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Abstract. Many-objective optimization problems (MaOP) are important to the
field of computing intelligencewhich leads tomore requirements for the evolution-
arymany-objectiveAlgorithms (EMaOA).Meanwhile, we consider that the evolu-
tion process also has some influence on the performance of results. Andwe present
a many-objective squirrel hybrid optimization algorithm (MaSHOA) which takes
an effective squirrel search algorithm (SSA) as the evolution framework and a
reference-point-based many-objective evolutionary algorithm (NSGA-III) as the
EMaOA framework. This paper applies the scalarizing evaluation tomake sure the
solution quality among the neighborhood and takes the reference point association
achievement as the reference-point-based part. Taking iterations into account, we
design a joint fitness function. For both the evolution and selection operations, a
joint fitness function is applied to sort solutions to guide others and select them
respectively. Besides, the distance penalization is introduced to prevent the local
convergence. About useless reference points, this paper proposes an adjustable
reference points strategy. The simulation experiment of the proposed algorithm is
carried on different test problems with 3 to 15 objectives. Compared with other
classic EMaOAs, the means, variances, box plots and parallel coordinate plots of
the obtained results are utilized to analyze the convergence and diversity. And this
proposed algorithm has good performance on solving MaOPs.

Keywords: Many-objective optimization · Squirrel search algorithm ·
Adjustable reference points strategy

1 Introduction

In recent years, with the development of computer technology and the prosperity of arti-
ficial intelligence, computing intelligence based on computer technology has developed
rapidly [1]. As an important branch of computational intelligence, applying evolution-
ary computation to solve multi-objective optimization problems has become a research
hotspot in the field of computational intelligence [2]. However, the calculations required
for complicated projects no longer consider only one single indicator but consider mul-
tiple indicators that are mutually constrained. Optimization problems with two or more
objectives are often referred to as Multi-objective Optimization Problems (MOPs) [3].

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2021
Published by Springer Nature Switzerland AG 2021. All Rights Reserved
H. Song and D. Jiang (Eds.): SIMUtools 2020, LNICST 369, pp. 442–459, 2021.
https://doi.org/10.1007/978-3-030-72792-5_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72792-5_36&domain=pdf
https://doi.org/10.1007/978-3-030-72792-5_36


A Many-Objective Squirrel Hybrid Optimization Algorithm: MaSHOA 443

And we take the MOPs with four or more objectives into consideration as a special
optimization problem known as the Many-objective Optimization Problem (MaOP) [4].
Algorithms based on Pareto domination are widely accepted in solving multi-objective
optimization problems [3, 5]. But when it comes to MaOPs, the non-dominated solu-
tion set obtained by the traditional many-objective optimization algorithms based on
Pareto domination is not of great quality. In recent years, with many relevant strategies
proposed, difficulties [4, 6] in solving MaOPs are also exposed:

1) Most of the solutions in the population of evolutionary algorithms are non-
dominated, which causes that the ascendancy of two different solutions becomes
ambiguous.

2) The exponential growth of the number of non-dominated solutions is a huge
challenge to the processing power of the algorithm.

3) Visualization of high-dimensional solutions becomes difficult. It’s tough for decision
makers to understand the distribution of the solution and how to evaluate it.

Based on the above reasons, some Evolutionary Many-objective Algorithms
(EMaOA)using special environment selection strategies have attractedwidespread atten-
tion inMaOP research due to their advantages of fast solution speed andwide application
range [7]. Used to solve ultra-multi-objective optimization problems. These algorithms
can be broadly classified as follows:

1) Algorithms based on Pareto-dominated [6–8] are proposed. NSGA-III [9, 10] is a
typical example of a dominated many-objective algorithm that improves the ranking
method, which also continues the attempt to use reference points in MONSGA-II
[11]. Besides, θ-DEA [12] is a typical algorithm for improving Pareto domination
rules.

2) Decomposition-based EMaOA [7, 13] decomposes MaOP into multiple single-
objective subproblems which cover the decision space, and solves the subprob-
lems independently, the algorithm uses the optimal solutions of all subproblems
to fit the pareto front (PF), like MOEA/D [14]. And some algorithms presented
some new concepts into the solving process. RVEA [15] introduces a scalar method
called angle-penalized distance (APD) to evaluate the convergence and diversity of
candidate solutions.

3) Select the subset with the best index value in the population [7, 16]. Performance
indicators can usually evaluate the convergence and diversity of the population at
the same time. For example, HypE [17] uses HV indicator, MOMBI-II [18] uses R2
indicator, and MaOEA/IGD [19] uses IGD indicator.

The method of evaluating many-objective optimization algorithms is to analyze their
convergence and diversity. Convergence refers to finding a set of solutions closed to the
true Pareto front. Meanwhile, diversity means finding a set of solutions that should be
sufficient to represent the entire range of Pareto front. Algorithms are usually evaluated
by these two types of indicators.
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In addition, some scholars are committed to applying some classic and efficient
single-objective optimization algorithms tomore objects [5, 8, 9, 20–22], such asNSGA-
III with genetic algorithm (GA) [23]. Among them, the squirrel search algorithm (SSA)
[24], as a single-objective optimization algorithm [25], has the characteristics of strong
robustness and fast convergence. To a certain extent, it avoids the dimensional catastrophe
problem that exists in many-objective optimization problems.

Based on themany-objective optimization framework ofNSGA-III and the evolution
framework of SSA, this paper presents a many-objective optimization hybrid squirrel
search algorithm (MaSHOA). The contributions are outlined as following:

• This algorithm proposes scalarizing evaluation to make sure the convergence of popu-
lationmembers in the neighborhood. And the reference point association achievement
presents the effect that associated reference points produce on the candidate solutions.

• The influence of the number of current generations on optimization focus is introduced
to design a joint fitness function which combines scalarizing evaluation and reference
point association achievement.

• In the evolutionary process, squirrels move forward the direction of best ones rated by
the joint fitness function. And also, the distance penalization is applied in the winter
detection to prevent the local convergence.

• For selection operator, the members of feasible solution set are selected following the
sorting obtained by this joint fitness function.

• This algorithm also presents an adjustable reference points strategy to change some
reference points without associated solutions into some solutions by considering the
distance between solutions and reference points.

Finally, this paper designs a simulation experiment to compare the presented algo-
rithm with NSGA-III and MOEA/D on the DTLZ test problems [26]. The inverse gen-
erational distance (IGD) metric [19, 27] is applied to analyze the results by numbers and
box plots, and also the parallel coordinate plots of PF are presented to visualize the per-
formance of algorithms. It turns out that the proposed algorithm has good performance
on convergence and diversity.

2 Design of MaSHOA

2.1 Basic Concept of MaSHOA

This paper proposes a Many-Objective Optimization Hybrid Squirrel Search Algorithm
(MaSHOA), which utilizes NSGA-III for reference of many-objective optimization
framework and integrates SSA into it. The basic framework of MaSHOA is similar
to the original NSGA-III, the selection and mutation operator is modified with some
strategies.

The algorithmexecution process is shown inAlgorithm1.Before starting the process,
the reference points set is calculated. First, a population is initialized randomly named P.
Before the stop criteria are achieved, the proposed algorithm runs the following actions.

Normalization of population members, the association operation and the niche-
preservation operation according to the original NSGA-III is executed first (line 4–6).
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And the number Pj of population members that are associated with the certain reference
point that associates the individual is obtained for each member.

Based on the above results, the reference point association achievement and scalar-
izing evaluation is calculated (line 8). And after the number of current generations is
affiliated, a joint fitness function is created according to Reference Point Association
Achievement and Scalarizing Evaluation (line 9).

Algorithm 1. Procedure for MaSHOA
Input:
Population number N, test problem, parameter definition

Output
Feasible solution set

Begin
1. Generate reference points;
2. Initialized population randomly P;
3. do while stop criteria==false 
4. Normalization of population members;
5. Association operation;
6. Niche-preservation operation;
7. Calculate the number of population members that are associated with the certain refer-

ence point that associates the member ; 
8. Generate Scalarizing Evaluation and Reference Point Association Achievement accord-

ing to Eq. 1& Eq. 3;
9. Calculate joint fitness function according to Section 2.2;
10. Squirrels evolutionary to new population set according to Section 2.3;
11. Archive current population as set S; 
12. Merge two populations P and S into M;
13. Non-dominated sorting;
14. Choose individuals by the level of non-dominated sorting in turn until the current lev-

el L makes the size of population more than N, still choose all the members of level L into the 
current population P (size > N);

15. Select N of the current population members by the sorting of the joint fitness func-
tion;

16. Exchange reference points by an adjustable strategy according to Section 2.4;
17. External archive current population as set P; 
18. end while
19. return feasible solution set;
End

Then during population evolution, the original squirrel search algorithm is designed
to solve single-objective optimization problems. For the MOPs, SSA is modified in this
algorithm. For the migration operator, squirrels are evaluated by a joint fitness function
to sort (line 10). Besides, the distance penalization is introduced into winter detection
to avoid solutions from local convergence. And then the external archive is established
to store the current population as S (line 11). And the current and previous population
are merged to be applied to the next selection operator to maintain the elite information
as M (line 12).

Next, the non-dominated sorting is applied to select current members in non-
dominated level order into population P until members with the current level L are
selected to make the size of P more than N. It is changed from the original process that
the members with the current level L are also added into P (line 14).
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For the selection of parent and offspring individuals, the original framework utilizes
the number of population members that are associated with each reference point which
associates each individual as the selection condition after non-dominated sorting. Then
the joint fitness function is applied to sort and choosemembers into the current population
(line 15).

In the original framework, the reference points without population members will be
deleted. Besides, an adjustable reference points strategy is utilized to update reference
points with none associated members which could be deleted in the original framework
(line 16). And finally, the solution set is stored as P which is the output at the last
generation (line 19).

2.2 A Joint Fitness Function

This section shows how the joint fitness function is comprised of Scalarizing Evaluation,
Reference Point Association Achievement and the number of current generations.

Besides, in the original selection operator after the non-dominated sorting, only thePj

could be considered to assist the following selection operators. The joint fitness function
is applied to sort and choose the candidate solutions. The solutions with the better joint
fitness value could be selected into the new population first.

Scalarizing Evaluation. Aswe know, one important characteristic ofMaOPs is that the
number of objectives is large. Thus, the selection pressurewould become lower if only the
non-dominated levels are regarded as the measurement of convergence. Therefore, the
proposed algorithm applies a method to represent the convergence during the selection
opera-tion. After normalization, the gap between candidate solutions and extreme points
in each dimension is calculated to be the parameter for measure the convergence of the
solution set.

As the good performance that it has, the achievement scalarizing function (ASF) is
utilized for referencewith themeasurement of the convergence.BasedonASF,MaSHOA
proposes the Scalarizing Evaluation (SE) to make sure the convergence. It calculates the
maximum difference between the value on each dimension of objective vectors with the
preference vector wi and the best value on each dimension as shown in Eq. 1.

SE(x) = maxF
(
x, zmini

)
= maxmi=1

(
wi · fi(x) − zmini

)
(1)

wi = fi(x)∑m
j=1 fj(x)

(2)

Where m is the number of objectives, fi(x) is the value of objective vector on the ith
dimension, zmini is the value of extreme point on the ith dimension, wi is the preference
vector which is calculated as Eq. 2. We can see that the smaller value of SE(x) is, the
closer objective vector is near to the best value, the better convergence it is.

Reference Point Association Achievement. The relationship between ref-
erence points and population solutions is shown as the Reference Point Association
Achievement (RPAA). It contains two parts to represent the diversity of solutions. One
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is the distance between current solution and the reference vector formed by the refer-
ence point associated with it, and another is the number of solutions associated with
the reference point of the current solutions Pj. Thus, the distance (Eq. 4) between the
current candidate solution and reference vector rj and the scalarized current Pj (Eq. 5)
is represented as RPAA shown in Eq. 3.

RPAA(xi) = distance
(
xi, rj

) · Pj

P
(3)

distance
(
xi, rj

) = |xi| × sin
(
xi, rj

) = |xi| ×
∣∣xi × rj

∣∣
|xi| · ∣∣rj

∣∣ (4)

P =
∑s

j=1 Pj

s
(5)

Where xi represents the current candidate solution vector, rj is the reference vector,
Pj represents the number of solutions associated with the reference point of the current
solution. We can see that the smaller the value of RPAA is, the better the diversity of
solutions becomes.

Joint Fitness Function. It is believed that the feasible solution should focus on the
convergence asmuch as possible in the early stage of the process, that is,making solutions
forward better. And in the late stage of the process, the diversity of solution set is
becoming more im-portant, that is, making distribution of the solution more spread and
even. Therefore, the value of iterations is significant to the quality of solutions. The
calculation con-siders the number of current generations as a variable. Combining SE
and RPAA, the joint fitness function (JF) is presented as Eq. 6.

JF(x) = 1/
g × SE(x) + g × RPAA(x) (6)

Where g is the number of current generations. We can see that the smaller g is, the
more important the convergence is, and the larger g is, the more important the diversity
is.

2.3 Many-Objective Optimization Squirrels Evolution

The population p evolves and mutates through the method of this section into population
S. In this part, the joint fitness function is treated as the sorting reference. And Algorithm
2 shows the procedure of the many-objective optimization squirrel evolution.

According to the rank, the first n1(n1 = N/50) squirrels are the best squirrels which
are considered to be on the hickory trees. And the following n2 (n2 = 3N/50) squirrels
are the second-best squirrels which are considered to be on the acorn nuts trees. And the
last n3 (n3 = N − n1 − n2) squirrels are normal squirrels which are considered to be
on the normal trees.

As the living habits of squirrels, when there are no natural enemies of squirrels,
squirrels begin to migrate. This paper sets the probability Pe of natural enemies existing
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as 0.1. The probability of squirrel migration is based on Pe. Besides, whether squirrels
migrate is decided with the random number. A random number is generated between 0
and 1 in every condition. And if this number is more than 0.1, squirrels do the migration.
The distance constant SC of squirrel moving is set as [0.5, 1.11] due to experience, and
moving distance of every time is decided randomly in this range.

Algorithm 2. Procedure for many-objective optimization squirrel evolution
Input:

Squirrels population
Output

New squirrel population
Begin
1. evaluate fitness value according to Section2.2;
2. sorting squirrels with the fitness value;
3. According to the rank, first n1 squirrels are the best squirrels, the following n2 squirrels 

are the second-best squirrels, and all the others are normal squirrels.;
4. Random number of the range of [0,1] as r1, r2, r3; 
5. While r1 > (for second-best squirrels) 
6 For n = 1 to n2.;
7.      squirrel migration according to Eq. 7;
8. While r2 > (for normal squirrels)
9.    For n = 1 to n4; 

10. squirrel migration according to Eq. 8;
11. While r3 > (for normal squirrels)
9.    For n = 1 to n5; 

10. squirrel migration according to Eq. 9;
11. Calculate distance penalization constant according to Eq. 10; 
12. While (season != winter)
13. Normal squirrels levy flight according to Eq. 11; 
End

Squirrels on acorn nuts trees are moving to one of the directions of hickory trees
randomly according to Eq. 7.

ST ′
2nd = ST2nd + (STbest − ST2nd ) × SC (7)

Where ST2nd represents the current location of the second-best squirrel, ST
′
2nd rep-

resents the new location of the moving second-best squirrel, (STbest − ST2nd ) is the
distance between the best squirrel and the current moving second-best squirrel.

Squirrels on the normal trees are moving to one of the directions of acorn nuts trees
randomly according to Eq. 8. Some of normal squirrels have never been on the acorn
nuts trees (the number of them is n4).

ST ′
n = STn + (ST2nd − STn) × SC (8)

Where STn represents the current location of the normal squirrel, ST
′
n represents the

new location of the moving normal squirrel, (ST2nd − STn) is the distance between the
second-best squirrel and the current moving normal squirrel.

Besides, some of normal squirrels were on acorn nuts trees in the past generations
(the number of them is n5 = n3 − n4). Thus, they are moving to one of the directions
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of hickory trees randomly according to Eq. 9.

ST ′
n = STn + (STbest − STn) × SC (9)

Where STn represents the current location of the normal squirrel, ST
′
n represents the

new location of the moving normal squirrel, (STbest − STn) is the distance between the
second-best squirrel and the current moving normal squirrel.

Meanwhile, the winter detection is applied to prevent the algorithm from local con-
vergence. The difference between the best squirrels of the current generation and the last
generation is considered as the distance penalization constant. The minimum distance
between best squirrels of the current and last generation is calculated to be the distance
penalization constant (DPC) as Eq. 10.WDC is applied to evaluate the similarity of these
two generations and judge whether the process is going into the local convergence.

DPC = minn1,n1
′

i,j=1

√(
STg

i − STg−1
j

)2
(10)

Where g is the current generation, n1 is the number of best squirrels in this generation,
n1′ is the number of best squirrels in last generation, STg

i is the vector of ith best squirrel

in this generation, and STg−1
j is the vector of jth best squirrel in last generation. So DPC

can represent the minimum distance between the best squirrels from two generations.
And a threshold value is fixed to compare with DPC to judge whether it is the end

of winter (see Eq. 11). If the DPC is less than the fixed threshold, it is considered as the
situation of local convergence.

WDmin = 10E−6

(365)
g

gm/2.5
(11)

Where g is the number of the current generation, gm is the maximum number of
generations. So WDmin is the threshold of winter detection.

In addition, the best and second-best squirrels of the current generation should be
preserved, and the normal squirrels should mutate using Levy flight according to Eq. 12.

ST
′
n = STn + (STmax − STmin)2 × Levy (12)

Levy = 0.01 × ra × σ

|rb|
1
β

(13)

σ =
⎛
⎜⎝ �(1 + β) × sin(πβ

2 )

�
(
1+β
2

)
× β × 2

(
β−1
2

)

⎞
⎟⎠

1
β

(14)

�(x) = (x − 1)! (15)

Where ST
′
n is the new location of moving normal squirrels, STmin and STmax are the

squirrel location of the best and worst fitness value respectively. And Levy is shown in
Eq. 13.

After the winter detection, the new squirrel population S is generated completely
which can be utilized to merge with the previous population.
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2.4 Adjustable Reference Points Strategy

In the original reference points set method, the reference point associated without any
solutions will be deleted. And in this section, an adjustable reference point strategy is
proposed to update the reference point.

After the reference point associated without any solutions is detected, the solution
with the farthest distance between others and itself is chosen to be the new reference
point based on the feasible solution set as shown in Fig. 1. The original reference points
and their corresponding reference vectors are shown in Fig. 1(a). As is shown in Fig. 1(b),
there are no solutions associated with R2, so x1 with the maximum distance is chosen
to adjust R2 to X1. X1 becomes the new reference point. This strategy could make sure
the diversity while making solution set evolve to the advantageous direction, instead of
the original even reference point set. Meanwhile, in every adjustment process, the one
reference point cannot be associatedwithmore than one new reference point. Thismeans
the solution associated with the reference point with the previous new reference point
could not be the new reference point. This constrain can prevent the solving process from
evolutionary convergence forward one certain direction. And After the previous X1 in
Fig. 1(b) is becoming the new reference point, we are assuming that the new solution
with the maximum distance from its reference vector should be selected to be the new
reference. But the new solution is also associated with the R1 (same as Fig. 1(b)), so
this solution could not be employed to be the new reference set. In this case, the other
solution with the second farthest distance should be selected to be the new reference
point.

a. Reference points and vectors settings b. An adjustable reference point strategy

Fig. 1. Based on the reference points set, an adjustable reference point strategy is designed shown
in this figure.
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3 Simulative Results Analysis

To analyze the performance of the proposed algorithm, this section designs the com-
parative simulation experiment. Based on the previous work, we choose NSGA-III and
MOEA/D to contrast the MaSHOA. And all these three EMaOAs are simulated at five
classic many-objective optimization test problems (DTLZ 7, DTLZi, i = 1 – 4) [26] as
shown inTable 1.And the selected algorithms are testedon the 3-objective to 15-objective
DTLZ test problems.

Both NSGA-III and MOEA/D apply the genetic algorithm as the mutation strategy.
Table 2 shows the parameters of mutation operators used in the NSGA-III andMOEA/D.

Table 1. Test problems

Name Dimensions of solutions Feature of PF

DTLZ1 4 + N Linear multi-modal

DTLZ2 9 + N Concave

DTLZ3 9 + N Concave multi-modal

DTLZ4 9 + N Concave non uniform

DTLZ7 19 + N Mixed, Disconnected
multi-modal

Table 2. Parameters of variation operators

Parameters NSGA-III MOEA/D

SBX probability [28] pc 1 1

Polynomial mutating probability [29] pm 1/n 1/n

Crossover distribution index ηc 30 20

Mutation distribution index ηm 20 20

The number of reference points depends on both the simple-lattice design factor
[10] D and the number M of objectives. D represents the number of points which are
distributed evenly on one borderline of the solution space. We can calculate the number
R of reference points or directions according to Eq. 16.

R =
(
D + M − 1

D

)
(16)

When M ≥ 8, the two layers of reference points are employed to generate the
reference points. And the reference points are divided into the inside layer and the
boundary layer. Table 3 presents the number of objectives, divisions, reference points
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Table 3. Number of reference points/directions and population sizes used in this experiment

No. of
objectives
(M)

No. of
divisions (D)

No. of
reference p/d
(R)

MaSHOA
popsize (N)

NSGA-III
popsize (N’)

MOEA/D
popsize (N”)

3 12 91 91 92 91

5 6 210 210 212 210

8 (3,2) 156 156 156 156

10 (3,2) 275 275 276 275

15 (2,1) 135 135 136 135

and population size of all the algorithms used in the experiments. To ensure the accuracy
of the experiment results, these simulative experiments are carried out 30 times on each
test problem respectively.

3.1 Analysis on IGD Metric

In general, the solution set of MaOPs is composed of many solutions, which leads to the
difficulty of the evaluation of solutions of different algorithms. So, the evaluationmethod
on EMaOAs is complicated to transfer the solution set to a mode easy to evaluate. The
inverse generational distance (IGD) is widely applied to evaluate the convergence and
the diversity of PF. The convergence describes the gap between the approximate PF and
the ideal PF. And the diversity means that the solution set could represent the whole
page of the ideal PF.

In this experiment, we take the IGD metric as the evaluation indicator. The IGD
metric represents the average distance between each solution of the reference set and
the solution closest to it of approximate PF. The IGD metric is defined as Eq. 17. Zi is
the ideal solution set, P is the approximate solution set obtained by all the EMaOAs, zi
and xj is the solution of the ideal and approximate set respectively.

IGD(P,Zi) = 1

|Zi|
∑Zi

i=1
min
P
j=1

d
(
zi, xj

)
(17)

We can see that the smaller the IGD value, the closer the approximate solution to the
real PF, the better the performance of the algorithm. Meanwhile, the lower IGD value
could represent that there exist solutions around each solution of the ideal PF, which is
the meaning of the diversity.

Table 4 shows all the means and variances (shown in the first and second line) of IGD
values of all the results on the five DTLZ test problems and the maximum generations
of each situation of different objectives.

On theDTLZ1problems,MaSHOAhas the bestmeans on the 3-, 8-, 10-, 15-objective
problems, and the best variances on the 5-, 8-, 15- objective problems. And the other
two algorithms do not have better performance on all DTLZ1 problems. A similar mea-
surement is made for DTLZ2 problems, MaSHOA has the best results on the 8-, 10-,
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Table 4. The means and variances of IGD obtained by simulation results on DLTZ

Problems No. of objectives MaxGen NSGA-III MOEA/D MaSHOA

DLTZ1 3 30000 5.742E−4 0.0408 2.626E–4

6.847E−7 0.00305 1.26E–11

5 30000 6.532E−4
1.124E−8

0.184
0.0356

5.32E–4
3.02E–11

8 50000 0.0447
2.910E−4

0.292
0.0641

0.01765
5.782E–5

10 50000 0.0199
1.510E−4

0.116
0.0072

0.0196
1.612E-4

15 50000 0.0114
3.059E−5

0.0288
0.00125

0.00105
4.952E–9

DLTZ2 3 30000 5.877E−4
4.50E−13

6.507E-4
1.22E-11

6.735E-4
2.825E-11

5 30000 0.00170
1.88E−12

0.00238
8.95E-10

0.00175
1.453E-10

8 50000 0.0102
6.606E−6

0.00924
3.933E−7

0.00823
1.85E-12

10 50000 0.00816
8.742E−7

0.00698
3.206E-7

0.00561
4.22E-11

15 50000 0.00421
2.047E−8

0.00363
6.538E-8

0.00306
2.44E-13

DLTZ3 3 30000 0.00403
9.444E−5

0.187
0.0416

6.765E-4
7.27E-11

5 30000 0.00181
8.798E−9

0.421
0.209

0.00172
5.51E-11

8 50000 0.107
0.00233

0.597
0.210

0.0410
8.399E-4

10 50000 0.0418
0.00102

0.3178
0.147

0.0455
1.28E-4

15 50000 0.01432
8.19E-5

0.0216
0.00233

0.00307
5.04E-11

DLTZ4 3 30000 0.00522
1.024E-5

0.00147
1.355E-6

0.00369
9.082E-6

5 30000 0.00170
2.22E-12

0.00367
2.653E-8

0.00176
1.954E-10

8 50000 0.00851
4.021E-7

0.0109
3.39E-7

0.00823
2.947E-12

(continued)
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Table 4. (continued)

Problems No. of objectives MaxGen NSGA-III MOEA/D MaSHOA

10 50000 0.00557
5.19E-14

0.00793
1.021E-7

0.00559
2.589E-11

15 50000 0.00311
1.920E-9

0.00374
6.156E-9

0.003062
7.68E-14

DLTZ7 3 30000 0.0322
3.720E-5

0.0473
1.539E-4

0.0300
3.02E-10

5 30000 0.104
9.885E-5

0.0870
7.121E-6

0.0736
3.59E-10

8 50000 0.265
2.410E-4

0.103
4.313E-5

0.0961
2.960E-8

10 50000 0.349
6.335E-4

0.124
6.965E-5

0.110
2.487E-8

15 50000 0.573
1.304E-4

0.216
3.599E-4

0.146
1.766E-7

15-objective problems, while NSGA-III has good results on the 3-, 5- objective prob-
lems which have a little gap with MaSHOA. We can see that the proposed algorithm has
better performance on a higher dimension of DTLZ2 problems. And for DTLZ3 prob-
lems, MaSHOA has the best results on the 3-, 5-, 8-, 10-, 15-objective problems except
that NSGA-III has better means of the 10-objective problems. For problem DTLZ4,
MaSHOA has the best performance on the 8-, 15-objective problems, and it still gets
good results in other problems. MaSHOA has the best performance on the 3-, 5-, 8-,
10-, 15-objective DTLZ7 problems. From Table 4, MaSHOA has better stabilization and
solving performance on these DTLZ problems than other algorithms.

Figure 2 shows the box plots of all the algorithms on 8-, 10- and 15-objective DTLZ
problems. The box plots present minimum, maximum, median, first quartile and third
quartile (sometimes outliers) of repetitious experiment results. The stability of results
can be directly observed through the box plots.

For the 8-objective DTLZ problems (in Fig. 2a–e), MaSHOA has smaller boxes with
lower values than the other two algorithms. MOEA/D has good results on the DTLZ2
and DTLZ7, and NSGA-III has good results on the DTLZ1 and DTLZ4, but the shape
of MaSHOA is much flatter in these five figures and MaSHOA doesn’t have outliers
like other two algorithms. There is a similar survey made on the 10-objective DTLZ
problems (in Fig. 2f–g) that MaSHOA has better performance on all the problems. And
also, NSGA-III is good on the DTLZ1 and DTLZ4while MOEA/D is worse than others.
For 15-objective DTLZ problems (in Fig. 2k–o), MaSHOA still has better results than
others. And both NSGA-III and MOEA/D don’t hold the second position on all the five
problems.

It is shown that some ofMaSHOA boxes are compressed into a line which means the
proposed algorithm has great stability rather than others. And the boxes of MaSHOA are
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a.8-objective DTLZ1 f.10-objective DTLZ1 k.15-objective DTLZ1

b.8-objective DTLZ2 g.10-objective DTLZ2 l.15-objective DTLZ2

c.8-objective DTLZ3 h.10-objective DTLZ3 m.15-objective DTLZ3

d.8-objective DTLZ4 i.10-objective DTLZ4 n.15-objective DTLZ4

e.8-objective DTLZ7 j.10-objective DTLZ7 o.15-objective DTLZ7

Fig. 2. Box plots of 8-, 10-, 15-objective DTLZ problems.

lower than others on the height in the figures which means the IGD values of MaSHOA
are less than others. So MaSHOA has better convergence and diversity.
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3.2 Analysis of Parallel Coordinate Plots

a. MaSHOA on DTLZ2 d. MaSHOA on DTLZ4

b. MOEA/D on DTLZ2 e. MOEA/D on DTLZ4

c. NSGA-III on DTLZ2 f. NSGA-III on DTLZ4

Fig. 3. Parallel coordinate plots of 10-objective problems

This paper utilizes parallel coordinate plots to analyze the fitting precision of obtainedPF.
The parallel coordinate plot is an effective solution for the difficulty of high-dimensional
visualization (discussed in the introduction). The parallel coordinate plot shows all the
coordinates of each dimension on the parallel axis and connects themwith the polygonal
lines.

Figure 3 shows six parallel coordinate plots of results on 10-objective DTLZ2 and
DTLZ4 problems. For the problem DTLZ2 and DTLZ4, MaSHOA can show a more
integrated fitting precision of PF than the other two algorithms. The results on DTLZ2
and DTLZ4 obtained by MOEA/D are not uniform, and the results on DTLZ2 obtained
by NSGA-III are not uniform either. The results on DTLZ4 obtained by NSGA-III
are uniform but not good as those of MaSHOA. A similar phenomenon is observed in
Fig. 4 which presents six parallel coordinate plots of results on 15-objective DTLZ2 and
DTLZ3 problems. The results of MaSHOA are better than others.

And it is shown that the performance of three algorithms is affected by increasing
the number of objectives. And MOEA/D and NSGA-III could only present the part of
ideal PF while the proposed algorithm could show integrally the PF relatively.
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a. MaSHOA on DTLZ2 d. MaSHOA on DTLZ4

b. MOEA/D on DTLZ2 e. MOEA/D on DTLZ4

c. NSGA-III on DTLZ2 f. NSGA-III on DTLZ4

Fig. 4. Parallel coordinate plots of 15-objective problems

On the basis of the simulative experiment analysis, the proposed algorithmMaSHOA
has good performance and stability on the DTLZ test set rather than MOEA/D and
NSGA-III.

4 Conclusion

This paper presents amany-objective squirrel hybrid optimization algorithm (MaSHOA)
which uses the framework of SSA and NSGA-III for reference and improves it on the
evolution and selection operators.

A new joint fitness function combines the scalarizing evaluation which evaluates the
convergence of the solution among the neighborhood and the reference point association
achievement which shows the influence of the associated relationship between reference
points and candidate solutions on the quality of solutions and considers the different
preference of solving goals from early to late iterations. The new joint fitness function is
applied to sort solutions in both evolution and selection operators. The better solutions
are treated as the guide of others according to the sorting in the evolutionary process, and
the candidate solutions are selected in terms of the sorting results. Besides, the distance
penalization is proposed to prevent local convergence during the evolution.
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An adjustable reference points strategy is designed to adjust the reference point set.
The simulative experiments ofMaSHOA, NSGA-III andMOEA/D are implemented

on 3-, 5-, 8-, 10-, 15-objective DTLZ test problems. The IGD metric, a widely applied
EMaOA evaluation method, is utilized to evaluate results obtained by running all the
algorithms 30 times repeatedly. Through the means, variances and box plots of IGD
metrics obtained by all the algorithms are used to compare the stability and performance
of algorithms. Moreover, results on 10-, 15-objective problems are visualized by parallel
coordinate plots. Taken together, the proposed algorithm, MaSHOA, has good perfor-
mance on different problems which means it is an effective many-objective optimization
algorithm.
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