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Abstract. The rapid growth in the number of road users and poor road
management have been deemed responsible for the upsurge in road con-
gestions and fatalities in recent times. Many of the lives lost was due
to inadequate or inefficient public-accessible alerts system and rerouting
mechanisms during emergencies. The Intelligent Transportation System
(ITS) was anticipated as a solution to the numerous road networks usage
problems. Recently, some developed countries have implemented some
forms of ITS initiatives. But the transition of the road networks to a
fully integrated ITS has been slow and daunting due to the huge cost of
implementation. The use of mobile devices as backbone infrastructure for
ITS networks during public emergencies has been proposed. Despite the
advantage of being a cheap alternative, low computing power of mobile
devices limit their potentials to support the expected Big Data ITS traf-
fic. In this paper, we propose a cloud-based context-sensitive ITS infras-
tructure that uses the cloud as a primary aggregator of traffic messages
plus a hybrid Data Analytics algorithm. The algorithm combines the
enhanced features of Apache-Spark and Kafka frameworks blended with
collaborative filtering using the ensemble machine learning classifier. The
novelty of our approach stems from its ability to provide load balancing
routing services based on the users’ profiles, and avoid congestion-using
the Dynamic Round Robin scheduling algorithm to reroute users with
similar profiles.

Keywords: Context-sensitive · ITS · Mobile alert · Road incidences ·
Cloud · Data analytics

1 Introduction

The report in [1] stated that about 1.2 million people around the world are
killed while about 50 million people are injured every year as a result of traffic
related accidents. The World Health Organization (WHO) reported that due to
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this massive loss of lives, the world economy declines by up to $500 billion every
year [2]. Many of these lives that are lost within the road networks have been
attributed to inadequate or inefficient traffic management systems to alert and
provide alternative routes to users when there are traffic incidents and emergen-
cies. The Intelligent Transportation System (ITS) was anticipated as a solution
to the numerous problems that are associated with the use of the road networks.
ITS has been defined by the U.S. Department of Transportation (US DOT)
as the integration of advanced communication technologies into the transporta-
tion technologies and vehicles, including a broad range of wireless and wireline
communications-based information and electronics technologies; and all trans-
portation modes, from pedestrian activities to freight movement [3]. The report
by US DOT in [4] also reiterated that the mobility and accessibility of a region
can be enhanced when ITS technologies are efficiently implemented thereby help-
ing road users to go to wherever they want and whenever they want, in a safe
and reliable manner.

In the past few years, many developed countries of the world including Japan,
South Korea, Singapore and the United States have taken the lead to embark
on some forms of ITS initiatives. Japan being the world leader in the deploy-
ment of ITS began with the use of the Vehicle Information and Communication
System (VICS) in 1996, and the use of probes to capture real-time information
in 2003 [5]. ITS initiatives started in the United States after the development of
the Electronic Route Guidance System (ERGS) in 1970. The ERGS was meant
to provide road users with route guidance information via on-board and road-
side equipment [6]. Singapore installed real-time bus arrival panels in January
2008 at bus stops to make public transportation a more attractive option for
commuters [5]. As a result of the need for ITS, South Korea built legal and
institutional support for ITS by creating a master plan in 1997 which led to the
development of an ITS technical architecture and a regional and supra-regional
implementation plan [7]. Despite the progress recorded in recent times as a result
of all these initiatives, the transition of the road networks to a fully integrated
ITS network have been slow and seemed to be a daunting endeavor. One of the
major setbacks to ITS penetrations in our rural and urban communities can be
traced to the huge cost of implementation, especially in terms of infrastructural
procurement, installations and management. The need for accurate and real-
time traffic information is critical to successful ITS deployment. ITS data comes
from heterogeneous sources and are in different formats. Big Data analytic has
been advantageous in predicting traffic flow in ITS [8]. Despite the potentials
of the analysis of ITS Big data for pattern detection, dimension reduction and
complex predictions, the heterogeneous nature of the ITS data still constitutes
a major challenge to the integration of ITS data analytic system [9].

2 Challenges of Big Data Analytic in Intelligent
Transportation System

ITS applications have been described by [10] as complex and data-intensive appli-
cations that exhibit the 5Vs of Big Data in terms of volume, variety, velocity,



A Context-Sensitive Data Analytics Mobile Alert for ITS Penetration 37

veracity, and value. Due to the unforeseen explosion in the amount of heteroge-
neous data generated by the ITS in the range of several Petabytes (PB) of data,
the conventional data analytic approaches have been discovered to be inefficient
in handling the complexities involved [11]. Therefore, there is a need for data
analytic systems that can transform the heterogeneous and complex ITS data
from a conventional technology-driven system to a complex data-driven system.

A major challenge of using Big Data analytic in ITS is determining how data
is collected within an ITS infrastructure [12]. ITS users including vehicles and
pedestrians are in regular motion within the road networks making the traffic
data collected to be incomplete or inaccurate. As a result, such data can not
be a reliable source for implementing an efficient Big Data analytic system.
Therefore, there is a need to develop data collection systems that are automatic
and with minimal human intervention so as to reduce data errors introduced by
humans and to improve the quality of ITS data collected. A viable solution to
the automatic data capturing need is to develop a user profiling system that can
automatically capture traffic data from ITS users.

Another related challenge to using Big Data analytic in ITS is determin-
ing how to store the massive data that are captured within the ITS networks.
According to [12], ITS data level has jumped from the range of Terabyte (TB)
level to PB level thereby making the growth in data storage capacity to lag
behind the ITS data growth. The implication of this is that the conventional
approaches to data storage and database tools will no longer be adequate to
handle the massive ITS data. Though several integrated Big Data capable, and
multi-cloud storage and hybrid storage are emerging as solutions to Big Data
storage, there is a need for smart management tools that can provide integrated
analytic within storage devices. The authors in [13] stated that simply integrat-
ing and standardizing data systems does not remove the requirement for such
systems to be capable of editing raw data so that it can yield useful results. In
addition, there is a need to develop efficient data analytic algorithms that can
leverage machine learning and predictive data analytic to support real-time data
forecasting requirements of ITS applications.

The timeliness of processing ITS massive data to support Big Data applica-
tions is another major challenge. Heterogeneous and complex traffic data from
diverse sources need to be compared with historical data and processed at an
instant [14]. According to [8], several generic and dedicated Big Data analytic
frameworks including Apache Storm, Apache Flink, Apache Spark and Kafka
streams have been developed. Despite the successes of some of these frame-
works, there is a need to investigate cloud-based context-sensitive hybrid Big
Data analytic frameworks that can combine the advantages of existing frame-
works to deliver faster real-time data processing for current and near future ITS
networks.

3 Related Work

There have been several initiatives to provide traffic services to road users using
mobile applications. The Waze Apps [15] currently operated by Google provide
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location-based traffic information services to travelers using their cell phones.
The problem with this application is that traffic data are obtained from road
users through their social media platform like Twitter. Such data are semi-
structured and unreliable because the application does not enforce the user to
activate their geolocation functionality so as to provide the actual location infor-
mation of a specific traffic incident [16,17].

INRIX Traffic [18] is a next-generation navigation and traffic app that uses
smartphones and vehicle GPS data to provide road users with real time traffic
information. The App automatically profiles users to provide routing and other
traffic related information especially as it concerns changing road conditions.
Despite the automatic user profiling and sending of alerts provided by the App,
there is no evidence of reduction in congestion when users are rerouted to a new
route during road incidents. This is because a new route can drastically become
congested as many road users within close proximity of the incident are rerouted
to the same route.

Moovit App [19] is an example of mobile applications that provide road
users with real-time public transportation journey planning by combining public
transportation data with users’ cell phones data. Gaode App [20] allows road
users to plan their trips that involve the transition between different means of
transportation including trains to buses and buses to cars or bicycles. There is
no evidence of Big Data analytic of these mobile applications as next-generation
mobile applications must be able to process the anticipated near future massive
data that are generated by ITS users in order to support road users with real-
time and reliable traffic information.

As a summary to issues with related work, most route discovery and routing
approaches provide similar routing information to users on similar routes and
such road users are directed to the same route within the ITS infrastructure.
This can lead to congestion of a newly discovered alternative route and can even
cause new incidents of accidents. Therefore, there is a need for an approach
that reroutes users based on the particular situation of a user and that also
considers load balancing of alternative routes. In addition, there is no evidence
of Big Data analytic of these approaches for efficient processing of the near
future ITS Big Data so as to support road users with real-time and reliable
traffic information including road incident alerts. We therefore propose a context-
sensitive mobile alert system that uses two-layer Aggregator design to provide
road incident alerts to subscribers. In addition, the system uses an optimal route
discovery and load balancing techniques to provide alternative routes to road
users during traffic incidents. Users with similar profiles are distributed over
discovered alternative routes based on the real-time traffic condition of each
route, thereby reducing incidents of congestion and road accidents. The two-
layer alerts/traffic data Aggregator also introduces redundancy by using the
cloud as a primary Aggregator while still maintaining a secondary land-based
Aggregator.



A Context-Sensitive Data Analytics Mobile Alert for ITS Penetration 39

4 Context-Sensitive Cloud-Based Mobile Alert
and Route Discovery System

4.1 General Description

The proposed mobile system allows the subscribers to undergo an initial regis-
tration process before using the system. This registration process acts as a secu-
rity mechanism to ensure that users are authenticated before they can actively
contribute to ITS data. During this process, users detailed data are collected
so as to create an initial profile for each user. Next, the system through crowd-
sourcing prompts the user to take a survey so as to gather some vital information
related to the user’s traffic experiences and preferences. These information will
be used to determine and refine the Traveling Model (TM) parameters. The
TM parameters include factors that influence choice of route taken by different
road users including pedestrians, drivers, and bikers. Specifically, the informa-
tion collected will be used to assign weight to traffic parameters that will be
used when calculating the cost and the subsequent rating of a route. After the
registration process, authenticated users will be able to send alert and traffic
messages including: road condition (e.g. wet, slippery), weather conditions (e.g.
snowy, rainy), emergency incidences (e.g. accident, explosion, road close) to the
system. These traffic alerts can be sent automatically, periodically or on-demand
by the users’ mobile devices.

Alert messages are classified based on type of alerts (e.g. road condition,
weather condition, emergency incidents), location of alerts, and the level of sever-
ity. These alert messages are aggregated using the Cloud-Based Alerts Aggrega-
tor (CBAA) and analyzed by the Big Data analytic component of the system.
Authenticated users can be provided with either a proactive service or a reactive
service. The proactive service involves users automatically sending and receiv-
ing alerts based on their locations to incidence of emergencies and the system
subsequently providing alternative routes based on our proposed optimal route
discovery and rating algorithm. With the reactive service, which is an on-demand
service is when authenticated users request for the shortest route to a Point of
Interest (POI) at any moment during traffic incidents. Alerts are sent to sub-
scribers based on the 5W of user profiling including Who, Where, When, What
and Why. The Who profile involves identifying the current user, while the Where
addresses the location of the subscriber. The When profile deals with temporal
aspects of past, present and future i.e. the time of an incident, while the What
profile deals with identifying activities of the user on object, for instance biking,
driving, or walking. Lastly, the Why profile addresses the subtle content such as
the user’s need and emotion, e.g. a user in need of routing assistance. The system
will profile the user before providing either the proactive or reactive services so
as to accurately meet the specific need of the user.

4.2 The Architecture

The proposed Context-Sensitive Cloud-Based Mobile Alert and Route Discovery
System architecture presented in Fig. 1 is an improvement over the architecture
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proposed in [21]. It is essentially the integration of the existing Mobile Alert
System with Context-Sensitive sub component and a cloud-based Big Data ana-
lytic technology. This is to provide real-time traffic alerts and optimal route
discovery services to ITS users during traffic incidents including accidents and
natural disasters. The idea is that the cloud and Big Data-based Mobile Alert
system will use the cloud as a primary alerts Aggregator where traffic data can
be analyzed using a proposed Big Data analytic algorithm, and the result sent
as alerts to users. In this architecture, we still maintain a secondary Land-Based
Aggregator (LBA) that will contain real-time results of data analytic from the
cloud system. The LBA serves as a redundant mechanism to ensure that the
Mobile Alert system continues to operate in the presence of unanticipated faults
and failures.

Fig. 1. The proposed architecture for context-sensitive cloud-based mobile alert and
optimal route discovery ITS system

4.3 User Profiling (Context-Sensitive) Subsystem

The User Profiling subsystem illustrated in Fig. 2 uses the in-built mobile phones
sensors to profile users so as to provide services that best meet the traffic needs of
each user. The User Profiling subsystem consists of 10-tuple (decuple) attributes
(u1, u2, . . . , u10) which are determined by four general travel model preferences
including travelling preference, user location preference, weather condition and
POI preference. We represented the travelling preference component with u1

and u2, where u1 captures the user’s travelling mode (e.g. walking, riding,
driving), and u2 represents the traffic condition (congestion rate). The user
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location preference is set as u3. This is an attribute which identifies the user
location at the moment (the coordinate). We depicted the weather condition
component with u4 and u5. Where u4 is an attribute that captures the weather
condition of the user’s current location (e.g. snowy, rainy, clear, windy,
cloudy), and u5 is the attribute that describes the weather condition of the
user’s destination. We depicted the user’s POI component with u6 and u7,
where u6 represents the user’s destination and u7 is an attribute that describes
the user’s perceived fastest route to the POI. We also consider some other
factors that are necessary when road users need to make decisions about the
choice of a route to take when navigating the road networks. We represented
u8 as the time of the day (e.g. morning – rush hour, afternoon, evening),
u9 is the road condition to destination (wet, slippery, bumpy), and u10 is
the road emergency/alert (nature, location, severity). This profiling informa-
tion is automatically captured by some certain sensors within the users’ mobile
devices and provided to other subsystems for further processing.

Fig. 2. User profiling (context-sensitive) subsystem

When routing information needs to be provided to a user, the user pro-
file decuple, (u1, u2, . . . , u10) will be mapped with the travel model, quintuple,
(t1, t2, t3, t4, t5) of a discovered route for rating purpose to determine how best
the route correlates with the user profile. We established the parameters for
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the travel model by using t1 to represent the distance from user’s current
location to a POI using the discovered route, t2 represents the traffic condi-
tion along the discovered route (e.g. speed-limit, congestion), t3 represents
the road condition along the discovered route (dry, wet, bumpy, etc.), t4
represents the road incidents along the discovered route (accident, road-
block, abduction, etc.), while t5 represents the weather condition along the
discovered route (rainy, snowy, cloudy, etc.)

4.4 The Route Rating Subsystem

The authors in [22] stated that the choice of route taken by a road user is a mix
between decision-making under certainty and uncertainty. In [23], the choice of
route was categorized based on attributes including characteristics of travelers,
characteristics of routes (road, traffic, environment), characteristics of the trip
and characteristics of other circumstances. In this paper, we propose a Route
Rating subsystem that uses the combination of user profiling and crowd sourcing
approaches to obtain personalized views of users traffic modes so as to develop
a robust and user sensitive weighted averages for the traffic parameters that are
used in our proposed route rating formula presented in Eq. (1).

4.5 Route Rating Formula

The results of user profiling discussed in Sect. 4.3 serve as input into the proposed
Route Rating formula presented in Eq. (1) based on the Travel Model, quintuple,
(t1, t2, t3, t4, t5).

The rating or cost of a route is derived mathematical as:

Route Cost =

{(
(t1w1) + (t2w2) + (t3w3) + (t4w4) + (t5w5)

max(totalCost)

)
x10

}
(1)

where:
t1, t2, t3, t4, andt5 are the traffic parameters representing the Traffic Model
w1, w2, . . . ., w5 are the weighted averages assigned to individual traffic param-

eters (these averages are derived from the result of crowd-sourcing during users’
registration, the values will become more refined and reliable as the number of
users increases).

max(total Cost) is the maximum of the sum of the product t1w1 . . . . . . w5t5.
The route cost formula can be represented in Sigma notation as follows:

R(TM,UP) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

( 5∑
i=1

fi(P.W )

max

5∑
i=1

fi(P.W ) �= ∅

)
x10

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2)
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Where:
R(TM, UP) is the route cost or rating derived from the mapping of the

User Profile, UP and Travel Model, TM.
fi(PW ) is a function representing the product of a traffic parameter, P and

its corresponding weight parameter, W.
The weighted average assigned to each of the route cost parameters in Eq. (2)

will differ depending on the travelling mode of the user. If the user is a pedestrian,
for instance, the distance to destination and instances of road incidents might
generate lower weighted averages compared to when the user is driving.

4.6 Rationale for the Route Rating Parameters

In a survey conducted in [24], the researchers discovered that the factors that are
pertinent to the choice of route taken by bikers are the condition of the roads,
volume of traffic, the speed of motor vehicles along the route, and the distance to
destination. The results of the survey show that the speed of motor vehicles and
volume of the traffic contributed largely to the overall decision made by bikers
on the choice of route taken and were respectively rated 100% and 97%, with
100% rating indicating greatest contribution. Several researchers suggest that
the choice of driving a car along a route is mostly affected by the travel time,
road category, road safety, scenic quality, and the number of traffic lights and
stop signs [25,26]. The results of the work in [22] indicate that the probability
of selecting a route decreases with a rise in the travel time, and drivers tend
to select the routes with lower tolls. The authors in [27] also identified seven
factors that pedestrians consider favourable when selecting a route to take to a
POI. These factors include shorter distance, lower travel time, even sidewalks,
connected links, less crossing and barriers, low congestion level, and safety.

As a summary, we discovered from the various literature that the factors
that are common to road users (bikers, drivers and pedestrians) when choosing
a route to get to a POI include distance to the POI, road condition, level of
congestion, and instances of traffic incidents. We therefore used these factors
as bases for formulating our proposed Road Rating formula. To the best of our
knowledge, we noticed that none of the literature considers the road weather
conditions as a factor that can influence the choice of route by road users. Due to
varying geographic factors, the weather condition along a particular route might
be significantly different from that of another route. Since weather conditions
affect the ease of biking, driving or walking along a route, we therefore consider
the use of weather conditions as one of the factors to be considered while rating
a route using our Route Rating formula as shown in Eqs. (1) and (2). We also
restate here that the weights to be assigned to these traffic parameters including
the weather conditions will be the weighted average derived as a result of the
crowd-sourced data from users’ initial or periodic survey discussed in Sect. 4.1.
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5 The Context-Sensitive Mobile Alert Subsystem

The Context-Sensitive Mobile Alert subsystem of our proposed architecture is
illustrated in Fig. 3. Traffic related data are automatically sensed by the Alert
Sensing Layer and transferred to the Alert Detection Layer periodically. Traffic
data can be received from the cell phone sensors, Google Map API, and related
systems to profile the user. At the Alert Detection Layer, the received traffic
data and the user behavior are analyzed to derive a profile for the user. The
result of the user profiling is further analyzed and compared with normal traffic
data to detect abnormal traffic conditions. This abnormal traffic data is sent
to the Alert Processing Layer in the cloud where the abnormal traffic data is
aggregated (Message Aggregation) using the Cloud-Based Alert Aggregator
(CBAA). Before processing, the received message is authenticated to validate
the source of the message (Message Authentication). This is a crucial compo-
nent of the CBAA as the mechanism prevents instances of malicious users or
hijackers from using the system to create public panics or as a tool for terror-
ism. The authenticated message is then processed using a proposed hybrid Data
Analytic Engine that compares the current data with historical data and then
translate or adapt the message into an alert standardized format (Message
Adaptation/Translation). The translated alert message is then sent by the
CBAA to each affected subscriber (within a determined radius of the incident,
depending on the type and the severity of the incident) in a format that matches
their profiles (Alert Dissemination). For instance, if the travelling mode is
driving/biking, an audio alert is sent to the user but if the traveling mode is
walking/running a textual alert is sent to the user.

5.1 The Cloud-Based Alerts Aggregator and the Optimal Route
Algorithm

The results of user profiling (generated by the User Profiling subsystem) and the
rating of the route currently occupied by the user (generated by Route Rating
subsystem) are sent by a user’s mobile device periodically (proactive service)
or on-demand (reactive service) to the CBAA. As an improvement over exist-
ing cloud-based ITS systems, we anticipated instances of cloud system faults
and failures by designing two-layer alerts/traffic data aggregators by implement-
ing a CBAA while still maintaining a redundant Land-Based Alert Aggregator
(LBAA). The LBAA acts as a cache for offline access, especially for rural ITS
users to traffic messages when the CBAA experiences faults or failures.

The CBAA uses the user profile received to discover all available alternate
routes from the current position of the user to the POI using the Dijkstra’s
Shortest Path Algorithm (DSPA) [28]. For a particular alternate route discovered
by DSPA, the CBAA checks its database to see if there are current Travel Model
data available. If such data exist, the CBAA uses the Route Rating formula
described in Sect. 4.5 to calculate the route cost and rate the route. If there is
no current Travel Model data, The CBAA will first use the Google Map API
data to determine the real-time Travel Model data for the route. If there is
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Fig. 3. Context-sensitive mobile alert subsystem

no current Travel Model data for the route, then the CBAA will generate the
Travel Model data by triggering the hybrid Data Analytic Engine subsystem
(see Fig. 4). The Data Analytic Engine subsystem, using our proposed hybrid
Data Analytic algorithm, discussed in the next section, will analyze the massive
historical traffic data stored in the cloud to generate the requested Travel Model
data for the alternate route. The CBAA will perform the above process for all
the discovered alternate routes and at the end will generate a list of available
routes with their ratings in a descending order.

The CBAA then compares a user profile with the list of shortest routes
generated to determine an optimal route for that user. The implication of this
design is that two users traveling on a particular route might be rerouted to
different routes depending on their individual profiles. The CBAA sends this
optimal route information to a particular user in need of rerouting service via the
user’s mobile device. When the optimal route information gets to the user, the
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user will reroute to this newly discovered optimal route. Road users are rerouted
to the newly discovered route using the Dynamic Round Robin (DRR) load
balancing algorithm [29]. The DRR is a simple, resilient, weighted but dynamic
scheduling algorithm that in our implementation, will allocate routes to users
dynamically based on the real-time condition of the routes as rated by the Route
Rating subsystem described in Sect. 4.3. This is an essential component of the
proposed system as the load balancing functionality of the system prevents a
newly discovered route from becoming overly congested due to poor scheduling,
and it also reduces the chance of an accident occurring in the route.

5.2 The Cloud-Based Data Analytic Engine Subsystem

In order to efficiently process the complex and heterogeneous Big Data that
are associated with ITS applications, we proposed a cloud-based Data Analytic
Engine (DAE) that would provide real-time data analysis, on-demand decision
support, and context-aware recommendations to the various users of the ITS
infrastructure. To transform the heterogeneous and complex ITS data, our pro-
posed cloud-based DAE as shown in Fig. 4 is an enhanced form of Apache Stark
framework [30,31] hybridized with the Apache Kafka [32] for Big Data analytics.
The cloud-based DAE is subsumed with data-driven techniques including fea-
tures selection, collaborative filtering, and ensemble classifiers to provide intelli-
gent and real-time traffic support to road users. In order to manage the storage
and processing of the Big Data that are captured within the ITS network, the
DAE leverages the scalable feature [33–35] of the Apache Spark framework that
allows the system to expand by adding more nodes as the volume of the data
increases. Additionally, to foster the timeliness of processing of the ITS Big
Data, the DAE harnesses the fault-tolerant feature [36] of the Apache Spark
framework fused with the distributed streaming platform of the Apache Kafka
to provide swift and efficient real-time streaming and data analytic within the
ITS infrastructure.

Some additional features of Apache Spark that we implement in the DAE
for ITS Big Data analytic includes the use of a dedicated resource dispenser and
a result accumulator called the driver program. The driver program enables a
smooth coordination of all the data processing operations within the ITS and
reconfiguration of lost partitions effortlessly without depleting the information.
The driver program also ensures that there is no loss of critical information
between the data analytic engine and the alert subscribers. The DAE with the
aid of the driver program stores intermediate results in memory instead of disk,
and supports ample system workloads such as interactive processes, batch pro-
cessing, iterative procedures, machine learning, and graph processing. These are
essential functions necessary for the efficient processing of the ITS Big Data.
We introduced a filter-based feature selection model to the implementation of
the DAE so as to eliminate noise and data redundancy from the complex and
heterogeneous data aggregated from the alert originators. This is crucial for the
optimal performance of our proposed collaborative filtering model. Collaborative
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Fig. 4. Cloud-based data analytic engine subsystem

filtering [37] is a domain-independent prediction that explores historical and cur-
rent data of the users to make intelligent recommendations for the users based
on their current need.

In Fig. 5, we present our proposed Data Analytic algorithm that controls
the DAE. The algorithm uses a filter-based features selection model to remove
redundant and noisy data from the avalanche of dataset coming from the alert
originators. We implement a model-based collaborative filtering technique so
as to benefit from the advantages of ensemble machine learning classifiers [38].
This approach allows us to harness the strength of multiple machine learning
techniques so as to perform predictive analytic and provide intelligent recom-
mendations of the optimal route to users. Specifically, our proposed algorithm
uses ensemble machine learning classifiers consisting of a hybrid of three machine
learning methods including Support Vector Machine (SVM), Long Short-Term
Memory (LSTM) and Decision Tree Algorithm (DTA). We are taking the advan-
tage of the strength of SVM at being able to process heterogeneous and nonlinear
data, and combining it with LSTM which is highly efficient in the analytics of his-
torical data. Another advantage of this hybridization is the use of DTA which is
capable of handling both regression and classification problems. Regression and
classification considerations are desirable data analytic procedures for imple-
menting robust ITS infrastructures.
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Fig. 5. ITS data analytic algorithm

6 Conclusion and Future Research Direction

In this paper, we presented a simple, inexpensive but fully functional Context-
Sensitive Cloud-based Mobile Alert and Optimal Route Discovery and Rating
for ITS infrastructures. Our goal is to provide a transportation system that will
allow traffic data including alerts to be aggregated into a cloud environment
where such data can be analyzed by our proposed hybrid Data Analytic algo-
rithm. Our algorithm is derived by combining enhanced features of Apache Spark
and Kafka frameworks for efficient real-time analysis and alert/traffic message
dissemination to ITS users. Our proposed Data Analytic Engine performs two
essential functions including analysis of received alert messages to detect traffic
anomalies and the analysis of traffic data to generate required Traffic Model for a
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particular road user based on the user profile as received from the mobile devices.
We anticipated instances of system faults and failures by designing two-layer
alerts/traffic data aggregators by implementing a Cloud-Based Alert Aggrega-
tor (CBAA) while still maintaining a redundant Land-Based Alert Aggregator
(LBAA). The LBAA acts as a cache for offline access to traffic messages when
the CBAA experiences faults or failures.

In our future research, we plan to implement, investigate and analyze the
performance of the proposed algorithms operating within the Cloud-Based ITS
architecture as the algorithms support real-time and high quality communication
between road users mobile devices and the CBAA. We will also investigate the
validity of the traffic parameters used in this research along with their assigned
weights, so as to establish their correctness. We anticipate that there will be
some other design and implementation issues that will emanate as a result of
the proposed architecture. Therefore, we will address these challenges and related
issues in our future publications.
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