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Abstract. Federated learning is designed for multiple mobile devices to
collaboratively train an artificial intelligence model while preserving data
privacy. Instead of collecting the raw training data from mobile devices
to the central server, federated learning coordinates a group of devices
to train a shared model in a distributed manner with their local data.
However, prior to effectively deploying federated learning on resource-
constrained mobile devices in large scale, different factors including the
convergence rate, energy efficiency and model accuracy should be well
studied. Thus, a flexible simulation framework that can be used to inves-
tigate a wide range of problems related to federated learning is urgently
required.

In this paper, we propose FLSim, a framework for efficiently build-
ing simulators for federated learning. Unlike ad hoc simulators, FLSim
is envisioned as an open repository of building blocks for creating sim-
ulators. To this end, FLSim consists of a set of software components
organized in a well-structured software architecture that provides the
foundation for maximizing flexibility and extensibility. With FLSim, cre-
ating a simulator generally involves only putting the selected components
together, thus allowing users to focus on the problems being studied. We
describe the design of the framework in detail and use a few use cases to
demonstrate the ease with which various simulators can be constructed
with FLSim.

1 Introduction

Mobile devices (e.g., smartphone and wearable devices), powered by batteries,
intimately connect users and their environment. Equipped with various types
of sensors (e.g., GPS, accelerometer, gyroscope), mobile devices can collect dif-
ferent kinds of data, ubiquitously [19,21]. These data are valuable resources for
intelligent applications to efficiently understand user behavior and significantly
improve user experience from different perspectives. Acquiring these data raises
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a big question mark on preserving users’ privacy with any service provided [4].
For example, the scandal swirling around the Facebook App and Cambridge
Anaytica has begun to usher in a new era for this once-ignored community of
privacy researchers and developers [14,23]. Thus, intelligently analyzing the data
being generated from mobile devices while preserving data privacy is a critical
challenge.

Federated learning [22] is proposed in order to effectively train the data ubiq-
uitously from mobile devices while removing the concern of privacy. Unlike the
cloud-based approach which collects the local training data in the data center,
federated learning collaboratively trains a shared model with the data located
on each mobile device [16]. Specifically, in a training round, each participat-
ing device computes the updates to the current global model based on its local
training data. These updates are then sent to the central server. After receiving
the updates, the central server aggregates them, updates the shared model and
broadcasts the updated model to the mobile participants. This process iterates
until the model converges. In this approach, the predictive model can be collab-
oratively learned while the data privacy is well preserved. This is because the
privacy sensitive raw data never leaves the mobile device during the whole train-
ing process. Currently, federated learning has been adopted to support various
kinds of applications such as human activity recognition, on-device item ranking,
and next-word prediction [20].

Despite all the promising benefits, effectively deploying federated learning on
mobile devices in large scale is challenging. The whole system can be severely
impacted by different factors in a highly dynamic environment. For instance, the
training data generated from different mobile devices can have highly different
distributions due to different user interaction behaviors which can impact the
model convergence in totally different ways. On the other side, the participating
devices in a federated learning system usually possess different hardware con-
figurations which lead to totally different training capability. Thus, the training
progress of each device can be highly unbalanced which severely impacts the
overall training progress of the whole system. Moreover, some uncertainty issues
such as out of battery and poor network connection can further affect the con-
vergence rate of a federated learning system in practice. In addition, energy
consumption of the on-device learning process is another critical concern that
determines whether a specific user is willing to participate in the training pro-
cess. Prior to deploying a federated learning framework on real mobile devices
in large scale, assessing the impacts of different factors is critical for develop-
ers and researchers to make corresponding strategies for efficient and effective
deployment. Thus, a framework that can efficiently create simulators
to simulate different usage scenarios in federated learning and quickly
obtain corresponding information (e.g., model accuracy, model con-
vergence rate and energy consumption) is urgently required.

In this paper, we propose FLSim, an extensible and reusable simulation
framework for federated learning. FLSim adopts a layered software architec-
ture. It supports commonly used deep learning frameworks such as PyTorch
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and Tensorflow. Thus developers familiar with any one of these frameworks can
conveniently use FLSim to create corresponding simulators. FLSim can be eas-
ily ported to run on different hardware platforms. Moreover, FLSim adopts a
highly modular design, allowing different simulators to be easily created through
the integration of different components in FLSim. We use different case stud-
ies to evaluate the effectiveness of FLSim. The results show that FLSim can
effectively simulate different scenarios in Federated Learning and obtain corre-
sponding information accurately. To the best of our knowledge, FLSim is the
first work that provides a flexible simulation framework that can be efficiently
used to study a wide range of problems related to federated learning. Specifically,
our major contributions are as follows:

– We propose FLSim, a simulation framework for federated learning, which
intelligently helps developers create different simulators to simulate different
scenarios in an efficient way.

– FLSim adopts a layered software architecture. Moreover, techniques such as
inversion of control are used to make FLSim flexible and extendable.

– We implement the prototype of FLSim and use different use cases to demon-
strate the effectiveness of FLSim.

The rest of the paper is organized as follows. Section 2 introduces the back-
ground about federated learning and the previous research closely related to our
work. Section 3 introduces the system design and the implementation of different
components. Section 4 discusses different case studies we adopt to evaluate the
effectiveness of FLSim. Section 5 briefly evaluates the performance of FLSim.
Finally, Sect. 6 concludes the paper.

2 Background and Related Work

In this section, we introduce the background of federated learning and previous
work that is closely related with this paper.

2.1 Background About Federated Learning

Federated learning (FL) is proposed to effectively train the data being generated
on mobile devices while protecting data privacy. A typical FL system mainly con-
sists of a central server and multiple mobile devices with heterogeneous hardware
configurations. The typical workflow of a federated learning procedure contains
the following main steps:

1. Initialization. At the initialization step of each training round, the central
server selects a set of mobile devices to participate in the training process.

2. Model Download. The selected participants download the current shared
model state (e.g., current model parameters (wt)).

3. On-device Training. Each mobile device conducts local training based on
the shared model state and its local training dataset for a certain number of
training epochs.
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Fig. 1. Workflow of a typical federated learning system.

4. Gradient Update. After completing the local training process, each mobile
device sends the updated gradients back to the central server.

5. Model Fusion. After receiving the updated gradients from all selected par-
ticipants, the central server aggregates these gradient updates and comes up
with the updated global model. Then, the system enters the next training
round.

6. Training Iterates. The whole process iterates until the global model con-
verges.

We can note that, the raw training data (e.g., raw data generated during
user interaction with mobile devices) never leave the mobile device during the
whole training process. Data privacy is therefore well preserved which is the key
advantage of Federated Learning.

2.2 Related Work

Our work is closely related to the following research topics.

Federated Learning. Federated learning has raised a lot of attention as a
machine learning paradigm that effectively trains the data being generated from
mobile devices while guaranteeing the data privacy [7,8,11,15,17,22,24,25,28].
Sprague et al. [25] present a new asynchronous federated learning algorithm and
study its convergence rate when distributed across many edge devices, with hard
data constraints, relative to training the same model on a single device. Wang
et al. [28] analyze the convergence bound of distributed gradient descent from
a theoretical point of view and propose a control algorithm that determines the
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trade-off between local update and global parameter aggregation to minimize the
loss function under a given resource budget. Bonawitz et al. [7] build a scalable
production system for federated learning in the domain of mobile devices, based
on Tensorflow. Additionally, Bonawitz et al. [8] design a novel, communication-
efficient, failure-robust protocol for secure aggregation of high-dimensional data.
Previous work on federated learning mainly focuses on reducing the communi-
cation overhead during the training process and the model convergence from the
theoretical perspective. In this paper, we build FLSim which tries to provide a
flexible simulation framework that can be used to study a wide range of problems
related to federated learning to help efficient deployment in practice.

Simulation System Construction. From the system point of view, the most
relevant concept to this work is simulation system construction. Previous work
has explored system design principles along the same line that has guided the
creation of FLSim. An early work is SimJava [13], which is a library of Java com-
ponents for building general discrete-event simulation systems. CloudSim [10]
is a simulation framework created for simulating various hardware components
and software management services in the cloud computing settingss. Like FLSim
its main design focus is to provide a toolkit that is highly extensible and cus-
tomizable. Not surprisingly, it also adopts a layered software architecture. Wang
et al. [27] discuss component-based design followed in creating the Manifold sim-
ulation framework [26] for multicore computer architectures. They particularly
emphasize the importance of dependency management. Although targeting a
different application domain, its design principles are similar to what we have
adopted for FLSim.

3 FLSim System Design and Implementation

In designing FLSim, our goal is to provide a flexible simulation framework that
can be used to study a wide range of problems related to federated learning,
instead of an ad hoc simulator that limits itself to a single or a small number of
use cases. This idea is captured in our fundamental design rule.

Fundamental Design Rule. FLSim is a simulation framework that provides
building blocks for users to easily create simulators tailored for their own feder-
ated learning problems.

Another import question we face is whether the training of the neural net-
works should be simulated or literally carried out. It is obvious that any feder-
ated learning simulator will spend most of its time performing the training. If the
training can be simulated, it will greatly reduce the simulation time. However,
we suspect that in most cases the user would want for the neural networks to be
actually trained. Therefore, in the current version of FLSim, training is literally
performed.

With the Fundamental Design Rule in mind, we set the following design goals
for FLSim.
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– FLSim should support all the commonly used deep learning frameworks such
as PyTorch [2] and TensorFlow [3], so that users familiar with any one of
those frameworks should be able to use FLSim at the same level of ease.

– FLSim should, under the control of one or a few configuration parameters,
be able to run on different underlying hardware platforms.

– FLSim should be highly modular such that different simulators can be created
simply by choosing different components. On the other hand, if the system
does not include a component that fully meets the user’s needs, a new one
can be easily created and incorporated into the system.

The following sections give a detailed description of the system design of
FLSim.

3.1 Design Overview

In order to achieve the design goals outlined above, we adopt a layered soft-
ware architecture [9]. This type of architectures allows complex systems to be
decomposed into different levels of abstraction with cleanly defined interfaces
and dependence relationships. To be more precise, our design is a relaxed lay-
ered system where components in a given layer can use the services from any
layer below it, not just the one immediately below. However, no layer is allowed
to use any functionality from any layer above it. Figure 2 shows the software
architecture of FLSim.

Simulators

NN Models DataSets Lib-dep FLSim
Modules

Pytorch

Tensorflow

FLSim Core

Orchestration
Utilities Perf/Power

Models

Fig. 2. System architecture.

From the user’s standpoint, building a simulator is a simple two-step pro-
cess. First, the user selects the essential components such as the neural network
model, the dataset, and the hardware platform. The user can also create cus-
tomized components by sub-classing existing classes to meet their requirements.
For example, if one needs to select clients in each training round in a particular
way, they can simply extend the FLClientSelector class.
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Once the user has configured the system, in the second step the user instan-
tiates a Federation object and starts running the simulator.

In order to realize the clean dependencies as required by the layered soft-
ware architecture, we adopt a few design guidelines that center on dependency
management.

First of all, we adopt the design technique known as inversion of control [12]
whenever possible. When an object A directly uses an object B, A has a depen-
dence on B. The coupling between A and B would become too tight if B is
created by A. With inversion of control, the dependence of A on B is injected.
That is to say, B is created elsewhere and passed to A, while A only requires an
interface that B implements.

Another guideline is library-neutrality. Deep learning libraries such as
PyTorch and TensorFlow are commonly used. A pitfall we want to avoid is
tying the system to any particular library. Therefore, the components in gen-
eral are designed in a library-neutral manner, with library-dependent extensions
provided as a convenience. We next explain the layers individually.

3.2 Library-Independent Layer

At the bottom of the layered architecture is the Library Independent Layer. As
the name indicates, components in this layer are independent of deep learning
libraries such as PyTorch. This layer contains FLSim Core, Simulation Orches-
tration, common utilities, and, for studying system performance and energy effi-
ciency, Performance and Power Models. We further divide FLSim Core and
Orchestration into two layers, as the latter represents a distinctive layer of
abstraction.

Figure 2 also shows at the bottom-left of the layers some commonly used deep
learning libraries such as PyTorch and TensorFlow. It is clear from the positions
of these components that the FLSim components in this layer are independent
of them.

Simulation Orchestration Layer. In the context of FLSim, orchestration
means selecting the hardware platform on which to run the simulator, and,
when multiprocessing is used, determining the number of processes and how the
clients are assigned to the processes.

Fig. 3. Orchestration layer
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At the core of the Orchestration Layer is the class hierarchy for client-server
communications, as shown in Fig. 3. At present, we support using a single CPU
process, multiple CPU processes, and GPU SIMT execution, which are respec-
tively implemented in the sub-classes shown in Fig. 3.

These communication classes provide the abstraction for orchestration and
insulate the users of these classes from such details as the underlying inter-
process communication mechanism, or communication between CPU and GPU.
Once a platform is selected, the clients and server simply use the interface func-
tions such as those listed in Fig. 3 to communicate.

FLSim Core. This component includes the basic classes that implement a
Federated Learning system, such as server and client. Major classes of this com-
ponent are illustrated in Fig. 4.

Fig. 4. FLSim Core class diagram.

Clearly the classes form two clusters centered on FLServer and
FLClientRank, the latter representing a group of clients. The server has
a few injected dependencies: FLComm for communications with the clients,
FLClientSelector for client selection, and FLAvgAlgo for model averaging.

On the client side, injected dependencies include FLNet representing a neural
network model, FLTrainer representing a local trainer that trains the model.

Finally, the class FLFederation represents the federation and wraps a server
and one or more client ranks.

Utilities. The Utilities component contains utility functions that are indepen-
dent of deep learning libraries. These include the following: dataset splitter,
logging, visualization, and charting.

Performance and Power Models. A special feature of FLSim is its incorpo-
ration of performance and power models to support the study of system perfor-
mance and energy efficiency. At present this is mainly provided in the form of
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device profiles represented by the DevProfile class. This class basically has a
performance table and a power table. The former is an array of execution time
required to finish one round of training using different CPU frequencies, and the
latter is an array of the same size with the corresponding power consumption
values.

3.3 Library-Dependent Layer

The library-dependent layer contains modules that rely on specific deep learning
libraries such as PyTorch. At present this layer focuses on PyTorch.

Datasets. Strictly speaking, datasets should be independent of the deep learn-
ing libraries. However, libraries like PyTorch provides utilities for some common
datasets, making it easier to deal with the datasets. Obviously we can also include
library-neutral datasets in the library independent layer.

Neural Network Models. These are generally bound to a particular library.
FLSim includes a few models from simple multi-layer perceptrons to more com-
plex CNN and DNN models. Some of the models will be discussed in the case
studies.

Library-Dependent FLSim Modules. As mentioned, to maintain the clean
layered architecture, some functionalities are split into a library independent
part and a library dependent part. The former is generally in the form of base
classes, while the latter leverages the support of commonly used libraries.

An example is the FLTrainer class. This base class includes an interface for
carrying out training of a neural network. The PytorchTrainer class extends
the base class and is used to train PyTorch neural network models.

3.4 Simulators

At the top of the layered architecture we find simulators which are built with the
components from the lower layers. Some of the FLSim simulators are discussed in
the case study section. However, it is important to stress that the goal of FLSim
is to provide well-structured components for constructing simulators efficiently.

3.5 Steps for Constructing a Simulator

Using the components provided by FLSim, we can construct a generic simulator
for federated learning with the following steps:

– Step 1. Create a dataset partitioner and partition the dataset among the
given number of clients.

– Step 2. Create a neural network model.
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– Step 3. Create a local trainer object.
– Step 4. Create a client selector object.
– Step 5. Create an averaging algorithm object.
– Step 6. Create an FLFederation object with the following parameters:

• The neural network model
• The local trainer
• The dataset and the partitioning
• The client selector
• The averaging algorithm object.
• The platform. If CPU is selected, the number of processes as well.

– Step 7. In a loop call the run one round() method of the FLFederation object.

4 Case Studies

In this section we present a few use cases to demonstrate different types of
federated learning simulation that can be realized with the FLSim framework.
A brief description of the use cases is given below, followed by more details.

– Basic case. In this test case we try to repeat some of the experiments
reported in [22] to prove the basic capabilities of FLSim.

– Federated learning with non-IID data. In this test case we try to repeat
some of the experiments presented in [30], which focuses on the effects of
non-IID data.

– Real-time federated learning: In this test case we build a simulator that
is a simplified version of the work presented in [18] to study problems in
real-time federated learning.

4.1 Basic Test Case

We start with a basic test case in which we try to duplicate some experiments
reported in [22] in order to perform some basic validation of the implementation
of FLSim. We use FLSim to build a neural network that is referred to as 2NN
in [22] for the task of classifying hand-written numerical digits from the MNIST
dataset [29], which includes a training set of 60,000 images and a test set of
10,000.

The 2NN model is a multilayer perceptron (MLP) [6] with 1 input layer, 2
hidden layers and 1 output layer, the sizes of which are respectively 768, 200,
200, and 10, for a total of 199,210 parameters.

Components required to create the simulator include theose listed in Table 1.
Note that all those components are readily available in FLSim. Therefore,

building the simulator is a straightforward process.
In the first experiment, we modify a couple of training parameters and try to

find the least number of training rounds required to achieve a test accuracy of
97.0%, and we compare the results with what are reported in [22]. Specifically,
we fix the number of local training epochs to 20, and set the batch size to three
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Table 1. FLSim components for the basic test case.

• The 2NN model based on PyTorch

• The MNIST dataset

• The default federation FLFederation

• The FLRandomClientSelector to randomly select 10 clients out of 100
in each training round

• The PytorchLocalTrainer, a PyTorch based local training module

Table 2. 2NN MNIST with epochs fixed at 20: best of 10 runs.

Epoch BatchSize #Batches LearnRate Rounds Rounds [22]

20 10 60 0.1 31 32

20 50 12 0.3 38 39

20 50 12 0.1 88

20 ∞ 1 0.95 94 92

20 ∞ 1 0.1 409

different values (i.e., 10, 50, and all), and select different learning rates to see if
we can obtain results similar to [22]. The test results are listed in Table 2.

The infinity symbol (∞) means including all the local training data in the
batch, i.e., there is only one batch for each client. For the three batch sizes, the
best learning rate are respectively 0.1, 0.3, and 0.95. The last column contains the
results from [22]. Note that [22] did not state the learning rate used in obtaining
the results. We can see that in all three cases our results are very close to those
of [22], confirming the soundness of FLSim implementation. Additionally, we
have found that the learning rate has a great impact on the number of training
rounds required, and it is sensitive to the batch size. For example, while 0.1 is a
good learning rate for batch size 10, it produces bad results when the batch size
is much larger. Finally, Fig. 5a shows the evolution of the model accuracy with
three different batch sizes.

Table 3. 2NN MNIST with fixed batch sizes: best of 10 runs.

Epoch BatchSize #Batches LearnRate Rounds Rounds [22]

1 10 60 0.1 98 92

5 10 60 0.1 39 –

10 10 60 0.1 35 34

20 10 60 0.1 31 32

30 10 60 0.1 31 –

1 50 12 0.3 131 144

10 50 12 0.3 40 45

20 50 12 0.3 38 39
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(a) (a) Epoch=20; different batch (B) sizes (b) (b) Round v. epoch

Fig. 5. 2NN results: (a) Epoch (E) set to 20, numbers of rounds with different batch
sizes (B). (b) Comparison with [22]: batch size set to 10, epoch set to 1, 10, and 20.

We next try to find the best numbers of rounds with different parameters
and compare the results with [22]. Table 3 shows the results of fixing the batch
size and changing the epoch. The last column contains results from [22]. It can
be seen that in most cases the results are very close.

Table 4 shows the results of the best numbers of rounds obtained with differ-
ent numbers of clients. In all the four cases here, our results differ from those in
[22] by about 10 rounds. One possible reason for this difference is the learning
rate. Unlike [22], we did not test a large set of different learning rates. Note that
for the case E=1, B=10, two different results are reported in [22], namely 92 and
87, as listed in Tables 3 and 4.

Table 4. 2NN MNIST with different federation sizes; Batch = 10; Epoch = 1

#Clients LearnRate Rounds Rounds [22]

10 0.1 98 87

20 0.1 85 77

50 0.1 83 75

100 0.1 81 70

The numbers of rounds with different epochs, batch sizes, and number of
clients are graphically depicted in Figs. 5(b), 6(a), and 6(b), respectively.

4.2 Federated Learning with Non-IID Data

In a federated learning system, when the clients have IID (independent and
identically distributed) data, high model accuracy can generally be achieved, as
demonstrated in the Basic Case above (e.g., Fig. 5(a). Zhao et al. [30] studied
the impact on model accuracy when clients have non-IID data instead. They
demonstrate that the model accuracy is significantly reduced, especially in the
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(a) (a) Round v. batch size (b) (b) Round v. number of clients

Fig. 6. 2NN results in comparison with [22]: (a) Epoch (E) set to 20, batch size (B)
set to 10, 50, 600. (b) Epoch set to 1, batch size set to 10, number of clients set to 10,
20, 50, 100.

extreme case where each client has data from only one class. To address this
problem, they propose creating a common set of data and giving it to all the
clients. It has been shown that even with a small amount of shared data, the
model accuracy can be greatly improved.

In this case study, we show how this problem can be studied with FLSim. Two
CNNs are used in this test case: one for MNIST and one for CIFAR-10 [5]. The
CIFAR-10 is also an image dataset with 10 classes. It has a training set of 50,000
images and a test set of 10,000. The CNN for MNIST is the same as the one in
[22], with 1,663,370 parameters. However, [30] does not provide the parameters
of the CNN for CIFAR-10 in that work. Therefore we have created our own
network using the PyTorch library. This CNN has three convolution layers with
sizes 3×64, 64×128, and 128×256 respectively, and three fully connected layers
with sizes 1024×128, 128×256, and 256×10 respectively. The total number of
trainable parameters is 537,610.

Components for this test case are mostly available from the FLSim frame-
work. The only extension required is to create two utility classes that create
non-IID distributions for MNIST and CIFAR-10 respectively. We list the major
components for this test case in Table 5.

Table 5. FLSim components for the non-IID test case.

• The CNN models for both MNIST and CIFAR-10 based on PyTorch

• The MNIST and CIFAR-10 datasets

• The default federation FLFederation

• The FLRandomClientSelector to randomly select 10 clients

out of 100 in each training round

• The PytorchLocalTrainer, a PyTorch based local training module

• Two utility classes that respectively divide the MNIST and

CIFAR-10 into non-IID distributions
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In the first step of this test case, we run the training tasks for 500 rounds on
the two data sets with three different distributions: IID, 2-class non-IID where
each client has data from 2 classes, and 1-class non-IID where each client has
data from only 1 class. Using the same parameters as in [30], we set the batch
size B to 10, and epoch E to 1. Learning rates are respectively 0.01 and 0.1 for
MNIST and CIFAR-10.

(a) (a) CNN from [22]: 500 rounds (b) (b) CNN for CIFAR-10; 500 rounds

Fig. 7. Impact of training data distribution on model accuracy: (a) MNIST on CNN.
(b) CIFAR-10 on CNN. Batch size = 10, epoch = 1.

(a) (a) Best accuracy v. amount of shared
data

(b) (b) Accuracy evolution w. different
shared data

Fig. 8. CNN on CIFAR-10, 1-class non-IID data: impact of amount of shared data on
model accuracy: (a) best accuracy (b) accuracy evolution

Figures 7 (a) and (b) show the evolution of test set accuracy for MINST
and CIFAR-10 respectively. For MNIST, the trend is very similar to [30]. For
CIFAR-10, because our CNN likely has fewer parameters than the one used in
[30], the achieved accuracy level is lower, even in the IID case. However, the
impact of data distribution is still clearly demonstrated.

In the second part of this test case we evaluate the effect of adding a set of
shared data to all the clients. This is done with the CIFAR-10 dataset using the
1-class non-IID distribution.
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In this test, each client has 500 images from 1 class only. We create a common
set of data that includes images from all the 10 classes. The size of the common
set range from 25 to 200, representing 5% to 40% of each client’s data.

Table 6 lists the best accuracy obtained in 500-round runs using different
sizes of shared data. The trend is graphically illustrated in Fig. 8(a) as well.
Without the shared data, the best accuracy we have achieved is 28.7%. With
only 5% of shared data, this is raised to 49.2%, a 71% improvement. However,
adding more shared data appears to have limited benefits, especially beyond
20% in this case.

Table 6. CNN on 1-class non-IID CIFAT-10: best accuracy with different amount of
shared data

Shared data 0% 5% 10% 20% 40%

Best accuracy (%) 28.7 49.2 51.0 52.2 52.5

Figure 8(b) shows the accuracy evolution of this test. We compare the original
test case that includes no shared data with adding respectively 5% and 40%
shared data. It is clear that, by adding just a small amount of shared data we
can dramatically increase the accuracy level. These results conform very well
with the findings in [30].

4.3 Real-Time Federated Learning

When federated learning was first proposed, it was expected that the clients
would only participate in the training task when the device is connected to a
power source [22]. This is likely because deep learning training is very compute
intensive, and therefore could seriously affect the battery life of mobile devices.

This requirement, however, goes against the ubiquitous nature of mobile
devices and prevents timely utilization of user data. It is conceivable that remov-
ing this restriction can expand the application scope of federated learning, par-
ticularly for targeting real-time machine learning tasks [1]. Recently, Li et al.
[18] proposed SmartPC, a framework that allows on-device federated learning
to take place when the device is not being charged. Among the key features of
that work are the following:

– Instead of making the server wait for all clients to respond, SmartPC ends
a training round when a certain proportion (e.g., 80%) of clients have
responded.

– The server estimate a training deadline in each round. Based on the deadline,
an on-device controller adjusts the device CPU frequency to meet the deadline
and to minimize energy consumption of the training process.

In this case study, we use FLSim to create a simulator to study a simplified
version of the main problems addressed in [18]. Specifically, we focus on two
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problems: 1) how it would impact model accuracy and training time if the server
uses only a subset of client updates, and 2) how a device can meet the training
time requirement while saving energy.

As presented previously, a special feature of FLSim is its incorporation of
performance and power models for studying system performance and energy
efficiency. This feature is key to this test case.

We make the following changes to FLSim in order to implement the simulator.

– We extend the orchestration layer shown in Fig. 3 to add two additional data
items in the client-server communications. From the server to the clients, a
training deadline is appended to the model parameters, and from the clients
to the server, we add the simulated completion time.

– A new client type is created which includes a device profile for computing
performance and energy consumption.

– A new server type is also created because now it has the additional job of
selecting the subset of clients as well as determining the training deadline.

This real-time federated learning system works as follows:

– Step 1. The server broadcasts the model parameters and the training deadline
to all clients. The deadline for the very first round is based on the device
profiles.

– Step 2. Clients perform local training, and compute the associated time and
energy using their device profiles. Clients then send model updates along with
training time to the server.

– Step 3. The server selects the first p% of clients (p is predefined) based on their
completion time and performs model averaging using their updates only. The
deadline is updated using a mechanism such as exponential weighted moving
average.

– Repeat the above steps for the next round.

The process for a client to compute its training time and energy is as fol-
lows. As explained, each client has a device profile which includes a performance
table and a power table. The performance table is basically an array of training
times under different CPU frequencies, [t1, t2, ..., tn], in ascending order, while
the power table contains the corresponding power consumptions [p1, p2, ..., pn]
in descending order. Given a deadline d, we first compute a base training time
T and base energy E as follows. If d < t1, set T = t1, E = p1 ∗ t1. If d > tn, set
T = tn, E = pn∗tn. Otherwise set T = d. Assuming ti < d < ti+1, we find α such
that d = α∗ti+(1−α)∗ti+1. The corresponding power is p = α∗pi+(1−α)∗pi+1,
and set E = p ∗ d. Finally, to simulate random factors that affect the training
time and energy, random values are added to T and E.

In this experiment, we use the CNN and MNIST dataset with 1-class non-
IID distribution as described in Sect. 4.2. Two different device profiles are used
in the federations with a 40–60 split. We summarize the components used in
Table 7.

Test results for this use case are illustrated in Figs. 9 and 10. In Fig. 9 we
show the accuracy in 500-round runs when the server uses a certain proportion
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Table 7. FLSim components for the non-IID test case.

• The CNN model for MNIST

• The MNIST dataset

• The utility class that divides MNIST into non-IID distributions

• The real-time federation FLFedRT, including corresponding

server and client components

• Two device profiles representing two device models

• The FLAllClientSelector that selects all the clients in a given set

• The PytorchLocalTrainer, a PyTorch based local training module

(a) (a) 20 clients (b) (b) 40 clients

Fig. 9. Model accuracy in 500-round runs with different proportions of clients selected
in each round: (a) 20 clients (b) 40 clients

(a) (a) Training time: 90 percentile v.
longest

(b) (b) Energy consumption: controller v.
default

Fig. 10. Training time and energy consumption.

of client updates to update the global model. Figure 9(a) shows the results from
a small federation of 20 clients. Although setting the proportion to 80% has
a clear gap of accuracy level compared with using all clients, increasing the
proportion to 90% results in the same accuracy level as using all clients. This
means that the server can ignore the 10% slowest clients in each round and will
not lose model accuracy. Clearly this would reduce the overall training time. In
Fig. 10(a) we compare the 90 percentile training time in each round with the
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longest time among the 20 clients. The corresponding energy results are shown
in Fig. 10(b) for one particular client. Here we compare the case of dynamically
adjusting CPU frequency against the default, which is to always use the highest
frequency for the training task. It is important to point out that the time and
energy results here are not really important. What we are demonstrating here
is the capability of FLSim for this type of research. Quantified studies obviously
require more accurate models.

Intuitively, as the size of the federation increases, the proportion of clients
selected can be reduced to get the highest levels of accuracy. This indeed is the
case. Figure 9(b) shows the results for the same test as in Fig. 9(a) except that
the number of clients is increased to 40. Now we can see setting the proportion of
clients to 80% can achieve the highest level of accuracy after about 200 rounds.

5 Evaluation of Using Multiple CPU Processes

In this section we briefly present some performance results of FLSim when it uses
multiple CPU processes. That is to say, the federation is built with ServerMP
and ClientRankMP. Experiments here are run on a server with a 16-core Intel
Xeon E5-2620 CPU. The OS is Ubuntu 18.04.

Table 8. Multi-Process Performance: Time in Seconds for One Training Round.

Test Case #Clients 1 Proc 2 Proc 5 Proc 10 Proc

CNN MINST E=1, B=10 10 27.8 18.8 (1.5×) 13.7 (2.0×) 13.3 (2.1×)

20 46.0 28.0 (1.6×) 19.2 (2.4×) 17.9 (2.6×)

40 83.0 47.0 (1.8×) 27.6 (3.0×) 23.4 (3.5×)

CNN CIFAR E=1, B=10 10 40.7 30.2 (1.3×) 23.9 (1.7×) 21.7 (1.9×)

20 62.7 40.8 (1.5×) 28.7 (2.2×) 24.9 (2.5×)

40 105.1 63.1 (1.7×) 38.1 (2.8×) 31.9 (3.3×)

2NN MINST E=10, B=10 10 26.7 13.1 (2.0×) 6.6 (4.0×) 4.8 (5.6×)

20 45.1 24.1 (1.9×) 11.4 (4.0×) 7.1 (6.4×)

40 94.7 45.6 (2.1×) 21.1 (4.5×) 12.1 (7.8×)

Table 8 shows the time in seconds to run one training round with three
different models. For each model we tested three different federation sizes and
four different numbers of CPU processes. Speedup numbers for the multi-process
cases are also displayed. A couple of observations can be made. First, while the
two CNN models have similar speedup trends, the simpler 2NN model has a very
different trend. Second, as we increase the number of clients, the workload in a
training round is increased, and this leads to higher speedup numbers. Third, for
the CNN models, using more than five processes has limited effect on speedup.
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6 Conclusions

In this paper, we propose FLSim, a simulation framework for federated learn-
ing in order to efficiently build different simulators to investigate different sce-
narios in federated learning. Different from the ad hoc simulators, FLSim can
be envisioned as an open repository of building blocks for creating simula-
tors. Specifically, FLSim consists of a set of software components organized in
a well-structured software architecture that provides the foundation for max-
imizing flexibility and extensibility. Developers can create different simulators
through easily putting the selected components together, thus allowing devel-
opers/researchers to focus on the problems being studied. In addition, we use
different case studies to demonstrate the effectiveness of FLSim.
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