12 shows a target vehicle
in the center and an optimal distribution of the robots around. The blue circle
denotes the desired distance and the red circles the sensor range of each robot.
The green lines are the connections like before. The corresponding cost function
is shown in Fig. 13.

Fig. 12. Visualization
of the distribution of
the robots around the
escorted vehicle. (Color
figure online)
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Fig. 13. Visualization of the convoy mission cost function
at the same time.

3.6 MANET Mission

The MANET cost function cannot be created by an aggregation of the presented
functions, because as long as the connection quality is constant, a large distance
is desired to cover a larger area. If the quality decreases it has to be weighed out
whether a larger distance or a higher bandwidth is prioritized. However, if the
connection gets lost, the distance is not a positive aspect anymore and has to
be reduced. There are two reasons for a connection loss; it could be the distance
or it could be a change in the environment, which cannot always be undone by
the robot itself. Thus, a distance reduction is necessary. This is the reason why
the active jammer in Fig. 14 causes smaller distances between some robots while
they have at most the connection quality of the other robots. Algorithm 1 shows
the implementation of the MANET cost function (Fig. 15).
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Fig. 14. Visualization
of the creation of a
mobile ad hoc network.
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Fig. 15. Visualization of the mobile ad hoc network cost
functions for nearest robot to the top of the image.
Each cone visualizes the collision avoidance area of other
robots.

Require: d: distance between communication modules, link: connection between com-
munication modules, partner: sender or receiver, factordistance: weighting of dis-
tance, MANETimportance: weighting of quality

function getMANETPotential(d)
quality ← link.predictConnection(partner, d)
if quality = 0 then

costs ← d · factordistance

else
costs ← −(quality · MANETimportance + factordistance · d) � later: ln(d)

return costs

Algorithm 1: MANET cost function calculation

4 Experiments

We begin with some performance experiments for a reference scenario. It con-
sists of two static radial obstacles, two static wall obstacles, one dynamic radial
obstacle, one static and one dynamic radiation obstacle with damping as well as
terrain accessibility between 0 and 36. Moreover, the noise floor is equally dis-
tributed between −120 dBm and −60 dBm. So, most of the simulation features
are present in this scenario. Based on the maximum robot speed we figured out
300 ms as the upper bound for trajectory planning time. Table 1 shows that
we can simulate up to 680 simulation steps of a trajectory for 8 robots which
uses N = 20 parallel paths for model predicted controller optimization each. A
simulation step has a time delta of 0.5 s. Thus, each robot predicts the next 340
s each 300 ms. This is a waste of resources in a highly dynamic environment.

Instead, we increase the number of parallel plans per robot to N = 24 to
increase the sampled area to get better trajectory results. Furthermore, we use
the available resources to simulate a larger number of swarm agents. Figure 17
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Table 1. Comparison of the calculation times per trajectory in ms with different
amount of simulation steps

Robots Steps Plans Min. Max. Mean Standard deviation

8 15 20 4.728 7.381 6.005 0.567

8 40 20 8.55 16.886 10.999 1.685

8 200 20 29.161 71.702 37.739 4.476

8 680 20 111.631 242.886 124.861 8.926

8 840 20 141.346 342.455 196.722 42.165

shows that up to thirty robots, which correspond to 3 + 30 · 4 = 123 threads, can
be simulated on a gaming PC in real time. However, 200 equidistant simulation
steps do not perform well. The majority of steps are in a later uncertain future and
unknown environmentwhich causes the robots to ignore obstacles in vicinity.Thus,
we reduce the number of predicted steps to K = 60 and switch to an exponential
distribution of simulation steps while maintaining the visual range (Fig. 16).
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Fig. 16. Statistic of plan calculation
time with 8 robots and N = 20 par-
allel plans per robot
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Fig. 17. Statistic of the plan calcula-
tion time with K = 200 steps and
N = 24 parallel plans per robots

Δti = tstep · tifactor

with i = 0, 1, . . . ,K − 1; tstep = 0, 075 and tfactor = 1, 055 (24)
59∑

i=0

Δti ≈ 32, 5 s ≈ 60 · 0, 5 s;
39∑

i=0

Δti ≈ 10, 2 s (25)

This has the advantage that obstacles in vicinity are not ignored. Equation 25
shows that relatively more sampled points are in near future, as well as that a
coarse outlook on the target is still given. Next, we compare the performance
of the simulation on different hardware. First, a mobile PC with an quad core
Intel R© CoreTM i7-8650U CPU, 16 GB RAM and a desktop PC with an eight
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core Intel R© CoreTM i9-9900K CPU, 32 GB RAM and a NVIDIA R© GeForce R©
RTX 2080 Ti GPU. Both systems use SSD storage. Figure 18 indicates that a
real-time simulation with up to 18 robots is possible on the mobile device, if
additional robots are added it suffers from missing cores to handle the threads
as well as a GPU to render so many objects.
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Fig. 18. Performance comparison
between mobile and desktop PC for dif-
ferent swarm size. “m” denotes mobile
PC and “d” desktop PC. The number
denotes the amount of swarm agents.

Fig. 19. Bypassing of obstacles

4.1 Convoy Escorting

In disaster areas or in rural environments a lot of situations exist where trucks
or the convoy can pass an obstacle, e.g. because of a higher wading depth. The
robots have to find a way around the obstacle. This situation is presented in
Fig. 19. The goal is to analyze the maximum dimensions of the obstacles that
do not lead to a disintegration of the convoy structure.

Table 2. Measurement series to analyze the escorting behavior at obstacles

Length 120 m 150 m 180 m 210 m 240 m 360 m 390 m 420 m

Following robots 7 6 5 5 4 3 0 0

Table 2 contains the relevant obstacle lengths. It should be noted that the
obstacles at each end also have an effective radius of 20 m, so that the actual
range of influence is 40 m larger than the ranges given in the table. This effect
prevents the robots from cutting corners which would lead to a collision. The
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sensor range, which is the radius of the red circle, is set to 30 m, so only many
times the amount of the range is analyzed. Up to four times the range all robots
can follow the vehicle and up to 12 times the range the outer robots can follow.
Crucial for bypassing of the obstacle is the swarm size and the cost function
that penalizes the intersecting area. Therefore, the robots are distributed along
the line. With seven robots, the minimum distance for overlap-free distribution
is 420 m. If the influence of the obstacle exceeds this distance (see Table 2
at 390 m + 40 m), no robot can detect an alternative path. Furthermore, the
increased distance to the edge of the obstacle reduces the attractive potential
of the mission. Here, the activation of the exploration mission can support to
further distribute the robots.

4.2 MANET

The functionality of the MANET is evaluated by the distribution of the robots.
A circular or star-shaped arrangement is desired in order to achieve a high and

Fig. 20. Triangle structure with old
MANET cost function

Fig. 21. Creation of ring structure with
30 robots, version 1 (Color figure online)

Fig. 22. Creation of ring structure with
30 robots, version 2 (Color figure online)

Fig. 23. Creation of ring and star struc-
ture with 30 robots (Color figure online)
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slightly redundant network coverage of an area. However, experiments using the
current cost function produce approximately equilateral triangles (see Fig. 20).
This is because an equilateral triangle has optimum properties regarding to
distances. As a result, the cost function has to be modified. The idea of always
maximizing the minimum distance is not appropriate because the connection
with the minimum distance does not have to be the optimal connection due to
obstacles and sources of interference. As a solution, a logarithmic function may
be used. However, the strictly monotonous and concave logarithmic function for
the distance prefers small equal distances between the robots, instead of one large
and many smaller distances. Figures 21, 22 and 23 demonstrate the functionality
of the adjusted cost function because the desired ring or star structures are
always formed. The position of the blue marked guidance vehicle is irrelevant
and has no influence on the cost functions. Black circles are only for visualization
purpose.

5 Conclusion

We present a novel real-time simulation tool for robot swarms under limited
communication capabilities. It allows the analysis of swarm behavior for three
basic scenarios. Due to an appropriate cost function method, the missions can be
combined and parameterized, whereby the objectives are automatically selected
and prioritized. The target positions of the individual robots in the swarm do
not have to be explicitly specified. Instead, the required information for the tar-
get and the trajectory to the target are automatically extracted and optimized
from the current information about the environment, the swarm agents and the
swarm target. This automatic extraction is implemented with the help of an
MPC which includes a non-linear model of a specific type of robot. The C-PBP
algorithm [8] is used to optimize the control sequence. Since the goal of the task
emphasizes a limited communication capability, the simulation of a complete
wireless network is implemented. This takes into account fundamental proper-
ties of propagation, shadowing and attenuation of electromagnetic signals. In
addition, the possibility to include further network influences by jamming trans-
mitters is given. The calculation of the network is based on physical laws and
also considers signal propagation times and data transmission times. By trans-
mitting the planned trajectories and detecting obstacles, an emergent behavior
is generated which favors the convergence to an optimal swarm behavior. This
work differs fundamentally from previous works that accept communication as
ideal (see [3,6,16,17]). The simulation tool allows to reproduce realistic situa-
tions. The behavior of a swarm of robots can be analyzed with up to 60 robots
simultaneously and in real time. Due to the built-in visualization and interfaces
to other programs, the behavior of individual agents can be visualized. By using
simple configuration files, the user has the possibility to modify almost all set-
tings and parameters. [Gefördert durch die Deutsche Forschungsgemeinschaft
(DFG) – 276879186/GRK2193]
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