
Dependable and Efficient Cloud-Based
Safety-Critical Applications by Example

of Automated Valet Parking

Christian Drabek1(B), Dhavalkumar Shekhada1, Gereon Weiss1, Mario Trapp1,
Tasuku Ishigooka2, Satoshi Otsuka2, and Mariko Mizuochi3

1 Fraunhofer IKS, Munich, Germany
{christian.drabek,dhavalkumar.shekhada,gereon.weiss,

mario.trapp}@iks.fraunhofer.de
2 Research and Development Group, Hitachi Ltd., Ibaraki, Japan

{tasuku.ishigoka.kc,satoshi.otsuka.hk}@hitachi.com
3 Hitachi Europe GmbH, Schwaig, Germany

mariko.mizuochi@hitachi-eu.com

Abstract. Future embedded systems and services will be seamlessly
connected and will interact on all levels with the infrastructure and
cloud. For safety-critical applications this means that it is not sufficient
to ensure dependability in a single embedded system, but it is necessary
to cover the complete service chain including all involved embedded sys-
tems as well as involved services running in the edge or the cloud. How-
ever, for the development of such Cyber-Physical Systems-of-Systems
(CPSoS) engineers must consider all kinds of dependability requirements.
For example, it is not an option to ensure safety by impeding reliability
or availability requirements. In fact, it is the engineers’ task to optimize
the CPSoS’ performance without violating any safety goals.

In this paper, we identify the main challenges of developing CPSoS
based on several industrial use cases and present our novel approach for
designing cloud-based safety-critical applications with optimized perfor-
mance by the example of an automated valet parking system. The evalu-
ation shows that our monitoring and recovery solution ensures a superior
performance in comparison to current methods, while meeting the sys-
tem’s safety demands in case of connectivity-related faults.

Keywords: Cyber-Physical Systems of Systems · Automated
recovery · Monitoring · Fail-operational · Graceful degradation ·
Self-awareness

1 Introduction

Nowadays, Cyber-Physical Systems (CPS) become more and more flexibly inter-
connected with other services as well as with local and remote infrastructure.

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2021

Published by Springer Nature Switzerland AG 2021. All Rights Reserved

A. L. Martins et al. (Eds.): INTSYS 2020, LNICST 364, pp. 90–109, 2021.

https://doi.org/10.1007/978-3-030-71454-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71454-3_6&domain=pdf
https://doi.org/10.1007/978-3-030-71454-3_6


Dependable and Efficient Cloud-Based Safety-Critical Applications 91

For instance, off-loading software services of embedded systems into cloud com-
puting environments bears the potential to offer more features and to bypass
resource restrictions of local CPS. This will further become essential, as upcom-
ing autonomous machines with artificial intelligence capabilities have an insa-
tiable need for computational power [25]. Moreover, cloud infrastructure facili-
tates better maintainability and scalability, e.g., easier service upgrades and data
aggregation of multiple machines. Such interconnected CPS can be seen as a
Cyber-Physical System-of-Systems (CPSoS) [6]. Examples range from intelligent
networked vehicles over industrial control systems to collaborating robots. How-
ever, in many application scenarios these machines also perform safety-critical
functions. In consequence, this means that it is not sufficient anymore to ensure
the safety of single systems. Instead, it is necessary to ensure the safety of the
complete CPSoS including all systems and services. As an additional challenge,
a CPSoS is not static, but integrates and removes systems and services from
different vendors dynamically at runtime. Moreover, it is unavoidable to use
non-safe components such as the communication infrastructure or cloud servers.
This requires the CPSoS to be resilient. In case a service temporarily fails or is
not available at all, the CPSoS should still work safely. To this end, the CPS
might continue in a degraded mode and resume with full capacity, when the
cloud service becomes available again.

In this paper, we examine the challenges of developing safe CPSoS consid-
ering various different practical application scenarios. Focusing on optimizing
efficiency without violating safety, we introduce our design approach that holis-
tically covers safety and other dependability requirements. We illustrate the
application of our approach using an industrial case study realizing an Auto-
mated Valet Parking (AVP) service. Eventually, we evaluate our approach using
a simulation-based prototype of the AVP. In this evaluation, we focus on ser-
vice availability due to communication problems and show the advantages of
the resulting dynamic management using dedicated monitoring and recovery
solutions over the current approaches only considering the local assurance or
optimization of single systems. We compare the performance of the approaches
by measuring the average speed of the vehicles in the parking area. Summariz-
ing, the main contribution of the paper is the introduction and the practical
evaluation of a holistic design approach for safety-critical CPSoS.

The remainder of the paper is outlined as follows. Section 2 introduces several
industrial use cases of CPSoS and their high-level requirements, which we use to
derive the general challenges posed by such systems. Section 3 discusses related
work on optimizing and analyzing CPSoS. In Sect. 4, we present our approach
for the design of safe and efficient CPSoS by example of an AVP system. The
evaluation described in Sect. 5 compares the performance of the designed CPSoS
with a pure local variant, before we conclude the paper in Sect. 6.

2 Challenges and Use Cases of CPSoS

CPSoS comprise several subsystems and components. These in turn may also
include safety-critical applications. In comparison to traditional CPS which act



92 C. Drabek et al.

on their own (e.g., control units in a car or industrial control systems), CPSoS
combine them into highly interconnected large systems. Therewith, the inde-
pendence of these autonomous units is abolished and their correct function is
considered on system level. For instance, machine learning-based systems can
leverage cloud infrastructure to compute complex scenarios or remote operation
of a vehicle requires the whole control chain to function correctly. For identi-
fying the main challenges of upcoming CPSoS, exemplary industrial use cases
have been selected and are presented in the following.

2.1 Industrial Use Cases of CPSoS

The following use cases introduce applications of CPSoS and provide examples
for industrial scenarios. For brevity, only selected challenges are listed for each
use case.

Vehicle Remote Operation (VRO) (cf. Fig. 1, left) is a use case that considers
remotely driving a vehicle to a safe place with the situation-wise adequate speed,
e.g., in case of a failure or unavailability of a driver. This requires real-time
execution and sensor data upload with low latency and jitter for control stability,
and local fallback in the vehicle to guarantee minimum safety, e.g., if the link to
the remote service is lost suddenly.

Fig. 1. Use cases: Vehicle Remote Operation (left), Warehouse Management (middle)
and Construction Site Management (right).

The use case Warehouse Management (WM) (cf. Fig. 1, middle) describes
moving shipments within an automated warehouse. Tasks are sent to automated
forklifts which operate at low vehicle speeds in the warehouse. Scalability needs
to address sharing of sensor information between vehicles and infrastructure.
Moreover, efficiency of the system, e.g., the ability to quickly move goods when
needed, is important and stand-still should be avoided.

With the use case Construction Site Management (CSM) (cf. Fig. 1, right)
individual construction machine operation at a restricted construction site is
considered. The operation of local machinery, e.g., excavators or bulldozers, is



Dependable and Efficient Cloud-Based Safety-Critical Applications 93

automated based on the fusion of each machine’s sensor data. As such, chal-
lenges arise from data uploads for continuous training and logging, as well as
maintenance to update local maps, tasks and software in general.

As an example of a CPSoS in which domain boundaries are vanishing, the
use case of Cross-Domain Unknown Services (CDUS) (cf. Fig. 2, left) considers
cross-domain service orchestration. The specific use case addresses the usage
of services of other domains after successful authentication. We refer to them
as unknown services, as they are developed independently without considering
each other and information must be translated between domains. For example,
an automated valet parking system cannot directly process information from
construction sites in the parking area, but will benefit from knowing which part
of the area is not available. As unknown services need to interact, establishing
interoperability between the involved systems without compromising security or
safety is a prominent challenge.

Fig. 2. Use cases: Cross-Domain Unknown Services (left) and Automated Valet Parking
(right).

The Automated Valet Parking (AVP) use case (cf. Fig. 2, right) includes a
management of automated vehicles in a restricted parking area. Mainly, the
Parking Area Management assigns the best free parking space to arriving vehicles
and allows a safe remote navigation by sending trajectories to the vehicles moving
at low speeds. This is carried out by monitoring and controlling blocks of the
parking area and granting driving permissions to vehicles. As for all CPSoS,
the comprising subsystems are usually developed independently, but need to
interface with each other. Unless the parking area is limited to a specific group
of vehicle manufacturers, AVP needs to be an open system. Therefore, standards
are required to ensure interoperability. Moreover, to cover cases where no or
only limited communication is possible, a safe fallback is needed. This use case
is studied and evaluated within this work and therefore presented in more detail
in Sect. 4.

While only selected challenges have been introduced when presenting the
above application use cases to provide examples, many challenges apply to sev-



94 C. Drabek et al.

eral of the use cases. To summarize the challenges, Table 1 presents an overview
of the identified challenges for each of the above application use cases.

Table 1. Challenges of industrial use cases of CPSoS

Challenge VRO WM CSM CDUS AVP

Safety to ensure no collision with obstacles

Efficiency to avoid stand-still

Real-time execution with low latency

Real-time sensor data upload

Scalability of sharing real-time sensor information

Interoperability between different manufacturers

Connectivity for control data

Security against hijacking

Data uploading for continuous training and logging

Maintenance w.r.t. map, task and software updates

Self-awareness to monitor and recover remote control

2.2 Common CPSoS Challenges

Based on our analysis of the examined use cases, we derived the following com-
mon challenges of upcoming CPSoS in such safety-critical environments:

– Safety and efficiency: Faults and threats must be identified and managed
dynamically, i.e., by providing suitable countermeasures.

– Real-time: Planning of flexible and reliable end-to-end architectures, includ-
ing dynamic allocation of distributed resources.

– Connectivity & interoperability: Interfaces definitions & standardization
for cross-domain inter-operation is needed.

– Security: Identification and mitigation of additional threats created by
widening the system boundaries.

– Data-uploads & maintenance: Collect training data and distribute
updates of the various subsystems without interfering with normal operation.

These challenges share the need to provide an in-time and complete overview
of the present CPSoS state. For this, run-time monitoring mechanisms at differ-
ent levels of a CPSoS are indispensable. By this, a so-called self-awareness at
run-time can be achieved, which constitutes the basis for taking measures to keep
the system in a safe and performant state. The goal of managing such a CPSoS
is to increase availability and meet reliability, particularly considering defective
resources and the integration of unknown services. In order to achieve resilient
behavior of a CPSoS, in general diverse changes of different nature, prospect, and
timing [13] must be considered. By embedding self-adaptation as fault-tolerance



Dependable and Efficient Cloud-Based Safety-Critical Applications 95

mechanisms into CPSoS it is capable to optimize the performance, while meet-
ing dependability requirements. We have selected the AVP use case for detailed
study and evaluation, because of the availability of detailed specifications and
its requirements for safety and optimized performance.

3 Related Work

When designing CPSoS [26], ensuring safety and optimizing performance are
two of the main challenges. Previous approaches related to our work are briefly
introduced in the following.

For optimizing performance of CPSoS, diverse approaches and tools are
already available [4]. Optimization tools like FogNetSim++ [17], iFogSim [7],
EdgeCloudSim [24] focus on the simulation of edge-, fog-, cloud-systems and
support identifying optimal parameters or deployments for specific scenarios. In
addition, network simulations like ns-3 [19] and OMNET++ [27] can provide
estimates on the performance of specific network infrastructures for a CPSoS.
However, these tools do not consider the safety of the system.

Approaches targeting to provide reliability develop patterns to identify host
or network failures, or in general, violations of safety properties [23] and apply
specific recovery strategies to provide fault tolerance in distributed systems
[14,15]. Others aim to establish resilience for stateful IoT applications [16] by
enabling the recovery of their states. In case a safety-critical function cannot be
easily stopped or replaced, graceful degradation [9], which reduces functionality
in order to retain safety properties even under the presence of certain faults, has
proven useful. If faults and desired reconfigurations are known beforehand, the
availability in fail-operational automotive systems can be planned and verified
already at design time [20]. While general safety requirements and distribution
of functions for automated valet parking have been analyzed [22], we focus on
the presence of an unreliable connection between cloud and vehicle. As already
discussed by other authors [12], we pursue a state-based monitoring approach
for this challenge in safety-critical CPSoS.

In comparison, safety-related approaches often focus to ensure the systems’
safety properties, not its performance or availability. An alternative example con-
sidering performance optimization is a safety envelope used within autonomous
systems [11], which allows a system to optimize its performance within this
operating envelope by monitoring violations. Therefore, a tighter integration of
methods for safety analysis into other software-engineering disciplines could ben-
efit both sides [3,5]. Our approach leverages such an integration in an iterative
process of identifying safety and performance faults and, thereby, allows a novel
improvement of a design for both mitigation and optimization.

4 Design of Safe and Efficient CPSoS

As previously motivated, designing safety-critical CPSoS that are safe and yet
efficient is a challenging task. The design of such systems is a multivariate opti-
mization problem in order to always provide the best possible performance, while



96 C. Drabek et al.

fulfilling safety requirements at any time. While a holistic approach is required
to ensure no safety requirements are missed, CPSoS quickly become large and
complex. Therefore, this complexity needs to be broken down during design. In
the following, we describe our design approach for such systems (cf. Fig. 3).

(Safety) Goals and Top 
Level Requirements

Refined (Safety) 
RequirementsWeaknesses Subsystem Monitoring 

and Recovery Concept

Fig. 3. Overview of our design approach for efficient safety-critical CPSoS.

An initial requirements analysis in the first step defines the top-level require-
ments of the CPSoS and utilizes safety analysis methods to identify the main
safety goals in terms of additional requirements. Moreover, it manifests an archi-
tecture draft that enables the analysis of critical interactions between subsys-
tems. In the next step, weaknesses of the system and its subsystems are itera-
tively identified and mitigated by refining the requirements as well as document-
ing assumptions and verification methods. Finally, self-awareness of subsystems
is established by deriving monitors from the requirements that identify impor-
tant changes in the current context and thereby trigger the planned recovery
methods.

We use the example of an AVP system with a centralized, cloud-based Valet
Parking System (VPS) that guides autonomous vehicles (AV) to demonstrate
our approach. In the automotive domain, safe design against hardware failures is
performed according to the functional safety standard ISO 26262 [1] and safety
design against performance limitations is performed according to ISO/PAS 21448
[2].

4.1 Top-Level Requirements

The top-level requirements are utilized to sketch the desired features of the
CPSoS. For brevity, we only present the headline of each requirement, which
provides a short summary of its description. Nevertheless, this level of detail
should be sufficient to follow the general idea of the design approach. The defini-
tion of top-level requirements can be quite coarse. They will be refined, broken
down and assigned to subsystems in the next phase. The main purpose of the
top-level requirements is to describe the important functional and non-functional
goals of the system.

For the AVP use case, we consider the following functional requirements:

FR-1 Management of parking space (occupied or empty).
FR-2 Connection between AV and VPS when AV enters the service area.
FR-3 Find suitable, empty parking space.
FR-4 Calculate trajectory (based on vehicle properties) and send to AV.



Dependable and Efficient Cloud-Based Safety-Critical Applications 97

FR-5 Move AV to parking space by referring to trajectory of FR-4.
FR-6 Terminate VPS for AV when it arrives at the target space.

With a preliminary hazard and risk analysis (HARA), the following depend-
ability requirements have been identified. The first two requirements are related
to the system’s safety, while the remaining improve reliability and availability.

DR-1 Local emergency stop.
DR-2 Remote emergency stop.
DR-3 Detect unreachable parking place and request another.
DR-4 Communication diversity in physical architecture.
DR-5 Collision prevention by free space detection and block control.
DR-6 Wrong waypoint and parking place detection.

Based on these top-level requirements, a possible architecture design of the
AVP system has been developed, as shown in Fig. 4. VPS and AV do not know
each other’s internal architecture, as they will be developed by different vendors.
However, the systems need to interface with each other. The identification and
description of necessary interfaces are facilitated, if exemplary architectures are
assumed. After receiving a parking request, the parking area management iden-
tifies a suitable destination and planning generates a trajectory. Traffic Monitor
(TM) passes trajectories and permissions to AVs. Trajectories describe way-
points to the destination, e.g., a parking place, and permissions allow the AV to
proceed to a certain waypoint. Trajectory Following Control (TFC) in the AV is
then responsible for following this trajectory as permitted. The AV’s sensors are
utilized to trigger Passed Notifications (PN) sent to TM. In turn, TM updates
its database of permissions and locations. PN will also trigger a new parking
request if the destination is not reachable.

AVP

PlanningParking Area
Management Traffic Monitor

(Block control)Trajectory
Generator

Free Space 
Management

MapDB

Trajectory
Following
Control

Passed 
Notification

Actuator Control
(Steering, Engine/
Inverter, Brake)

DB

Start Request
Application

Localization

Object
Perception

Object
Fusion

Plan

Free Space Detection

Map
Fusion

Collision
Detection

Emergency
Stop

AV

VPS

Fig. 4. Exemplary architecture design for an AVP based on requirements.



98 C. Drabek et al.

4.2 Iterative Weakness-Driven Design Refinement

In the next phase of our approach, we use an iterative weakness-driven design
refinement to uncover the system’s weaknesses and to integrate countermeasures
along the refinement. In order to denote not only safety-related issues, i.e., faults,
we define the term weakness as any deviation from the system’s intended func-
tion. This could be with respect to a potential safety hazard or failure [1], a
security threat or vulnerability [21], or a breach of performance thresholds. The
general intent is to identify potential weaknesses of the CPSoS and determine
what conditions are necessary to handle them on subsystem level.

The inputs to this phase, top-level requirements and a draft of the system
architecture, have been presented in the previous subsection. Potential weak-
nesses are systematically identified using a HAZOP-oriented process [8], i.e.,
by applying a set of guide-words to the requirement descriptions. Examples for
guide words are not, more, less, early and late. To scrutinize the consistency
of the requirements, the following questions are used in addition to common
HAZOP guide-words:

– Internal: How can the subject itself fail to fulfill the requirement?
– External: What external influences can cause the subject to fail (the intend

of) the requirement?
– Integrity: Are there any terms, definitions or values used by the requirement

that can impact its intend, if chosen incorrectly?

Each of the identified weaknesses needs to be resolved by verification, assump-
tions, or other requirements. A verification describes a method to verify why a
weakness will not occur or is mitigated sufficiently. An assumption is a statement
describing a property that is assumed to be valid. Therefore, assumptions are for-
mulated to document parts of the system that are expected to work or resolved
by the detailed design of an individual subsystem. For example, we assume a cor-
rect implementation of requirements but will not specify how this is achieved.
Other requirements that resolve weaknesses either refine vulnerable requirements
to detail how the failure is avoided, or impose additional requirements to mit-
igate cause or effect of certain faults. New requirements may introduce new
weaknesses that are identified and mitigated in further iterations. This is con-
tinued until all weaknesses are resolved. The resulting requirements describe the
roles of subsystems in the CPSoS and their interfaces. We highly recommend to
record bidirectional relations between requirements, weaknesses and resolutions.
Thereby, validation of an implementation is facilitated, when the reason for a
requirement can be traced easily. In the following, we will detail our approach
by example of the AVP system.

AVP is a CPSoS comprising independently developed, resilient systems: VPS
and several AVs. They each may provide their own mitigation strategy in case
the connection is lost. Yet, their cooperation needs to be safe and efficient at any
time. Without the loss of generality, we select loss of connection in the following
as exemplary fault to outline our approach and its related weaknesses, as they



Dependable and Efficient Cloud-Based Safety-Critical Applications 99

cannot be handled by a single system of the CPSoS individually. As this is a high-
level analysis targeting cloud-based autonomous CPS, functional safety aspects
of single systems are less of concern, which is documented using assumptions.
The critical parts, where the two CPS types interface with each other, can be
identified already in the architecture draft. An extract of the analysis with their
main requirements and the identified weaknesses related to the loss of connection
from the first iteration are given in Table 2. The weaknesses are also assigned to
categories for indicating the kind of deviation, e.g., reliability for safety-related
faults or performance in case they merely impact the efficiency.

Table 2. Extract of requirements and identified weaknesses of TM, TFC and PN before
the first refinement.

System ID Cat. Top-Level Req. Short summary

TM R4 Gen. FR-5, DR-2, DR-5, DR-6 TM shall monitor and control access to blocks based

on trajectories calculated by Planning

V4a Rel. DR-2, DR-5, DR-6 TM can fail to monitor cars

V4b Rel. DR-2, DR-5, DR-6 TM can fail to control manually driven cars

V4c Rel. DR-2, DR-5, DR-6 TM can fail to control not connected cars

V4d Perf. FR-5 TM can be slow to provide access to blocks

V4k Perf. FR-5 TM can receive passed notifications late or never

TFC R8 Gen. FR-5, DR-2, DR-5, DR-6 TFC shall calculate actuator controls based on the

trajectory and permission provided by VPS and the

information from perception chain

V8c Rel FR-5, DR-2, DR-5, DR-6 TFC can fail to receive or process permissions from

VPS

PN R18 Gen. FR-5, FR-6, DR-6 PN shall signal right after a block was cleared by

the vehicle

V18c Perf. FR-5, FR-6 PN can send the notification too late

The first iteration addresses the fault of TFC not receiving permissions.
Therefore, a new requirement requires TFC to stop the vehicle if no permis-
sion is provided in time. In addition, this prohibits rogue movement of AVs in
the parking area. Care must be taken that an AV is always able to stop in time
and will not move without permission, i.e., by slowing down at the end of the
permitted trajectory. We assume that there are no manual operated vehicles in
the parking area and thus, TM is in sole control of all movement. This addition
makes the system safe, and we will refer to this as Mitigation Variant 1 (MV1)
in the evaluation section. However, additional performance weaknesses remain.

AVs can get stuck, if they have neither permission nor connection. Hence,
after a specified timeout, its own TFC shall permit a trajectory based on the
AV’s sensors. However, from the perspective of TM, this is a rogue AV. Moreover,
insufficient monitoring of parking area by the TM is now a safety issue, as it may
provide a conflicting permission to another AV, if it does not sufficiently locate
the rogue AV. Further, if VPS never receives a pass notification, it is forced to
reserve the permitted space infinitely. Therefore, a requirement for VPS to track



100 C. Drabek et al.

vehicles using infrastructure sensors is added and the architecture is updated as
in Fig. 5. We assume sensors to work as expected. While VPS can now notice
rogue AVs, TM also needs to validate and possibly adjust already provided per-
missions. To mitigate the weakness of AVs relying on outdated information,
permissions sent from TM have a limited lifetime. Therefore, an AV must be
capable to stop in time before a permission becomes invalid. Depending on the
selection of timeouts, it may directly switch to permissions based on its own
sensors. Moreover, to facilitate predictability of an AV’s movement, VPS should
send a complete trajectory to AVs initially, which is followed even by a discon-
nected AV. We define this as Mitigation Variant 2 (MV2). More weaknesses
could be identified, e.g., that a trajectory may get blocked by an obstacle, but
are beyond the scope of this example.

AVP

PlanningParking Area
Management Traffic Monitor

(Block control)Free Space 
Management

MapDB

Passed 
Notification

Actuator Control
(Steering, Engine/
Inverter, Brake)

DB

Start Request
Application

Localization

Object
Fusion

Plan

Free Space Detection

Map
Fusion

Infrastructure
Sensors

Collision
Detection

Emergency
Stop

Vehicle
Tracking

AV

VPS

Object
Perception

Object
Perception

Trajectory
Following
Control

Trajectory
Generator

Fig. 5. Exemplary architecture design extended with infrastructure sensors.

4.3 Monitoring and Recovery Concept

With the next step of our approach, we map the identified requirements to a mon-
itoring and recovery concept for each subsystem. At this stage, the requirements
already capture the critical interaction patterns between the individual systems,
so that the remainder of each system can be developed independently. However,
to make it more explicit what a subsystem must monitor and what reactions
are required for coordinated interactions, this is formulated as monitoring and
recovery concepts. Transforming the requirements of the critical interactions into
a monitoring and recovery concept has the additional benefit that this enables
an abstract simulation of these interactions without full implementations of each
subsystem. This helps to validate the concept early. In summary, the monitor
identifies current context states and the recovery will adjust the operation to



Dependable and Efficient Cloud-Based Safety-Critical Applications 101

remain in a safe and efficient overall system state. The monitor aggregates all
information that must be observed in order to establish a self-awareness of crit-
ical changes in the environment or within the system itself. The recovery will
change operation parameters or start and stop services as needed to reach the
state inferred by the weakness analysis. The behavior needs to be managed
dynamically based on current context. However, this can still be planned at
design time, if the involved capabilities are known. Thereby, existing concepts
for graceful degradation in the automotive domain [9] can be used to facilitate
the integration of recovery in alignment with ISO 26262 and ISO/PAS 21448.
In the following, we explain how the monitoring and recovery concepts for the
AVP example were derived.

In MV1, an AV stops and waits if there is no permission update, e.g., because
of a lost connection. As the scope of this paper is limited to such faults, an AV
will never act outside the expectations of VPS and there is no specific need for
a monitor or recovery on VPS side from a safety perspective. In contrast, AVs
must ensure they are always able to stop in time. While a monitor could be
designed to directly observe the state of the connection, just a loss-of-connection
is no direct safety hazard to AVP. A hazardous situation would arise only if the
AV overshoots its permitted trajectory. In this case, it is much more effective
for the monitor to observe AV’s ability to stop before this occurs. Therefore, the
monitor must keep track of the remaining distance to the end of its permitted
trajectory (Dp), get an estimate of the current brake distance (Db) and compare
the two. If the difference is less than a given minimum distance (Dm), recovery
needs to force the AV to decelerate. This is illustrated in Fig. 6. The minimum
distance must be larger than the distance traveled by the AV between two checks
and can be calculated based on the rate at which this check is performed and the
(maximum) speed of the vehicle in the parking area. The monitor will thereby
signal the AV if it approaches the boundary of its permission and the recovery
will force the AV to decelerate. If the permission is extended again, the AV may
proceed normally again. Actually, the resulting monitor is independent of a lost
connection and also triggers if VPS updates were received but the AV needs to
yield right of way at an intersection.

c1monitor c2 normalrecovery stop

Dp − Db ≤ Dm

Dp − Db > Dm

c2

c1

Fig. 6. Monitoring and recovery concept for AV in mitigation variant 1.

In MV2, an AV also mitigates the weakness that it may get stuck at some
place with no connection. In this case, other AVs may be moving without per-
mission from the cloud. An AV must be able to receive updates of permissions



102 C. Drabek et al.

issued by VPS. Otherwise, they might be outdated and not reliable anymore.
The critical property for this is the time since the last update (Tu), which is
accompanied by two thresholds. The first specifies when the remote permissions
should be considered outdated (To). The other indicates the time when local
permissions may be issued (Tl). The chosen thresholds may allow for an overlap
of remote and local permission (To ≥ Tl), or an AV will have to stop before it
can switch to local sensors (To < Tl). While the monitor for MV1 only checks
the distance, for MV2 an AV’s monitor also has to consider the time needed to
slow down. Therefore, Tb specifies the time needed to slow down to stop or to the
speed currently permitted by local sensors. The overall monitoring and recovery
concept for MV2 is shown in Fig. 7. This consists of three separate monitors,
where recovery will react to their combined state. Tm is the margin, i.e., the
amount of time reserved for cycle times and processing.

c3monitor2 c4

c1monitor1 c2

c5monitor3 c6

local

normalrecovery

stop

Dp − Db ≤ Dm

Dp − Db > Dm

To − Tu − Tb ≤ Tm

To − Tu − Tb > Tm

Tu ≥ Tl

Tu < Tl

c2 ∨ c4

c6

c 1
∧
c 3

∧
c 5

c2

c1 ∧ c3 ∧ c5

c 1
∧
c 6

Fig. 7. Monitoring and recovery concept for AV in mitigation variant 2.

If AVs are moving on their own permissions, VPS is required to monitor for
this and needs to recover conflicting permissions. The VPS’ responsibility is to
provide such updates to connected AVs. Therefore, VPS must track the AVs in
the parking area. Locations provided by AVs can and will likely be affected by
similar connection losses as provided permissions. Therefore, secondary means
are required, e.g., using infrastructure sensors to monitor AVs. Moreover, the
VPS must check if the rogue AV interferes with existing permissions and must
update those accordingly. This works like a remote emergency brake, but allows
for a more graceful deceleration if updates can be provided early.

As MV2 utilizes two sources for permissions, the concept must ensure that
they cooperate well. This is achieved by putting strict requirements on when an
AV may provide its own permission, so that the VPS will always have sufficient
time to adapt permissions for other AVs or that the permission of other (tem-
porarily) disconnected AVs will expire. A critical situation could arise, if an AV



Dependable and Efficient Cloud-Based Safety-Critical Applications 103

moves without permission of VPS into space that is reserved for another car.
Thus, an AV may only move into space it has no permission for, if it ensures
(using its own sensors) that no other car will reach the space in time Ti+To+Tm,
where Ti is the additional time needed by infrastructure sensors to identify the
rogue AV’s intent and by VPS to update permissions.

A longer permission lifetime (To) improves performance, as this allows bridg-
ing longer gaps in permission updates. However, any not connected AV must be
able to predict its clearance for at least this duration. A shorter permission life-
time will lessen this need, but also limits the maximum speed of AVs, as they
must be able to safely switch to local permissions or stop by the end. Tuning of
these parameters is beyond the scope of this paper and would require including
details about capabilities of the AVs’ sensors.

5 Evaluation

We evaluate the effectiveness of the proposed concept in simulations of the AVP
use case. While we also verify the concept’s safety by checking no collisions occur,
the primary goal is evaluating the potential benefits in efficiency by using an opti-
mized and safe cloud-based control despite unreliable connections between VPS
and AVs. Therefore, we compare the presented cloud-based mitigation variants
with scenarios where AVs use only their own sensors to calculate permissions.
We neglected further optimizations of the control algorithms, e.g., we are using
randomly assigned parking places and the shortest route instead of carefully
selected waypoints that would allow cars to avoid each other. We believe scenar-
ios utilizing the cloud are likely to benefit more from them, as decisions can be
based on more information.

5.1 Evaluation Setup

An overview of the evaluation setup is shown in Fig. 8. The evaluation uses an
abstract representation of the AVP system to simulate scenarios. The Robot
Operating System (ROS) [18] is used in its second version, ROS2, as middleware
to connect cloud node and car nodes. The parking area is divided into blocks
that are controlled by the VPS cloud node. Every 300 ms, the VPS will broadcast
updated permissions to all registered AVs, i.e., up to which block they are allowed
to proceed. In turn, AVs send their updated location to VPS with a rate of
200 ms after moving based on the permission and used mitigation variant. ROS2’s
simulation time was used with 100 ms steps and messages could only be processed
by the receiver in the next step.

There is a new car node created for each AV that enters the parking area. It
starts at one of the designated entry points, registers with the VPS and requests
to park. The VPS selects a parking place and calculates waypoints using A*
algorithm and the AV receives this as a list of blocks. The movements, actions
and permissions of AVs can be visualized using RViz [10] for further inspection
(cf. Fig. 9).



104 C. Drabek et al.

Fig. 8. Overview of the simulation setup used for evaluation.

Fig. 9. Screenshot of simulation visualization. VPS permissions are represented by
blocks tainted in an AV’s color. The size of orbs above AVs correlates to the duration
since the last update from VPS, red color indicates expired VPS permissions. The AV’s
current action is shown as text. (Color figure online)

Each scenario has a duration of 200 s and comprises modular scripts for which
all sensible combinations were run. Pattern modules define random distributions
that would allow for unlimited variants based on their parameters. To get compa-
rable results and reduce noise, sets with entry-/exit-patterns and fault-patterns
were generated beforehand and then used in respective combinations. AVs enter
during the first 135 s with an average inter-arrival delay of 2, 4, or 20 s. They
start to exit between 30 to 60 s later. This is used to model a busy parking area,
while also imitating realistic parking behavior. Failures of connections have been
injected based on either a permanently jammed location and radius, e.g., to sim-



Dependable and Efficient Cloud-Based Safety-Critical Applications 105

ulate a failed access point, or time-based patterns per AV. These were mitigated
by MV1 and MV2.

When MV2 is in its local operating state (cf. Fig. 7), it uses local sensors
to generate its permissions. To focus the simulation on evaluating the effects
of loss of connectivity and eliminate the choices of sensor types and perception
algorithms, it was assumed that local sensors will safely grant permissions up
to and including the next block the AV has not yet entered. In the simulation,
local permission is granted if no other vehicle can enter the block within To,
i.e., the time until permissions are outdated. In the evaluation, To and Tl were
fixed to 3 s. A block that can be reached from more than one other block, i.e.,
intersections, may only be permitted if the AV has completely entered the adja-
cent block. Similarly, two offline design variants are included in the evaluation
for comparison: Local Sensors (LS) is MV2 with the time since the last update
(Tu) set to infinity and, therefore, will never use the normal operating state. As
a result, AVs using LS still receive waypoints from the VPS but ignore received
permissions. To see the possible effects of improved local sensors, an additional
block may be permitted in Local Sensors 2 (LS2).

Scenarios can take an amorphous layout that is based on a real parking area,
or square grid parking layouts with a side-length of 11 or 21 blocks. They can
be seen in Fig. 10. Finally, the random seed for the parking place assignment
completes the scenario.

Fig. 10. The parking area layouts used by scenarios. Blue blocks are parking places
and sized according to the suitable vehicle size. Arrows indicate entry and exit points.
(Color figure online)

As metric for the efficiency of the system in each scenario, the average speed
of AVs is calculated based on the duration from receiving waypoints to reaching
the destination and length of this path. To verify the safety of the proposed
concept, a check for (near) collisions of AVs has been implemented that reports
if two AVs occupy the same block.



106 C. Drabek et al.

5.2 Evaluation Results

Figure 11 presents an overview of the average speed in meters per second,
observed in the presence of various faults, more details can be derived by Table 3.
The column headings name the mitigation variant and fault pattern. In jam,
a third of the parking area around an intersection is permanently without con-
nection. A repeated pattern of a functioning connection for around X seconds
followed by a disruption for Y seconds is designated with cXdY . No faults
occurred in none. LS and LS2 do not consider permissions issued by VPS and
are thus unaffected by connection faults. Subset cross-validation among 44 ran-
dom seeds for space assignments showed no significant influence on the average
speed with all other factors equal. Therefore, we present results averaged across
all random seeds.

jam c1d5 c1d2 c1d1 c2d1 c5d1 none
0

1

2

0
.8

1
.1

1
.5

1
.8 2 2

2
.2

1
.7

1
.2 1
.4

1
.7 1
.8 1
.9 2

m
et
er
s
pe

r
se
co
nd

0

0.9
1.2

2

MV1 MV2 LS LS2

Fig. 11. Average speed of the variants for different fault patterns.

Table 3. Average speed of AVs in meters per second for selected scenarios.

LS LS2 MV1 MV2
Layout Entry * * jam c1d5 c1d2 c1d1 c2d1 c5d1 none jam c1d5 c1d2 c1d1 c2d1 c5d1 none
Grid11 2s 0.8 1.1 0.4 0.4 0.6 0.9 1.2 1.2 1.5 1 0.6 0.6 0.8 1 1 1.2

4s 1 1.3 0.6 1.2 1.8 1.9 2 2.1 2.1 1.9 1.4 1.5 1.9 2 2.1 2.1
20s 1.3 1.6 1.1 1.8 2.2 2.2 2.2 2.3 2.3 2.2 1.9 2.1 2.2 2.2 2.3 2.3

Grid21 2s 0.9 1.2 0.7 0.6 0.8 1.3 1.7 1.8 2 1.4 0.8 0.7 1.1 1.5 1.5 1.7
4s 1.1 1.4 1.1 1.6 2.4 2.6 2.6 2.7 2.8 2.4 1.7 1.9 2.5 2.5 2.6 2.8
20s 1.4 1.7 1.7 2.5 2.9 2.9 2.9 3 3 2.8 2.2 2.7 2.9 2.9 3 3

real 2s 0.7 1 0.9 0.9 1.6 1.9 2 2.1 2.2 1.6 1.1 1.3 1.6 1.8 1.8 2.1
4s 1 1.3 1 1.7 2.2 2.3 2.3 2.4 2.5 2.1 1.8 2.1 2.3 2.3 2.4 2.5
20s 1.2 1.5 1.7 2.1 2.4 2.5 2.5 2.6 2.6 2.3 2 2.3 2.5 2.5 2.6 2.6

* 0.9 1.2 0.8 1.1 1.5 1.8 2 2 2.2 1.7 1.2 1.4 1.7 1.8 1.9 2

It can be seen that doubling the distance of local permissions, i.e., the change
from LS to LS2, yields only a small improvement in speed. The 2 s entry interval
easily leads to congestion, especially in small parking areas and if VPS cannot
provide frequent updates to AVs. This is visible by the overall low speed in
Table 3 for layout Grid11 with 2 s entry time. In all other cases, both MVs about



Dependable and Efficient Cloud-Based Safety-Critical Applications 107

double the speed compared to LS and are only slightly affected by the worse
connection. MV1 performs minimally better than MV2 with good connection,
as it does not need to account for AVs moving without permission.

However, with longer connection losses, MV1 performs worse and even blocks
the parking area. The fault jam will bring MV1 to a halt and need manual
recovery, as AVs cannot get new permissions. For offline AVs, the VPS is not
able to revoke permissions as they never expire. When using MV2, this is no
issue and speed is only mildly affected even by permanent jams. AVs that do
not manage to pass through the jam completely based on VPS permissions, can
use their local sensors to escape it. A VPS that can detect and react to such
possible rogue movement using infrastructure sensors, allows safety to remain
ensured, when combined with permission lifetimes and rules that define if a
vehicle may permit movement to itself.

In this simulation, the cloud based approaches could double the speed com-
pared to using only local sensors, which will provide shorter wait times for users
of such systems and help to avoid bottlenecks during rush hours by proving a
higher throughput. Such a safe optimization could only be achieved by integrat-
ing the safety-analysis into the design process of the system.

The example analysis and the abstract simulation used for evaluation are
focused on faults caused by connection problems. Real systems need to prepare
for all kinds of faults and threats, e.g., uncertain sensors, failing actuators or
malicious users. Nevertheless, they can be included in further iterations of the
presented process and appropriate mitigation strategies can be developed. In
overall, the results show that our approach improves efficiency in terms of average
speed without compromising the CPSoS safety.

6 Conclusion

The advent of CPSoS brings along major advantages with respect to potential
service-based applications but also bears great challenges with respect to meet-
ing dependability requirements of safety-critical functions. By the examples of
various industrial CPSoS use cases we could identify several common challenges.
With the selected case study of an automated valet parking system, we show
the performance optimization of a CPSoS while meeting the respective safety
demands. Our monitoring and recovery solution further highlights the potential
of such a performance optimization with respect to managing car parking under
varying connection conditions. Thus, we showcase the potential for performance
optimization of safety-critical applications in CPSoS.

In future work, we plan to target more extensive safety-critical applications
of CPSoS like Mobility-as-a-Service solutions and additional methods to improve
their performance, while meeting dependability requirements.

Acknowledgments. The research leading to these results has partially received fund-
ing from the Bavarian Ministry of Economic Affairs, Regional Development and Energy
as Fraunhofer High Performance Center Secure Intelligent Systems.



108 C. Drabek et al.

References

1. Road Vehicles - Functional Safety. Technical Report ISO 26262:2018 (2018)
2. Road vehicles - Safety of the Intended Functionality. Technical Report ISO/PAS

21448 (2019)
3. Biggs, G., Juknevicius, T., Armonas, A., Post, K.: Integrating safety and reliability

analysis into MBSE: overview of the new proposed OMG standard. INCOSE Int.
Symp. 28(1), 1322–1336 (2018). https://doi.org/10.1002/j.2334-5837.2018.00551.x

4. Brogi, A., Forti, S., Guerrero, C., Lera, I.: How to place your apps in the fog:
state of the art and open challenges. Softw.: Pract. Exp. (2019). https://doi.org/
10.1002/spe.2766

5. Clegg, K., Li, M., Stamp, D., Grigg, A., McDermid, J.: A SysML profile for fault
trees—linking safety models to system design. In: SAFECOMP, pp. 85–93 (2019).
https://doi.org/10.1007/978-3-030-26601-1 6

6. Engell, S., Paulen, R., Reniers, M.A., Sonntag, C., Thompson, H.: Core research
and innovation areas in cyber-physical systems of systems. In: Berger, C., Mousavi,
M.R. (eds.) CyPhy 2015. LNCS, vol. 9361, pp. 40–55. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-25141-7 4

7. Gupta, H., Vahid Dastjerdi, A., Ghosh, S.K., Buyya, R.: iFogSim: a toolkit for
modeling and simulation of resource management techniques in the Internet of
Things, Edge and Fog computing environments. Softw. Pract. Exp. 47(9), 1275–
1296 (2017). https://doi.org/10.1002/spe.2509

8. International Electrotechnical Commission: Hazard and Operability studies
(HAZOP studies) - Application guide. Technical Report IEC 61882:2016

9. Ishigooka, T., Otsuka, S., Serizawa, K., Tsuchiya, R., Narisawa, F.: Graceful
degradation design process for autonomous driving system. In: Romanovsky, A.,
Troubitsyna, E., Bitsch, F. (eds.) SAFECOMP 2019. LNCS, vol. 11698, pp. 19–34.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26601-1 2

10. Kam, H.R., Lee, S.-H., Park, T., Kim, C.-H.: RViz: a toolkit for real domain data
visualization. Telecommun. Syst. 60(2), 337–345 (2015). https://doi.org/10.1007/
s11235-015-0034-5

11. Koopman, P., Wagner, M.: Challenges in autonomous vehicle testing and valida-
tion. SAE Int. J. Trans. Saf. 4, 15–24 (2016). https://doi.org/10.4271/2016-01-
0128

12. Kopetz, H., Bondavalli, A., Brancati, F., Frömel, B., Höftberger, O., Iacob, S.:
Emergence in cyber-physical systems-of-systems (CPSoSs). In: Bondavalli, A.,
Bouchenak, S., Kopetz, H. (eds.) Cyber-Physical Systems of Systems. LNCS,
vol. 10099, pp. 73–96. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
47590-5 3

13. Laprie, J.C.: From Dependability to Resilience. DSN (2008)
14. Lauer, M., Amy, M., Fabre, J.C., Roy, M., Excoffon, W., Stoicescu, M.: Resilient

computing on ROS using adaptive fault tolerance. J. Softw.: Evol. Process 30(3),
e1917 (2018). https://doi.org/10.1002/smr.1917

15. Ledmi, A., Bendjenna, H., Hemam, S.M.: Fault tolerance in distributed systems:
a survey. In: 2018 3rd International Conference on Pattern Analysis and Intelli-
gent Systems (PAIS), pp. 1–5, October 2018. https://doi.org/10.1109/PAIS.2018.
8598484

https://doi.org/10.1002/j.2334-5837.2018.00551.x
https://doi.org/10.1002/spe.2766
https://doi.org/10.1002/spe.2766
https://doi.org/10.1007/978-3-030-26601-1_6
https://doi.org/10.1007/978-3-319-25141-7_4
https://doi.org/10.1002/spe.2509
https://doi.org/10.1007/978-3-030-26601-1_2
https://doi.org/10.1007/s11235-015-0034-5
https://doi.org/10.1007/s11235-015-0034-5
https://doi.org/10.4271/2016-01-0128
https://doi.org/10.4271/2016-01-0128
https://doi.org/10.1007/978-3-319-47590-5_3
https://doi.org/10.1007/978-3-319-47590-5_3
https://doi.org/10.1002/smr.1917
https://doi.org/10.1109/PAIS.2018.8598484
https://doi.org/10.1109/PAIS.2018.8598484


Dependable and Efficient Cloud-Based Safety-Critical Applications 109

16. Ozeer, U., Etchevers, X., Letondeur, L., Ottogalli, F.G., Salaün, G., Vincent,
J.M.: Resilience of stateful IoT applications in a dynamic fog environment. In:
Proceedings of the 15th EAI International Conference on Mobile and Ubiquitous
Systems: Computing, Networking and Services - MobiQuitous 2018, pp. 332–341.
ACM Press, New York (2018). https://doi.org/10.1145/3286978.3287007

17. Qayyum, T., Malik, A.W., Khan Khattak, M.A., Khalid, O., Khan, S.U.: FogNet-
Sim++: a toolkit for modeling and simulation of distributed fog environment. IEEE
Access 6, 63570–63583 (2018). https://doi.org/10.1109/ACCESS.2018.2877696

18. Quigley, M., et al.: ROS: an open-source robot operating system. In: Proceedings
of the IEEE International Conference on Robotics and Automation Workshop on
Open Source Software, vol. 3, p. 6 (2009)

19. Riley, G.F., Henderson, T.R.: The ns-3 network simulator. In: Wehrle, K., Güneş,
M., Gross, J. (eds) Modeling and Tools for Network Simulation, pp. 15–34.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12331-3 2

20. Schleiss, P., Drabek, C., Weiss, G., Bauer, B.: Generic management of availability
in fail-operational automotive systems. In: Tonetta, S., Schoitsch, E., Bitsch, F.
(eds.) SAFECOMP 2017. LNCS, vol. 10488, pp. 179–194. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-66266-4 12

21. Schmittner, C., Griessnig, G., Ma, Z.: Status of the development of ISO/SAE
21434. In: Larrucea, X., Santamaria, I., O’Connor, R.V., Messnarz, R. (eds.)
EuroSPI 2018. CCIS, vol. 896, pp. 504–513. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-97925-0 43

22. Schönemann, V.: Safety requirements and distribution of functions for automated
valet parking. Dissertation, Technische Universität Darmstadt (2019)

23. Sen, K., Vardhan, A., Agha, G., Rosu, G.: Efficient decentralized monitoring of
safety in distributed systems. In: Proceedings of the 26th International Conference
on Software Engineering, pp. 418–427. IEEE Computer Society, Edinburgh (2004).
https://doi.org/10.1109/ICSE.2004.1317464

24. Sonmez, C., Ozgovde, A., Ersoy, C.: EdgeCloudSim: an environment for perfor-
mance evaluation of edge computing systems. Trans. Emerg. Telecommun. Technol.
29(11), e3493 (2018). https://doi.org/10.1002/ett.3493

25. Thompson, N.C., Greenewald, K., Lee, K., Manso, G.F.: The Computational Lim-
its of Deep Learning. arXiv:2007.05558 [cs, stat], July 2020

26. Törngren, M., Sellgren, U.: Complexity challenges in development of cyber-physical
systems. In: Lohstroh, M., Derler, P., Sirjani, M. (eds.) Principles of Modeling.
LNCS, vol. 10760, pp. 478–503. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-95246-8 27

27. Varga, A., Hornig, R.: An overview of the OMNeT++ simulation environment.
In: Proceedings of the 1st International Conference on Simulation Tools and Tech-
niques for Communications, Networks and Systems & Workshops, pp. 1–10. ICST,
Marseille (2008)

https://doi.org/10.1145/3286978.3287007
https://doi.org/10.1109/ACCESS.2018.2877696
https://doi.org/10.1007/978-3-642-12331-3_2
https://doi.org/10.1007/978-3-319-66266-4_12
https://doi.org/10.1007/978-3-319-97925-0_43
https://doi.org/10.1007/978-3-319-97925-0_43
https://doi.org/10.1109/ICSE.2004.1317464
https://doi.org/10.1002/ett.3493
http://arxiv.org/abs/2007.05558
https://doi.org/10.1007/978-3-319-95246-8_27
https://doi.org/10.1007/978-3-319-95246-8_27

	Dependable and Efficient Cloud-Based Safety-Critical Applications by Example of Automated Valet Parking
	1 Introduction
	2 Challenges and Use Cases of CPSoS
	2.1 Industrial Use Cases of CPSoS
	2.2 Common CPSoS Challenges

	3 Related Work
	4 Design of Safe and Efficient CPSoS
	4.1 Top-Level Requirements
	4.2 Iterative Weakness-Driven Design Refinement
	4.3 Monitoring and Recovery Concept

	5 Evaluation
	5.1 Evaluation Setup
	5.2 Evaluation Results

	6 Conclusion
	References




