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Abstract. This article demonstrates an approach to the simulation of
Demand Responsive Transport (DRT) – a flexible transport mode that
typically operates as a combination of taxi and bus modes. Travellers
request individual trips and DRT is capable of adjusting its routes or
schedule to the needs of travellers. It has been seen as a part of the public
transport network, which has the potential to reduce operational costs of
public transport services, to provide better service quality for population
groups with limited mobility and to improve transport fairness. However,
a DRT service needs to be thoroughly planned to target the intended user
groups, attract a sufficient demand level and maintain reasonable opera-
tional costs. As the demand for DRT is dynamic and heterogeneous, it is
difficult to simulate it with a macro approach. To address this problem,
we develop and evaluate an individual-based simulation comprising mod-
els of traveller behaviour for both supply and demand sides. Travellers
choose a trip alternative with a mode choice model and DRT vehicle
routing utilises a model of travellers’ mode choice behaviour to optimise
routes. This allows capturing supply-side operational costs and demand-
side service quality for every individual, what allows for designing a per-
sonalised service that can prioritise needy groups of travellers improving
transport fairness. By simulating different setups of DRT services, the
simulator can be used as a decision support tool.

Keywords: Demand Responsive Transport · Simulation

1 Introduction

Demand Responsive Transport (DRT) describes a range of transport services
where the vehicles’ routes are dynamically planned based on trip requests by
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travellers. Most commonly, DRT is realised as a minibus taxi-like service, where
a fleet of vehicles is serving travel requests in a door-to-door manner within a
specified area. In contrast to conventional taxis, ride-sharing among multiple
travellers is one of the features that allows reducing operational costs of DRT.
However, DRT may take more restricted forms closer to regular Public Transport
(PT) bus service. For example, it can be a corridor service with defined start and
final stops but flexible intermediate stops between them [36]. Most commonly,
DRT is applied in two forms: as a special transport service for population groups
with mobility limitations or as replacement of regular bus service in rural low-
density areas [49].

In this work, the main characteristics of DRT are: 1) Service is open for every-
one – it is not a special transport service but DRT may adapt to requirements of
a specific population group or purpose. 2) A traveller has to inform the system
about pick-up and drop-off points – this differs the service for traditional PT. 3)
The service responds to changes in demand by either altering its route and/or
its schedule. 4) The fare is charged on a per passenger and not a per vehicle
basis. Thus taxi is not DRT, yet, DRT trips can be executed by taxi vehicles.

There is growing interest to use DRT for the general public and with the real-
time serving of requests. However, many trial cases of new DRT systems were
discontinued due to a variety of reasons including insufficient financial results,
poor marketing, low integration to the regular public transport network or lacks
in the service design [10]. Pettersson [40] concludes that new technologies do not
seem to improve the success of DRT services by itself and we argue that the
service needs to better adapt to conditions of a specific geographical area and
population to be successful.

The potential of DRT services has been extensively studied through simula-
tions [5,25,30,34,38,42–44,47,52]. Still, each case is unique and the DRT service
needs to be designed in accordance with the conditions of the specific case. In
case of the DRT service Kutsuplus in Helsinki, Finland, a simulation was built
prior to the implementation of the physical service showing that DRT is more
efficient than PT at high demand levels [21]. After the service was discontinued,
the final report shows that the demand prediction was inaccurate [16]. A realistic
simulation could help decision-makers (politicians, authorities and PT actors)
to assess the effectiveness of a DRT service and the whole PT network before
doing expensive trials.

DRT in its nature is similar to other on-demand transport modes, like shared
autonomous vehicles, and simulation of them can be done very similarly. We
focus on DRT to highlight non-private use of service vehicles, ride-sharing and
social goals of the service that DRT is usually associated with. With the simu-
lation, we want to find a balance between social benefits and operational costs.
According to a study in UK [23], actors see social objectives as the main rea-
son to introduce DRT. We want to help decision-makers to understand what
design of a DRT service is most beneficial to the target demand groups and
how to achieve synergies between different target groups to enable better DRT
performance.
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In this article, we suggest and demonstrate an approach to the simulation
of DRT and analyse benefits and disadvantages of such an approach. When
developing the simulation, there were the following two goals: 1) To develop a
simulation capable of providing decision support for decision-makers; 2) To study
how DRT, if seen as a part of PT network, may affect the mobility opportuni-
ties and what population groups may benefit the most. We are developing an
agent-based simulation approach where the traveller behaviour is in the centre
of simulation and DRT is directly connected to PT. Our approach allows for
simulating a DRT system where social objectives are optimised when routing
vehicles, what allows tuning of the service towards the needs of the travellers.

2 Related Work

Traditionally, DRT is used as paratransit service, or as a replacement for low-
demand bus lines in rural areas [49]. But there is a trend that travellers change
their travel behaviour towards less predictable travels and expect more person-
alised service, what opens up a potential for flexible transport services such as
DRT [39]. In a series of interviews, Davison et al. identify existing market niches
that DRT occupies and opportunities for future market penetration [7]. They
also note that unsuccessful DRT cases are often caused by the realisation of
inappropriate DRT scheme for the target purpose. To overcome this issue, the
suitability of a DRT design should be evaluated in advance to their implementa-
tion. In this regard, this section presents different approaches for the simulation,
analysis and design of on-demand transport services and relates them to the
approach we present in this paper.

2.1 Simulation of On-demand Transport Modes

Traditionally, transport is studied using macro-models that simulate traffic flow
based on different characteristics such as flow or density to estimate the utilisa-
tion or congestion of larger street segments [15]. They approximate the dynamics
of interactions between actors. Ramezani and Nourinejad show how macroscopic
fundamental diagrams can be used to optimise the dispatching of taxis taking
into account traffic conditions [41]. Macroscopic fundamental diagrams relate
vehicle density and flow rates in a traffic network and need to be generated
using real traffic data or other individual-based simulation approaches. Yang,
Wong and Wong used an analytical modelling approach to find an equilibrium
state of the taxi market for different scenarios of managing taxi [56]. While this
approach allows for maximising social objectives (amount of trips, waiting time
and costs), it is difficult to use it for the evaluation of service quality for heteroge-
neous travellers or for optimising the service for specific groups of travellers. This
is because macroscopic approaches do not explicitly model interactions between
actors.

Micro-simulations, in contrast, focus on modelling the behaviour of individ-
ual autonomous units such as travellers and DRT vehicles. Numerous of micro-
simulation studies have been presented on on-demand modes of transport such
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as autonomous shared vehicles, which operate similar to DRT. In both cases,
the used simulation methodology is very similar. One major difference is that
ride-sharing is not considered in the majority of studies on autonomous shared
vehicles. Instead, vehicles are only shared between users [3,18,26,29,50]. Ride-
sharing is an important feature of DRT, hence, in the remainder of this section,
we present only studies on DRT and on-demand mobility with ride-sharing.

2.2 Analysis and Design of On-demand Transport Modes

In attempts to analyse theoretical advantages of on-demand transport modes,
most simulation studies explore modelled service on unrealistic road networks
[34] with randomly generated demand [33,38], by serving all the recorded trips
by DRT [1,30] or by defining an arbitrary number of trips [1,5,11]. The goal of
these studies is to estimate the required amount of vehicles and costs for DRT.
Only a limited amount of studies considers realistic environments and demand
[8,25,46,48]. As we aim to provide a decision for DRT introduction to a specific
area, we need to consider both realistic road network and demand model.

We consider DRT as a service that complements PT rather than replacing or
competing with it. In our vision, DRT is integrated into the PT network. In most
of studies of DRT (e.g., [25,38,43,44,46,52]) and other on-demand transport
modes (e.g., [3,11,18,30,31]) PT is considered a separate standalone service,
sometimes in direct competition to other existing transportation services. On-
demand transport, such as autonomous vehicles, are often seen as a leading
mode in future transportation but it has potential to increase demand due to
reduction of travel costs, new user groups and recontextualisation of trip time
[53]. Improving roads does not solve road congestion, although the degree of
effect is in discussion [4,19]. PT is more efficient in moving high volumes of
travellers [28]. The generalised costs of public transport for society is half the
cost of private transport when considering external costs such as air pollution,
climate change and road accidents [20]. Thus, we see the ride-sharing aspect of
DRT and connection of DRT to PT (that could also help to promote PT), as
a potential way forward for improving transport equity and sustainable future
and focus our efforts on building a simulation that helps to estimate the effects
of a scenario with DRT integrated with PT.

An important aspect of our study is the integration of DRT into PT network.
In literature, DRT is often opposed to PT. For instance, Leich and Bischoff
show that replacing PT with DRT results in marginal benefits [25]. However,
the combination of PT and DRT may be more efficient than solely PT when
the demand level is low. With higher demand, in contrast, PT becomes more
efficient [27]. To achieve a higher level of social welfare, the same vehicle fleet
may be used as demand-responsive or as regular timetabled transport depending
on demand level [45]. A combination of DRT and PT may be more efficient if
DRT vehicles are allowed to drive travellers to any of the available PT transfer
stations [24]. Shen, Zhang, and Zhao presented a simulation approach to study
the integration of autonomous vehicles into the public transport network [48].
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These studies show that DRT integrated into PT network may be more efficient
than PT or than PT and DRT as competing services.

3 Simulation of Demand Responsive Transport

The overarching goal of our work is to develop a simulation tool that can provide
decision support to decision-makers in the process of designing a DRT system for
a specific area. The simulation helps to evaluate different service options: level
of route flexibility, target population groups or geographical coverage. We see
DRT as a service that may actively optimise its behaviour at the vehicle routing
phase towards social objectives. In line with this, we see DRT as a part of public
transport (PT) and strive to find a way to optimise the connection between the
services, as PT plays an important role in sustainable transportation (where
social aspects are as important as economical) [28]. We see a need to develop a
simulation approach capable of simulating DRT together with PT and capturing
not only economical characteristics but also social value that a DRT service could
bring.

Traditional paratransit DRT services require booking of a trip at least one
day in advance. To make DRT attractive for other population groups, we consider
a flow of requests to the DRT service with real-time requirements (meaning that
trip is requested to be executed as soon as possible) or with small booking time
(a trip is executed at the same day as request). This assumption makes the
demand dynamic what is a challenge for the simulation process. The dynamic
nature of DRT makes it more difficult to simulate it with conventional macro-
simulation approaches. Macro-simulations have to approximate travel times and
do not allow to capture the details of service quality, making it harder to estimate
the social value of a DRT service. Thus, we apply agent-based micro-simulation
that allows for modelling individual behaviour.

3.1 Simulation Approach

The overall simulation process is shown in Fig. 1. When a traveller, which is
modelled as an autonomous agent, is planning a trip, he or she requests the
service (through a trip planner) to find available travel options. The service gen-
erates trips that include DRT as well as the combination of DRT and PT and
other conventional travel options. Then traveller chooses one of the options and
books it if it involves DRT. If DRT is booked, the service updates its vehicles’
routes and vehicles execute them. Travel requests come into the system dynam-
ically during the day and vehicles’ routes can be modified even when a vehicle
is already executing journeys.

With the simulation approach that integrates a model of travel behaviour,
we may evaluate a DRT service with a complex behaviour of the service that
balances between economical and social goals providing suitable mobility options
for everyone. DRT service routes the vehicles according to its optimisation goals
which can be formulated multi-objective optimisation problem. The economical
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Fig. 1. Overview of the simulation approach.

objective of DRT is to minimise its operational costs, the major part of which are
the number of vehicles running and distance driven. The value of a travel can be
represented by its utility (or disutility) and the social objective is to maximise the
utility for travellers (or minimise the disutility). Such a numeric representation
allows for integrating social objective into the optimisation function for vehicle
routing, allowing, in turn, to balance between economical and social objectives
when routing DRT vehicles.

In a micro-simulation, we have an opportunity to model the utility a trip pro-
vides to a traveller and even model traveller choice (a probability that accepts the
proposed DRT trip). Accounting for that, the service may provide sub-optimal
trip alternatives (from the point of view of a traveller), which still will be likely
accepted by travellers, to improve the overall performance. Additionally, this
allows implementing a heterogeneous service scheme, meaning that different pop-
ulation groups or purposes of travel may be routed differently according to the
needs of people and priority of service. For example, trips to work or hospital
require specific arrival times that must be kept, while shopping trips may be
more flexible. Persons with movement limitations may be of higher priority for
the service and minimising walking distance is of higher priority than total travel
time for them. A DRT service can be designed with hard restrictions to target
the needs of specific population groups (e.g. by setting predefined stop points,
restricting who can use the service). If such restrictions are applied on the stage
of routing trips, there is an opportunity to use “soft” restriction putting priority
to the trips the service is intended to serve, but still allowing other trip types,
what could help with the service overall efficiency.

Travel behaviour (the actions of actual travellers) includes both the demand
model, trip planning and mode choice. This behaviour is different and individual
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for each of the agents and depends on socio-demographic factors (e.g. age, fam-
ily status, employment, or income) but also on geographical factors such as the
place of residence as described in [9]. Demand and mode choice are complex
multilevel problems in real life and include long-term decisions on home and
workplace locations. Moreover, car ownership dictates everyday mode choice.
Still, we separate demand modelling from mode choice for simplicity. By doing
that, we can focus on the parameters of the system that we can simulate (influ-
ence of travel time to acceptance ratio) but ignore the connection of long-term
decision (housing location and car ownership) to the availability of transport
options. We implicitly assume that DRT would be perceived as PT and will not
change the long-term housing and work decision but may help to decrease car
use. We may argue that in short-term, while DRT is being adopted, it is unlikely
that it will significantly affect long term decisions. This delimitation allows us
to use travel surveys or otherwise recorded real-world data to approximate the
behaviour of travellers if DRT was implemented.

3.2 Evaluation of the Approach

The benefit of such a request-oriented simulation approach is that the system
might take into account personal and contextual information from travellers
and generate trip alternatives according to both the needs of the travellers and
system optimality, allowing the maximisation of social objectives. Alternatively,
when travellers’ behaviour is modelled realistically, one may use this approach to
optimise service parameters such as travel cost, amount of vehicles or expected
profits [30,34].

The drawback of this approach is that it relies heavily on the mode choice
modelling while there is a very limited amount of data to build such models. Still,
this opens up opportunities to study what type of behaviour shift is needed an
efficient DRT operation. A benefit of our approach is that it allows explicit mode
choice in each situation and that travellers are not required to use a service with
insufficient quality, reducing the service load, thus, converging towards a trans-
port equilibrium state. That is also a drawback of our approach – it represents
a single day. If a traveller received service with sufficient quality in one day it
does not guarantee that on a different day service would be able to provide the
exact same quality.

Multiple similar simulations in the area of conventional and on-demand trans-
portation have been done with MATSim [17,18,31]. The philosophy of MATSim
lies in the co-evolution of supply and demand. Travellers in MATSim plan the
trip mode at the beginning of a simulation cycle, evaluate their results after
each day and replan their journeys for the next day. The problem with DRT
simulation in MATSim is that a person requires to select DRT not knowing trip
characteristics as waiting and travel time. And while in the evolutionary cycle
the demand will adjust to the supply, a significant amount of simulation cycles
are required to find the equilibrium.

In a way, travellers in MATSim learn average service quality and make an
informed choice based on the average utility of DRT service. However, separating



An Individual-Based Simulation Approach to Demand Responsive Transport 79

mode choice from building routes could result in a large amount of sub-optimal
and unrealistic trips being accepted travellers, especially when a connection of
DRT and PT is utilised. This brings down the potential of DRT and slows down
the process of converging to the equilibrium state.

Our approach could benefit from MATSim philosophy: in multi-day simula-
tions, travellers could accumulate the knowledge on service quality and utilise it
in the decision process. Yet, simulation of DRT is a computationally expensive
process: building routes and solving vehicle routing problems is NP-hard and
should rely on heuristics for large-scale simulations. In our simulation experi-
ments, the computational bottleneck was in constructing time-distance matrices
between travellers and vehicles to build a vehicle routing problem. To relax this
problem, a workaround has been made by [46]. The authors use MATSim to find
a near-equilibrium state based on approximate time provided by DRT and then
simulate this state in a custom simulator with advanced fleet management and
routing.

A benefit of our implementation is that we designed the system based on DRT
connected to PT. There are several extensions in MATSim: public transport,
on-demand transport, multi-modal trips and carsharing. They allow adding this
functionality to MATSim. For instance, one could expand the DRT route plan-
ning algorithm to plan the connection between DRT and PT. But so far, to our
knowledge, existing studies in MATSim include DRT-like ride-share [35,38,52]
and they do not utilise the MATSim philosophy of co-evolution. We also have
not found examples where on-demand transport is connected with regular PT
in the same network.

3.3 Simulation Prototype

This section describes the prototype of our simulator, focusing on how trip rout-
ing flow is implemented. We are developing an open-source simulator1 based on
other open-source projects. As we do not have a requirement to create a precise
traffic micro-simulation so vehicle movement is implemented as event-driven sim-
ulation. Vehicles teleport between picking up and delivering travellers according
to travel times estimated by the trip planner. If a vehicle needs to be rerouted
when it is moving, its current position can be extracted from the planned route.

The trip generation flow is depicted in Fig. 2. Processing of trip requests
starts from OpenTripPlaner2 (OTP) and it is a central tool for generating trip
alternatives for requests. It uses Open Street Maps3 and PT timetables in the
format of General Transit Feed Specification (GTFS) to find multi-modal trip
alternatives that can combine car, walking, public transport, bicycle. Routing
a direct trip by DRT is straightforward: we build a vehicle routing problem,
calculating time and distance matrix between all the trip start and trip end
positions with the help of Open Street Routing Machine4 (OSRM) which works
1 https://github.com/serdyt/DRTsim.
2 https://www.opentripplanner.org.
3 https://www.openstreetmap.org/.
4 http://project-osrm.org.

https://github.com/serdyt/DRTsim
https://www.opentripplanner.org
https://www.openstreetmap.org/
http://project-osrm.org
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significantly faster than OTP and solve the resulting vehicle routing problem
with jsprit5. Finding a DRT+PT trip involves two steps: first, with the use of
OTP, we find a trip with the “kiss and ride” mode, when a traveller is assumed
to be driven from a starting position to a bus stop as a passenger in a car; then,
we replace the car leg with DRT building a vehicle routing problem and solving
it with jsprit in the same way as with the direct DRT trip.

Fig. 2. The process diagram of routing trip alternatives.

Building a näıve optimisation problem including all of the currently active
requests resulted in a computational bottleneck limiting the scalability. A time-
distance matrix between all the geographical points involved is required to solve
the optimisation problem. The size of such a matrix is quadratic to the number
of requests R: O(R2), as each new request adds new origin and destination to
the matrix. In our first experiments (described in more details in the Sect. 3.4),
planned vehicle routes involved on average 19 travellers per vehicle, what means
OSRM needs to find all to all shortest paths between 600 points (for 30 vehicles),
which took around 15 s to compute, what limits the simulation possibilities. A
smarter algorithm for data preparation for vehicle routing problem is required,
like in [1], filtering out the vehicles that cannot be utilised in serving of a new
request.

3.4 Experiments

The prototype was evaluated with a simulation experiment on the municipality
of Sjöbo in southern Sweden. Travel demand for commuters (travellers going to
the workplace and back with either home or work activities located in the tar-
get area) was modelled based on a regional Swedish survey of travel habits [14]
with modified four-step modelling approach [9]. Trip attraction and production

5 https://github.com/graphhopper/jsprit.

https://github.com/graphhopper/jsprit
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were modelled with a linear regression model. Trips were distributed into the
origin-destination matrix with tri-proportional fitting. The trip matrix was dis-
aggregated into individual trips by sampling locations of houses and workplaces.
Additionally, the desired time of the trip was assigned based on the recorded dis-
tribution of work trips. A sample of about 15% of the total amount of commuters
was simulated, what corresponds to the current public transport ridership in the
target area. The demand was served by 30 DRT vehicles executing door-to-door
trips withing the borders of target municipality and door-to-PT transfer if the
trip crossed the borders of the municipality. Travellers request a trip two hours
in advance to the approximated trip start time. When routing vehicles, service
used the desired time of arrival for trips to work and the desired time of depar-
ture for trips from work as a hard constraint. Both service and travellers were
using the same model of traveller behaviour: a DRT trip is accepted if

tDRT < tCAR × 1.5 + 15min. (1)

In other words, travellers accept a DRT trip if service was able to generate a
DRT trip within this time window, where either arrival or departure times are
fixed. The service is allowed to modify confirmed trips even at runtime as long
as the trip duration would fit in the specified time windows of each traveller.

For the experiments, the simulation received data on 1900 real-world trips as
input. Approximately 1450 of these trips were executed with DRT on a simulated
day by a fleet of 30 vehicles. As shown in Fig. 3, most of the time (39%) there
was no ride-sharing and only one passenger was on board of the DRT vehicle.
Only in 19% of vehicles’ travel time, two or more travellers were present. At the
same time, when using 30 vehicles, the rejection ratio was around 24% (rejection
happened when the DRT service could not provide a trip within the time window,
according to Eq. 1). This low performance may be explained by the non-uniform
distribution of demand, as shown in Fig. 4. Vehicles were ready to operate during
the whole 24-h period but travellers show two distinct peaks in the demand. The

Passengers in a vehicle
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Fig. 3. Amount of time a certain number of people (0 to 5) was in the DRT vehicles.
“Idle” represents the time vehicles spent in a depot. Values above the bars show the
percentage of total travel time the vehicles were running with the corresponding amount
of passengers ignoring idle time.
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demand during peak hours is 3.4 times higher than average daily demand so
there is little possibility for ride-sharing outside peak hours and many vehicles
are idling. At the same time, the high rejection ratio around 24% indicates that
30 vehicles cannot handle the peak level of the demand.

Fig. 4. Distribution of requested trip times.

We have conducted a sensitivity analysis serving the same demand with dif-
ferent amount of vehicles as shown in Table 1. We extracted the key performance
indicators to compare the scenarios. They are:

– Rejection ratio: The percentage of the trips that travellers rejected (or trips
violating the time windows restriction, Eq. 1). This is an indicator of service
quality and lower values are more desirable.

– Travellers per vehicle: The average amount of travellers served by a vehicle
during one day. This is an indicator of service efficiency and higher values are
more desirable.

– VKT per vehicle: The number of kilometres travelled per vehicle. This is
an indicator of service operational costs and lower values are more desirable.

– Extra travel time: Average extra time spent in DRT trip, compared to a
direct trip by a car. This is an indicator of service quality and lower values
are more desirable.

– Direct vehicle kilometre per DRT vehicle kilometre: The ratio of the
length of the direct trips (trip by a direct path from origin to destination) to
the actual length of DRT trips.
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– Direct travel minutes (not explicitly shown in Table 1): The total time of
direct trips, if they are executed by a car. Excludes detour time from travel
time. This is an indicator of service efficiency and lower values are more
desirable.

– Direct minutes per hour: The amount of direct travel minutes executed by
an average DRT vehicle in an hour. This is an indicator of service efficiency
and higher values are more desirable. For example, this value is always equal
to 1 for private cars, as car always executes a direct path; the value is equal
to 2 if two travellers (family members) are going to the same place in the
same car; the value is equal to 0.5 if a taxi needs to ride 30 min to pick up a
traveller and ride 30 min to the destination.

In Table 1, we see that the system behaves according to expectations: when
more vehicles are utilised, it is possible to serve more travellers and the rejection
ration decreases. At the same time, the average number of travellers and number
of vehicle kilometres per vehicle decreases together with the number of direct
minutes per hour, indicating that the cost efficiency of service is decreasing.
Extra travel time, however, stays approximately the same as it is restricted by
the mode choice model. We should note that extra travel time in DRT slightly
increases together with the number of vehicles in the scenarios with 20, 30 and
40 vehicles, but drops in the scenario with 50 vehicles. When the amount of
vehicles is low and service is overloaded, the service selects the trips that can be
executed most efficiently. When the amount of vehicles is increasing to the level
when the service has an opportunity to serve most inconvenient trips, there is
less room for ride-sharing and more trips are executed in a taxi manner.

Table 1. Sensitivity analysis

Number of vehicles 20 30 40 50

Rejection ratio, % 42 24 12 4

Travellers per vehicle 55 48 42 36

VKT per vehicle 772 671 585 516

Extra travel time, % 33.1 33.3 34.5 33.7

Direct VKT per DRT VKT 0.85 0.85 0.84 0.85

Direct minutes per hour 44 38 33 28

4 Discussion and Future Work

Multiple optimisation issues need to be solved during the simulation. The trip
planner needs to find trip alternatives, rank them to provide most promising
alternatives to a traveller, find and rank possible DRT to PT transfers (which
again involves a loop of searching for PT alternatives) and solve a vehicle routing
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problem. According to our goal, to balance social objectives, the model of trav-
eller behaviour is included in all of the aforementioned operations. This results
in the distribution of the behaviour model making it less transparent and harder
to comprehend and potentially inhibits knowledge transit to decision-makers. To
prevent this, the same model of traveller behaviour should be used on different
steps of finding trip alternatives and better analysis and visualisation tools need
to be developed to understand the impact of DRT design decisions on social
objectives.

OTP uses heuristics and trip ranking to limit the amount of generated trip
suggestions. When filtering out trip alternatives, OTP uses parameters like walk
and transfer reluctance, that define how walking is perceived comparing to in-
vehicle time or waiting time. These parameters are hidden from a final user
(decision maker) but it also opens up an opportunity for contextualised and
personalised travel planning that takes into account these parameters. A benefit
of OpenTripPlaner is that it would be straightforward to integrate context-aware
travel planing into the simulation.

The second optimisation engine is jsprit that optimises vehicle routes accord-
ing to a cost function. In the first experiments, we used the default cost function
that minimises operational costs.

C = Cconst +
∑

v∈V ehicles

Cdistance + Ctime (2)

Reduction of transportation cost with sharing a ride is only a part of the DRT
objective. This optimisation function does not allow for direct optimisation of
social objectives such as quality of service. Especially for investigating the via-
bility of a DRT service, a trade-off between the service costs and the quality of
service needs to be made by the decision-maker. Thus, extending the simulation
with this respect would be desirable.

To account for social objectives, we need to model traveller behaviour on
this level to predict traveller satisfaction from a trip. Behaviour in transport
modelling (most often in form of mode choice) is dominated by econometric
utility-based models [2,22]. To build such a model, we need to have real-world
statistics on usage of the service. As we don’t have access to such data, we are
limited to either stated preference surveys (similar to [30,51]), or approximate
value of time (similar to [18] or [12,54]).

As a temporary measure, we implemented rule-based behaviour. A person
interested in DRT accepts a proposed journey if travel time is within an interval
of m×tdirect travel+c, where the constant c accounts for time that would be spent
for parking a car and multiplier m represents tolerance to detours. There are two
alternatives to how to apply this formula: to the whole trip or the DRT leg only.
If we consider car users then it is meaningful to compare direct car time to the
whole trip, yet the people already using PT could prefer to other transportation
modes to access PT stops like being a passenger in a car, using a car to drive
to PT stop or scooters or bikes. While such a time window puts a restriction to
trip length, it does not penalise the increase in travel time and does not account
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for other trip characteristics like waiting time, transfer convenience, on-route
rescheduling. Improvements to optimisation function open up more elaborate
multi-objective optimisation.

We use routes built by OTP to teleport vehicles between pick-up and drop-
off locations, according to the approximated travel time of vehicle path. We use
OTP output for navigators to track vehicle positions during the route, but in a
rural area, where long straight roads do exist, it is preferable to turn a vehicle
in between navigation points. It should be possible to connect a high precision
micro-simulator like SUMO with Traffic Control Interface [55] that simulates
exact positions of vehicles at each moment in time.

PT in general and DRT in our view serves social purposes among others.
To measure how mobility levels are affected by DRT we need to have metrics
measuring that. Accessibility is one of the typical metrics. [37] identify high-level
metrics like route length or amount of activity centres linked by PT network,
but it is not directly applicable to DRT. At the best case, a person may receive
a taxi level of service. But in a heavily loaded system, possibilities for each
request would be limited by previous requests and a dynamic state of the service
(position of vehicles and their routes).

Another interesting approach for optimisation of DRT is the dynamic alloca-
tion of stop points. If DRT is working in a non-door-to-door manner, fixed stop
points are typically assigned and travellers are forced to walk to the closest stop
point. There is an opportunity to utilise the flexibility of DRT to optimise the
position of pick-up points if they are dynamically allocated [6,13,32]. Similarly,
when DRT has a connection to PT, DRT to PT transfer points can be optimised
what increases overall efficiency [24].

5 Conclusions

In this article, we present an agent-based simulation approach to DRT that intro-
duces a traveller behaviour model into DRT service planning process allowing
the service to adapt to the needs of the target population groups or utilise con-
textual information for trip planning. Such an approach requires an appropriate
travellers’ behaviour model (mode choice) so that travellers realistically choose
DRT only when it is convenient for them. Our simulation focuses on the scenar-
ios when DRT service is open to the general public, but it may prioritise some
population groups and adapt to their needs. It allows optimising between social
goals (providing mobility means for target population groups) and economical
goals (minimising operational costs).

We evaluate this simulation approach and compare it to the alternatives. The
weak point of macro-simulations and analytical approaches is in the approxima-
tion of detour time for DRT. A simulation approach implemented in MATSim
may better capture service quality that users learn in time but may struggle
to implement a feedback loop for adjusting route optimisation algorithms. The
approach we present allows using contextual data to provide personalised trips
according to the needs of travellers. It allows evaluating DRT service with soft
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priorities without hard restrictions, thus contributing to transport fairness and
allows dynamically adjusting supply-side parameters and optimisation of ser-
vice parameters. A combination of two approaches may be beneficial, but would
result in a very high computational load. Here, further studies are required.
The integration of DRT and PT into one service is the second highlight of this
article – it allows more realistic and more practical DRT service designs. Most
works consider DRT as a separate service, we argue that to capture the transfers
between services, allows optimising both service performances.

We developed a prototype of simulation based on open-source tools Open-
TripPlanner, jsprit and Open Source Routing Machine and identified opportuni-
ties for future work and possible extensions. Finally, we conducted a simulation
study of commuter trips to demonstrate the approach. This simulation study
indicates that it is challenging to achieve high efficiency of a service just by
increasing the number of DRT vehicles to serve the demand. Additionally, we
identify the direct trade-off between cost-effectiveness and service quality.
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