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Abstract. The development of the Internet of Things and mobile technology is
connecting people and cities and generating large volumes of geolocated and
space-time data. This paper identifies patterns in the Lisbon GIRA bike-sharing
system (BSS), by analyzing the spatiotemporal distribution of travel distance,
speed and duration, and correlating with environmental factors, such as weather
conditions. Through cluster analysis the paper finds novel insights in origin-
destination BSS stations, regarding spatial patterns and usage frequency. Such
findings can inform decision makers and BSS operators towards service opti-
mization, aiming at improving the Lisbon GIRA network planning in the
framework of multimodal urban mobility.
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1 Introduction

Cities are becoming more predominant in modern societies, and citizens mobility is a
raising problem concerning pollution and traffic. To overcome such challenges, shared
mobility approaches have been developed. In this domain, bike-sharing is a rising soft
and active transportation modality, showing large growth rates around the world. In
face of such demand, the number of bike-share companies operating in the world has
increased also, becoming more effective and available in most developed cities.
Therefore, citizens are shifting towards more sustainable urban transportation where
bike-sharing is increasingly being adopted. Understanding how people use the bike and
when, is thus mandatory, towards improving system efficiency.

In 2017, Lisbon implemented a fourth-generation Bike-Sharing System (BSS),
which is currently expanding, under currently enforced development plans by the City
Hall. Taking Lisbon as a use case, we have adopted a data mining approach to
understand station and trip patterns in its GIRA bike-sharing system. To this aim, we
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have analyzed GIRA bike data and environmental data, to derive the spatiotemporal
distribution of travel distances, speed and durations and their relationship with envi-
ronmental conditions, such as weather.

1.1 Historical Background

In 2017 Lisbon implemented its first bike-sharing system, GIRA. Over a year, it
expanded and in 2018 there were already 140 bike stations across the city, among
which 92 in the central area of the city, 27 downtown and riverfront, 15 at Parque das
Nações and 6 at Avenida Fontes Pereira de Melo and Avenida da Liberdade. At that
time the total available bikes were 1,410, with 940 electric. Currently, the GIRA bike-
sharing system has future expansion plans, since bike-sharing is one an important
strategy in the context of urban mobility policies approved by the city hall, towards
achieving intelligent and sustainable mobility in Lisbon.

The deployed system includes a data collection feature, allowing to monitor spa-
tiotemporal users’ behavior and trip patterns. By analyzing such collected data, we can
gain new insights about mobility in the urban fabric, specifically on real-world bicycle-
sharing system usage behaviors. Additionally, monitoring and analyzing user behavior
changes, provides a broader scenario of the Lisbon public transportation network,
giving new opportunities and patterns for prediction and usability improvement.

1.2 Our Research Approach

Our approach started by posing the following research question: “What are the spa-
tiotemporal station and trip activity patterns of GIRA, the Lisbon BSS, in 2018?” This
question statement leads us to derive the following sub-questions: “What are the
average figures of monthly and daily BSS use?”; “What is the bike trip relation to
weather conditions, specifically to precipitation and temperature?”; “How can we group
the BSS origin and destination stations, into clusters across the city?

To address these questions, we have applied statistical and machine learning meth-
ods, based in our literature review of the state of the art. We have looked at historical data
of bike trips (approximately 700,000 records), Portuguese Institute of Sea andWeather –
Instituto Português do Mar e Atmosfera (IPMA) data, and cycling network data of 2018,
with a focus on finding usage patterns, towards service optimization.

The paper is structured as follows: Sect. 2 presents our survey of State of the Art. In
Sect. 3, we introduce our methodology, which adopted state of the art methods. In
Sect. 4, Major Findings, we discuss our results, with a comparative analysis with other
cities and identify a few research gaps and limitations of our research. Finally, Sect. 5,
we raise some conclusions and draw lines for further research.

2 State of the Art of Bike-Sharing Systems

The community agrees that BSS improve urban accessibility and sustainability, and
thus more cities in the world are implementing BSS to tackle urban mobility and
pollution problems. Since 2016 over 1000 BSS are running in 60 countries [1].
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From its third-generation, BSS start using smart card technology [2], producing
station-based and trip-level data, and facilitating studies that enable the adoption of
these systems into urban transportation networks [3]. Evolving fourth-generation BSS
provides key data on users’ behavior and trip patterns.

Monitoring makes possible the identification of system performance and data
analysis provides insights into users’ behavior [4] enabling to balance bike demand and
improve bike network resilience and response.

The latest bike-sharing systems technology [5] uses two configurations: a fixed
number of bike stations to hire and return bikes and a free placement scheme. Bike
stations can be monitored in real-time on online maps. Application Programming
Interfaces (API), accessing the network usage data are supplied by operators and
specified to be used by external software developers. In Europe, such access is gov-
erned by the GDPR – General Data Protection Regulation [6], enforced since 2018,
which includes provisions for personal data privacy and protection, including data
anonymization. This scheme produces usage datasets, of critical importance in trans-
port research [5].

O’Brien [5] first analyzed 38 bike-sharing systems in Europe, the Middle East,
Asia, Australasia and the Americas, identifying behavior patterns. Metrics were applied
to classify bicycle sharing systems, based on non-spatial and spatial location attributes
and temporal usage statistics, plus a qualitative classification. The study proposed
applications such as demographic analysis and the role of operator redistribution
activity.

BSSs have been studied over time by other authors, with important insights about
station and bike trip patterns analysis.

One of the most sophisticated BSS in the world is deployed in Copenhagen,
reaching a ratio of 557,920 inhabitants for 650,000 bikes, with 48,000 bike stations and
429 km of cycle lanes [7]. It is estimated that overall, 1,27 million km are travelled
daily with 5 times more bicycles entering the city than cars, resulting in 4/5 access to
bicycles.

Vélov, Lyon (France) bike-sharing system, studied by Jensen [8], analyzed
11,6 million journeys and visualized bike flows on map. Characteristics, such as peak
usage in a strike as well as different work speeds, highest peak hours, where analyzed.
The authors observed that the highest speed occurred in the morning peak.

The London BSS network (Santander Cycles) is also expanding. In 2016 it reached
11,000 bicycles for 8,416,535 inhabitants, with 750 bike stations, 402,199 km travelled
daily and 131,000 bicycle trips. London BSS station data, analyzed by Lathia [9] and
Jensen [8], observed usage peaks and significant weekday and weekend differences.
Spatial clusters with distinctive structures were found grouping intra-day usage
patterns.

Studies show that longer BSS trips are observed in larger cities such as Chicago [10]
and New York, although the latter differs between weekday and weekend usage [11].

Caulfield [12] findings showed that the majority of trips of BSS in medium size
cities were short and frequent trips. Weather conditions also had an important impact,
meaning that good weather conditions corresponded to an increase of trips.
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El-Assi [13] analyzed the variation of trip activity along the season, month, week
and hour, establishing correlations between these variables. The authors found a pos-
itive correlation with temperature calculated for each season.

Other studies showed that morning and afternoon peak patterns are different in BSS.
Han study [14] on San Francisco spatial-temporal bike trip patterns showed that in

the hourly metrics analysis, most of the trips were between 8:00–9:00 am and 5:00–
6:00 pm, meaning that most users use bikes to commute to work. El-Assi [13] found
similar results in Toronto BSS regarding day peaks.

On the other hand, in Montreal BIXI BSS [15], peaks occurs in the evening and
weekends.

Clustering algorithms studies on BSS data are applied by combining temporal and
spatial attributes variables. More specifically, three clustering algorithms, namely,
hierarchical clustering [10, 16, 17], community detection clustering [10, 18], and K-
means clustering, [18–21], are the most common.

According to Caggiani [18], who analyzed the performance of the three clustering
algorithms, K-means has been proven to be the best clustering algorithm to detect and
rebalance bike-sharing usage patterns.

3 Data Mining Methodology

Our data analysis and visualization were performed in Python [22] using Jupyter
Notebook platform [23]. Data cleaning, preprocessing, analysis and visualization were
performed using different libraries according to the purpose of the application. “Numpy”
[24], “Pandas” [25], “Matplotlib” [26], “Seaborn” [27] were used for statistical analysis
and visualization. “GDAL” [28], “Shapely” [29], “Folium” [30], “Fiona” [31] were used
to visualize spatial analysis. Our data science algorithms used “Scikit-learn” [32] to
perform K-Means, Naïve Bayes, Train-test split and Accuracy Score.

In our approach, we have adopted the Cross-Industry Standard Process for Data
Mining (CRISP-DM) methodology (see Fig. 1). This method is structured in three
phases that are organized in a sequence: firstly, data collection, secondly data cleaning
and thirdly data mining. Chapman [33] is convinced that CRISP-DM ensures the
quality of knowledge discovery in the project results, requires reduced skills for such
knowledge discovery, and with reduced costs and time. Data collection consists in
collecting and perceiving the characteristics of the collected data, to meet the users and
business needs, understanding where the data comes from and what type of analysis
can be done with it. With Data Cleaning, we remove noise in the data, so that further
analysis cannot be affected by the data itself. Data Mining allows the application of
statistical and/or machine learning techniques enabling discovery of behaviors that
could not be possible to observe before. It also includes data visualization, with dia-
grams, plots and other graphical depictions, that show us visually, the found patterns
and behaviors.

Our datasets included bike trip data with trip characteristics, and bike stations data
holding information about the network of bike stations throughout the city. To
investigate the built environment correlation with trips, we’ve used precipitation and
temperature datasets for this analysis.
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Two datasets were generated for our analysis: one combining precipitation and
temperature data and bike trips data (see schemas in Table 2 and Table 3), and another
combining bike trips data and bike station data (see schemas in Table 1 and Table 2),
with the goal to generate bike paths in the city and to visualize the stations chosen by
the users. The first dataset was joined through a temporal basis and the second one was
joined via the stations field. To generate these datasets, we’ve developed an Extract,
Transform and Load process (ETL), to load the external databases, transform them by
creating common columns and joining the datasets, and finally by loading them into
our project. I’ve performed an adaptation of the ETL methodology proposed in CRISP-
DM. Our ETL was used in the Data Cleaning phase, as it performs some cleaning and
conforming processes in the incoming data, to obtain data which is correct, complete,
consistent, accurate and unambiguous [34].

3.1 Data Sources and Data Characteristics

Three different sources of data provided by the Lisbon City Hall and the Portuguese
Institute of Sea and Weather – Instituto Português do Mar e Atmosfera (IPMA), were

Data Cleaning

Handle Missing Values
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Normalisation

Data Collection

Data Sources
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Extract Data

Data Mining

Analysis

Visualisation

Results 

Fig. 1. CRISP-DM Methodology.
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used in our research: bike station data of 2018, bike trip data (from 25th January 2018
to 15th October 2018) and IPMA data of 2018.

Bike station data schema includes information about the stations, such as com-
mercial designation ID (desigcomercial), entity ID (entity_id), planning ID (id_-
planeamento), latitude, longitude and the station capacity (capacidade_docas). This
data was collected in 76 bicycle stations around Lisbon.

Bike trip data of 2018, is characterized by origin-destination (O-D) trip that
includes id (column ID), date_start (start date and time), date_end (end date and time),
distance (distance in metres), station_start (start station ID), station_end (end station
ID), bike_rfid (bike ID), geom (geometry), num_vertices (number of nodes), and
tipo_bicicleta (bike_type).

The IPMA weather data of 2018 consists in the total precipitation in 2018, and its
schema includes the fields ANO (Year), MS (Month), DI (Day), HR (Hour),
“1200535”, “1200579” and “1210762”. These 3 last fields represent the reference
(ID) of the 3 weather stations located in Lisbon, giving information about the pre-
cipitation, where “1200535” is Lisboa Geofísica (Lisbon centre), “1200579” is Lisboa
Avenida Gago Coutinho and “1210762” is Lisboa Tapada da Ajuda.

Table 1. Bike station data schema

Characteristics Description

desigcomercial Commercial designation
entity_id Entity ID
id_planeamento Planning ID
latitude Latitude
longitude Longitude
capacidade_docas Station capacity

Table 2. Bike trip data schema

Characteristics Description

id Column ID
date_start Start date and time
date_end End date and time
distance distance
station_start Start station ID
station_end End station ID
Bike_rfid Bike ID
geom Travel trajectory geometry
num_vertices Number of nodes
Tipo_bicicleta Bike type (conventional or electric)
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From the 3 data sources whose schemas where presented in Tables 1, 2 and 3, we
derived, via an ETL process, 2 datasets, namely, the “bike temporal analysis dataset”
and the “bike trips-stations dataset”, used in our data mining approach.

3.2 Data Cleaning

EMEL GIRA data, a fourth generation BSS, provides broad and extensive information.
Data extraction methods have not yet been extensively explored [35], therefore there
are limitations in the collected data, which needs to be evaluated on its limitations and
cleaned, if appropriate. Data cleaning involves processes of handling missing data and
noise removal, to generate datasets with accurate and validated data. In the GIRA
dataset, we have found incoherent data, namely sparse, discontinuities and nonuni-
formities of data. On the contrary, bike station data and IPMA data did not require data
cleaning and were ready to use.

The following data cleaning methods, where applied to bike trip data:

• We have removed the not assigned (NA) values of the bike type (1% of the dataset).
• We have removed the geometry and number of nodes which had NA values,

corresponding to 50% of the data.
• The variable speed was removed due to the trips that were shorter than 1 min.
• The missing values in the distance were filled by computing the average speed times

the duration.

After data cleaning, the total number of trips using the GIRA BSS in 2018 was
684,471. In that year, the average number of trips per month, ranging from January to
October, was 68,447. In terms of stations, the average number of trips was 9,126
throughout year. Per day, there was an average number of trips of 2,602, starting from
January 25th until October 15th.

3.3 Data Mining

Literature studies have tried to understand user’s profile and travel behavior [36–38],
activity patterns of bike stations [9] and the impact of the built environment in the BSS
[39].

Table 3. IPMA data schema

Characteristics Description

ANO Year
MS Month
DI Day
HR Hour
1200535 Lisboa Geofísica Weather Station #1
1200579 Lisboa Avenida Gago Coutinho Weather Station #2
1210762 Lisboa Tapada da Ajuda Weather Station #3
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The methods applied are statistical methods to analyze data and visualization
techniques. To understand bike trip patterns in the urban mobility network and trip
models, studies have shown the importance to correlate transport mode and trip choices
and built environment characteristics [40, 41].

Many methods are applied to perform data mining namely, to examine the relations
between bike stations, bike trips and built environment. The evaluation of BSS success
depends in these relationships, most of them leading to users’ access to the bike stations
[42].

Clustering algorithms combining temporal and spatial attributes variables are also
data mining methods used for this analysis purpose. More specifically K-means clus-
tering [18–21], used by McKenzie [43] and Zhong [44] to measure regularity at dif-
ferent scales and to measure spatiotemporal variation and cluster interaction.

3.3.1 Bike Usage Analysis
To investigate the monthly bicycle usage frequency, we have merged the “bike trip
dataset” with the “bike temporal basis dataset” and got a new relation with columns
ANO (Year), MÊS (Month), DIA (Day), FERIADO (Holiday), SEMANA (Week),
SEMESTRE (Semester), TRIMESTRE (Trimester), DIA_DE_SEMANA (Weekday)
and MÊS_DSC (Month description). This was our trips schema, with data spanning
from January to October from 2018. In the Summer months (June, July, August and
September), there were a total of 439,176 trips being the more concentrated period
(64% of all trips), as depicted in Fig. 2.

The weekday and weekend usage were also analyzed to understand the preferences
of using the bike-sharing service during the week. Results are presented in Fig. 3,
where weekdays are ordered from 1 to 7. The weekend is represented by 1 (Sunday)
and 7 (Saturday). Our results show that most users (82%) prefer to use the service
during the week, rather than during the weekend.

Fig. 2. Bicycle usage frequency per month.
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The distribution of trips throughout the different time periods of the day was
analyzed too. The column date_starts was transformed into a time format and the hour
was extracted in order to create the column Periodo_dia (Day period). The day was
broken down into three-hour groups: Morning: 7:00am to 12:00am; Afternoon:
12:00am– 20:00 pm and Overnight: 20:00 pm–7:00am. Our analysis shows that most
of the trips (56%) occur during the afternoon, when comparing with the morning and
overnight periods (see Fig. 4). Additionally, during working weekdays, after the
afternoon, the morning period comes second. In the weekends, users still prefer to ride
during the afternoon, but overnight rides come second, rather than morning ones.

When analyzing the behavior and patterns regarding the distance and the duration
of the bicycle trips, we addressed the differences between the weekdays versus bicycle
type. Regarding bicycle type (Electric or Conventional), we have observed no
noticeable differences in terms of trip distance and duration, during weekdays. There
also no noticeable difference, in terms of speed and duration, across the different days
of the week, in average.

Fig. 3. Bicycle usage per weekday.

Fig. 4. Bicycle usage (%) per weekday within the day period.
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3.3.2 Station Usage Analysis
Our analysis shows that the most used start stations are located in the main axis of the
city. The top 6 start stations (see Fig. 5) are 105 (CC Vasco da Gama), 307 (Marquês
de Pombal), 417 (Avenida Duque de Ávila), 421 (Alameda D. Afonso Henriques), 446
(Avenida da República/Interface de Entrecampos) and 481 (Campo Grande/Museu da
Cidade).

A heatmap was created with “Folium” [30] Python package with built-in Open-
StreetMap [45] tileset to visualize patterns of bike trip most used start stations (see
Fig. 6). A bike dataset with the latitude and longitude start of each station was used for
this purpose. As observed in Fig. 6, the major concentration of start stations demand is
located in the Lisbon center.

Fig. 5. Bike trip start stations (top 6)
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Regarding end stations of bike trips, we found that the most used ones, are located
in the main axis of the city (see Fig. 7), namely, stations 105 (CC Vasco da Gama), 403
(Avenida Fontes Pereira de Melo), 417 (Avenida Duque de Ávila), 421 (Alameda D.
Afonso Henriques), 446 (Avenida da República/Interface de Entrecampos) and 481
(Campo Grande/Museu da Cidade).

Fig. 6. Bike trip start station heatmap. The red color corresponds to a higher concentration of
bike trip start stations, whereas purple, to a lower. (Color figure online)

Fig. 7. Bike trip end stations (top 6)
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3.3.3 Bike Trip Weather Analysis
We conducted an additional analysis aiming at finding behavior patterns between the
users of BSS and the built environment variables, particularly, weather variables such
as atmospheric precipitation and temperature. For the analysis in terms of atmospheric
precipitation, we created a Boolean variable “rain” indicating if it was raining or not, in
any of the three weather stations. To join the two datasets, we created a new date_key
field from the date_start field of the bicycle trips. From our analysis, we can conclude
that the trips are mostly done when there is no precipitation (97%) (see Fig. 8.).
Regarding temperature analysis, the negative values were removed, and we calculated
the average values of the three stations. Then, we divided the dataset into four

Fig. 8. Bicycle usage frequency relation to atmospheric precipitation.

Fig. 9. Bicycle usage frequency relation to temperature.
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categories: 0º to 10º, 10º to 20º, 20º to 30 and 30º to 42º, being 42º the maximum
observed temperature value (see Fig. 9).

The trip speed was also analyzed in order to check if there was any observed
change when raining, concluding that users are faster in their trips when it was not
raining.

3.3.4 Spatial Cluster Analysis
In our research we seek to understand the behaviors of BSS users, particularly the
movement of the bicycles in terms of the starting and ending of a trip, in each station,
as well as and the frequency of usage of each station, across the available data. For that
purpose, we performed a clustering analysis on the “bike trips dataset”. Initially our
study focused in identifying geographical (WGS84) patterns throughout the city of
Lisbon in terms of trips starting and ending in each station. K-means was used to
produce geographic clustering. An additional data pre-processing step was needed,
before applying K-means. To get the clusters of trips and stations, we found the need to
get all the trips from all the stations, irrespectively if a given station is a trip start or trip
end station. To this aim, we split the original “bike trips dataset” in two, one having the
station_start variable and the other having the station_end variable. Then, the variables
name station_start and station_end are changed to “station” in the corresponding
datasets. Both datasets are afterwards concatenated within the variable station. After,
we computed the count of the trips in each station. The final result was a dataset with
six variables: station, number of trips, station designation, latitude, longitude and dock
capacity.

When applying K-means, we used the Elbow algorithm [46] to find the optimal K
number through the calculation of the SSE (Sum of Squared Errors). The algorithm
found four spatial clusters of the stations where bike trips start and end (see Fig. 8): one
representing the center of Lisbon going from Alvalade to Saldanha (Purple), a second
one representing the east side of Lisbon with just a few stations going from Telheiras to
Cidade Universitária (Yellow), a third one representing the lower part of Lisbon going
from Marquês de Pombal to Baixa (Green), and a forth one representing the Parque das
Nações (Blue). Table 4 shows the coordinates of the center of each cluster for the
geographic clustering generated by K-means (Fig. 10).
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A second analysis was focused on station usage clustering. For that purpose, a pre-
processing step required the creation of a new field n_trips (Number of trips per
station), representing how many trips occurred on that specific station. Then we applied
also K-means, with the same type of approach to find the optimal K number, as in the
prior geographical cluster analysis. This time K-means was applied to find the main
spatial clusters across the city, in terms of the number of trips that start and/or end in
each station. We found four of such clusters (see Fig. 11). We can observe also that
four of the most frequently used stations (labeled in green) are located in the center of
the city, while a fifth one lies in the east side.

Fig. 10. Spatial clustering of stations where bike trips start and/or end (Yellow: Telheiras-
Campo Grande (Museu da Cidade); Purple: Alvalade-Saldanha; Green: Marquês de Pombal-
Baixa; Blue: Parque das Nações) (Color figure online)

Table 4. Cluster centroids

Latitude Longitude

38.743263 −9.144271
38.772288 −9.095947
38.715984
38.759463

−9.143659
−9.168919
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4 Major Findings

Our analysis shows that the total number of trips of EMEL GIRA BSS, from January
15th to October 25th, 2018 was 684,471. The average number of trips per month was
68,447, while the average station number of trips figure was 9,126. Moreover, we
found that the daily average number of trips was 2,602.

The analysis shows also that the months of June, July, August and September had
the most concentration of trips during 2018, with 439,176 trips, representing 64% of all
trips. Regarding the day of the week, we have observed that users choose working
weekdays to travel in the city (82%) compared to the weekend. Also, it is possible to
affirm that the users prefer to use the service on working weekdays than during
weekends.

Our findings also show that most of the trips happen, during 2018, in the afternoon
(56%), followed by the morning period. We have also observed that during weekdays,
the users prefer to ride during the afternoon but in the weekend, users mostly bike
overnight.

Most used O-D stations were observed in two axis: one from Campo Grande to
Marquês de Pombal and another in Parque das Nações, showing that bike demand start
and end stations are located in Lisbon office areas. There are four major concentrations
in the city for the number of trips. The main areas where users unlock GIRA bikes
belong to Parque das Nações, the city center – Alvalade, Avenidas Novas, Santa Maria
Maior - meaning that the center of Lisbon is where the most bike trips happen. There is

Fig. 11. Stations clustering by the number of trips that start and/or end on a given station
(Green: 1st most used stations; Purple: 2nd most used stations; Yellow: 3rd most used stations;
Blue: 4th most used stations) (Color figure online)
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also a close relation of the number of trips with the station capacity, and the station
cluster with more trips is associated with the stations with the greater capacity.

We have also found that built environment factors such as precipitation, affect
GIRA BSS usage, showing that almost 97% of trips take place when there is no rain.
This observation was complemented by a correlation with speed analysis showing that
higher speed is reached when there is no precipitation. Regarding temperature, it is
possible to observe that most users prefer to travel when temperatures are between 20º
and 30º (52%). There is also a significant number of users cycling when the temper-
ature is between 10º and 20º (42%).

Finally, we also found that there was no significant difference, in terms of speed
and duration of bike trips across the different days of the week, in average, nor of
bicycle type (Electric or Conventional). Therefore, our research suggest that the type of
bike is not a decisive factor when it comes to analyze bike trips.

5 Conclusions

This paper provides new insights on the recent implemented GIRA BSS in Lisbon.
Overall, it was interesting to observe a strong use of BSS in a city that did not have a
cycling culture, until recently.

Major findings show that most GIRA BSS trips take place on working weekdays, in
the afternoon, which suggest a usage pattern that correlates well with working-home
commute practices. We have also observed that weather conditions [12, 13] had an
important impact on travel behavior. No rain was consistent with an increase of rid-
ership, and temperatures between 10º to 30º were consistent with such behaviors too.

Lisbon GIRA BSS trip patterns are thus similar to other observed BSS mobility
patterns of medium-size cities [12] discussed in the State of the Art section, such as
patterns found in short and frequent trips and ride peak observed, observed in a case
study in the city of Cork (Ireland) [12].

Parallels with larger cities can be established as well. In Canada, for instance,
Montreal’s BIXI BSS [15] is mostly used in weekdays evenings and weekends. In
Toronto, bike trips are shorter in the weekdays mornings [13].

Large American cities BSS studies [10, 11, 14] show a frequent bike use in the
morning and afternoon peaks [10] and different usage patterns between weekdays and
weekends, identifying longer trips in the weekend [10].

In European large cities, weekday morning trips in the peak hour [8, 44] reach
higher speed than trips over the weekdays and weekends.

As for the Lisbon GIRA BSS there is a strong possibility of overtime change, as
future BSS network expansion plans are implemented in the city in the coming years.

Further work needs to be conducted regarding GIRA BSS in the scope of urban
analytics [47] and literature discussion and parallel comparison with other BSS
implemented nationally and internationally.

Future work needs to be conducted regarding bike station managing models, pre-
diction of potential network demand to improve network planning, optimization of
stations and locations, bikes rebalancing operation overtime and integration of BSS
with multimodal transport systems, in the context of the first and last mile.
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