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Abstract. Tollgates are known as the bottleneck of the highways, which
cause long waiting queues in rush-hour times of the day. This brings
many undesirable consequences such as higher carbon emission and road
safety issues. To avoid this scenario, traffic control authorities need accu-
rate travel time forecasts at tollgates to take effective action to monitor
potential traffic load and improve traffic safety. Accurate forecasting of
the traffic travel time will help traffic regulators to prevent arising prob-
lems by taking action. The main objective of this study is to improve the
short-term forecasting (minutes) of the traffic flow on highway tollgates
by improving a novel hybrid forecasting method that combines Empiri-
cal Mode Decomposition with Support Vector Regression (EMD-SVR).
Results claim that compared with SVR, the new proposed hybrid pre-
diction model, EMD-SVR, can effectively improve prediction accuracy.
Better forecasting of the traffic load will provide safer roads but will also
lower the carbon emissions caused by longer traveling times.

Keywords: Empirical Mode Decomposition · SVR · Machine
learning · Forecasting

1 Introduction

A number of methodologies have recently been developed for forecasting pur-
poses which can be divided into traditional mathematical statistics and machine
learning methods. Regression analysis [2] and time series analysis [8] are some of
the examples of traditional mathematical statistics methods. References [10,14]
are examples of machine learning algorithm applications to predict traffic load.
A review and comparison of the methods are given in Ref. [20].

Recently, Empirical Mode Decomposition (EMD) [12] has become a use-
ful tool to improve forecasting methodologies in many areas from solar and
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wind energy to financial time series ([3–5,15–17,19]). EMD is a method which
decomposes a complex time-series data into its frequency components i.e. so-
called intrinsic mode functions (IMFs) ([3,5,12]). EMD divides data into its
IMFs, which are a number of high to low-frequency components, where the
high-frequency component corresponds to the short term changes, and the low-
frequency component corresponds to the long term changes. By using different
combination of the frequency components of the data enable us to predict short
or long term predictions much more accurately compared to using original (i.e.
raw) data. EMD separates data into its components (IMFs) and in this way
reduces the complexity of the data and separate trends into different scales
which results in a higher accuracy forecasting.

The general approach to EMD-based hybrid prediction methods is to indi-
vidually predict each IMF and then sum these predicted values to obtain a final
prediction. However, the time series of separate IMFs can be categorized in dif-
ferent characteristics and thereby achieve advancement in the time series analysis
techniques.

While hybrid methods with EMD come forward as a more effective approach
with its higher prediction accuracy, yet there is not a consensus in the literature
on which IMFs should be included in the forecasting process.

It is reported that for varying combinations of IMFs a varying prediction
accuracy is obtained [6,7,9,11,13,21,22,24]. It is suggested that IMFs that has
lower frequency carries the characteristics of the original data, regarded as rep-
resenting the mean tendency trend [7,9,11,22,24]. The authors associated the
higher frequency IMFs with a large amount of noise, which results in a lack
of accuracy on the prediction of the wind data. References [9,11,21,24] claimed
that the elimination of the IMFs which have high frequency resulted in improved
predictive accuracy. References [9,11] carried on an analysis by eliminating the
first IMF. Quite the opposite, Ref. [13] excluded the residue from the predic-
tion and reported that omitting the residue is not showing a significant effect
on prediction results. As a different approach, instead of removing the high-
frequency IMFs from the calculation Refs. [7,22,23] decomposed them separately
and reconstructed them. A detailed review could be found in Ref. [6].

Lin et al. [14] have studied travel time and volume predictions with SVR by
including scaling methods and they achieved accurate forecasting for the rush
hours [4]. In a previous study by Altıntaş et al. [3], it has been shown that
the EMD method is superior to conventional filter-based mode decomposition
methods. In this study we improve the tollgate traffic travel time predictions
by using the EMD-SVR method. We have obtained higher prediction by using
selected IMFs as input for the SVR regression model.

The paper is organized as follows. First, the theory and method is given
followed by the application of the method to traffic travel time data. The results
are summarized and addressed in the following section, and some concluding
remarks are given in the final section.
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2 Theory and Method

2.1 Scale Decomposition by Empirical Mode Decomposition

EMD is constructed on the premise that any data signal consists of various simple
intrinsic modes of oscillations, the original signal being a superposition of these
oscillations. Each mode is referred to as an IMF [12] that satisfies the subsequent
two conditions: (i) the local extrema and zero-crossing numbers must be equal
or differ by one at the most; (ii) the mean of the curve that is constructed by
connecting the maxima and minima should be zero.

EMD Algorithm. For a continuous times series X(t), an algorithm could be
written as follows to apply the EMD. Fluctuations will be obtained by subtract-
ing the data from its time averaging (therefore the time history data will oscillate
around zero).

i. All the maxima and minima will be obtained, see Fig. 1(a).
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(a) All local maxima (red points), and local
minima (green points).
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(b) Construction of the mean curve by
applying a cubic spline.

Fig. 1. Finding maxima, minima, and constructing a curve. (Color figure online)

ii. An envelope will be constructed for both maxima and minima and a mean
curve of these two envelope curves, i.e. m11(t), see Fig. 1(b).

iii. First IMF will be constructed from the original data, i.e. h10 = X(t). The
first index in hij represents the number of the IMF in construction, the sec-
ond represents the number of the iteration. As an example, the first iteration
to find the IMF 1 represented as, h11(t) = h10(t) − m11(t).

iv. The steps (i), (ii), (iii) will be done recursively, h1k(t) = h1(k−1)(t)−m1k(t).
The stopping criteria is: for 0 ≤ t ≤ T

sdn =
T∑

t=0

(

∣∣hn(k−1)(t) − hnk(t)
∣∣2

h2
n(k−1)(t)

)
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Empirically a number sdn < ε is defined as a stopping criterion where ε is a
number between 0.1 and 0.3.

v. When the first IMF, i.e. h1k(t) is found, it is subtracted from h10(t) to obtain
h20(t). The process then restarts from (i) to find the second IMF.

vi. Set ci(t) = hik(t), where ci(t) is the ith. IMF. All the IMFs has been obtained
when subtraction at step (v) gives a monotonic or constant data (residue).

As a result, a set of IMFs are obtained. As an example, for the signal X(t)
given as in (Fig. 2):

X(t) = 4cos(10t) + 2cos(t) + 3.

The resulting IMFs of the EMD process will be the frequency components of
the raw signal X(t). The highest frequency component, 4cos(t), is the first IMF,
the second IMF is, 2cos(t), finally the residual is 3 (Fig. 3).
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Fig. 2. x(t) = 4cos(10t) + 2cos(t) + 3.
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Fig. 3. IMF1 = 4cos(10t), IMF2 = 2cos(t),
residual = 3.

2.2 SVR Method

The Support Vector Regression (SVR) is an algorithm for machine learning,
which is a variant of Support Vector Machine (SVM). ([18]). SVR has widely
been applied to forecasting problems. For a time-series data,

D = (Xi, yi), 1 ≤ i ≤ N,

where Xi represents the ith element and yi corresponds the target output data.
The SVR function, f , is a linear function which is issued to formulate the nonlin-
ear relation between input and output data as: f(Xi) = ωTφ(Xi) + b, where ω,
b and φ(Xi) are the weight vector, bias and function that maps the input vector
X into a higher dimensional feature space, respectively. ω and b are obtained by
solving the optimization problem:

min
1
2
‖ω‖2 + C

N∑

i=1

(ξi + ξ∗
i ) (1)
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subject to:
yi − ωT (ψ(x)) − b ≤ ε + ξi

ωT (ψ(x)) + b − yi ≤ ε + ξi

ξi, ξ
∗
i ≥ 0.

(2)

The first term of Eq. 1 measures the flatness of the function. The parameter C
balances the trade-off between the complexity of the model and its generalization
ability. The cost of error is measured by the variables, ξi and ξ∗

i .
The final SVR function is obtained as:

yi = f(Xi) =
N∑

i=1

((αi − α∗
i )K(Xi,Xj)) + b (3)

where K(Xi,Xj) is the Kernel function [18] and αi and α∗
i are the Lagrange

multipliers.

2.3 Application to Traffic Travel Time Data

The data are provided by the Knowledge Discovery and Data Mining (KDD)
2017 web site [1]. The data consist of the travel time of vehicles for the period
of 19th June to 24th October 2016 for six routes. These are from intersection A
to tollgates 1 and 2, and from intersection B and C to tollgates 1 and 3 (Fig. 4).

Fig. 4. Road map. [1]

The data consist of a list of records of actual vehicles including intersection
ID, tollgate ID, vehicle ID, the time point when the vehicle enters the road,
trajectory and travel time which is the total time taken from intersection to
the tollgate (Table 1). The travel time data of the vehicles are averaged over
20 min of time-windows (Table 2). There are missing records which means that
the time-window has no vehicle recorded, taken as zero average.

The prediction is performed for route B-3 (see Fig. 4) for the morning rush
hours (08:00–10:00). The prediction is for every 20 min time-window between
08:00–10:00 and therefore there are six time-windows to forecast. The previous
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20 min time-window has been used as the feature to forecast the next 20 min
time-window, i.e., time-window 07:40–08:00 enters the process to forecast the
next time-window, 08:00–08:20. The data that have been used in the predictions
are given in Fig. 5. The data set is split into two data sets as training for the
period of 19-07-2016 to 18-10-2016 (first 13 weeks) and test for the period of
18-10-2016 to 24-10-2016 (last 1 week), respectively.

Table 1. Original data from 19th June to 24th October 2016 for six routes.

Field Type Description

intersection id string intersection ID

tollgate id string tollgate ID

vehicle id string vehicle ID

starting time datetime minute the vehicle enters the route

travel seq string trajectory of the link traces

travel time float total travel time (in seconds).

Table 2. The data used in this study is given in the table below. The travel time data
is averaged over 20 minutes of time-windows.

Field Type Description

intersection id string intersection ID

tollgate id string tollgate ID

time window string 20-minute time-window, e.g., [2016-19-07 07:40:00,
2016-19-07 08:00:00]

average travel time float the average travel time of vehicles in the time-window

In this study, we use SVR method as the baseline method and we compare
it with the EMD-SVR hybrid method. The data are scaled by Min-Max scaling
method to an interval of [-1, 1] before the SVR process. The radial basis function
(RBF) is chosen as the kernel function, then Kernel function written as:

K(Xi,Xj) = exp(−γ‖Xi − Xj‖2), (4)

where the parameter γ, intuitively defines the degree to which the effect of a
single example of training reaches. In this study parameters are set to γ = 0.96,
C = 1.0, ε = 0.1 and are used for all the predictions.

In this text, original data represents the data used in SVR method (first 13
weeks of the data). Original data prediction is the prediction made with SVR.
Real data is the test data that never entered any prediction method, traffic travel
time data of the last 7 days (last week).
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In the EMD-SVR hybrid method, EMD used as a preprocessor to SVR.
EMD splits data into IMFs and each IMF is a feature (input) for SVR. IMFs
are frequency modes that are obtained by applying EMD to the original data.
The sum of all IMFs is equal to the original data. In Fig. 6, the original data of
average travel time 07:40–08:00 and its IMFs’ obtained by EMD are given. The
data set has been split into its IMFs. The number of IMFs has been limited to
four, the fourth IMF is including the residual. Each four IMF has been an input
for SVR. The combinations of the outputs are the predictions. That process is
repeated for all six time-window predictions in the EMD-SVR hybrid method.
A process of EMD combined with SVR is given in Fig. 7.

Fig. 5. The rush-hour average travel time data for the route B-3 for the dates 19-07-
2016 to 24-10-2016. The data for the time-window 07:40–8:00 are also added since they
were used to predict the first rush-hour window, 08:00–8:20.

3 Results and Discussion

The predictions for the test data which is the last week of 14 weeks data is
obtained for both the SVR and the EMD-SVR method. We would like to clarify
that all the parameters in both SVR and EMD are kept the same for all predic-
tions. SVR is performed by using the original data as the feature. In EMD-SVR,
EMD used as a preprocessor to SVR that splits original data into its IMFs. In
EMD-SVR, each IMF is a feature for SVR instead the original data.

A total of six 20-min time-window predictions for the rush hours, 08:00–0:00,
for the dates between 18-10-2016 and 24-10-2016 are given in Figs. 8(a) to 8(f).
Mean square (MSE) and root mean square error (RMSE) are given in Table 3,
where the best approximation is given in a separate column and also highlighted
in red.
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Fig. 6. The original data for the average travel time for the window 07:40–8:00 and the
intrinsic mode functions (IMFs) by applying empirical mode decomposition (EMD).
The upper signal is the original data, and the subsequent four signals are the IMFs
obtained by applying EMD to the original data.

Fig. 7. Process schema of EMD-SVR method.

For the travel time windows 08:00–8:20, 08:20–8:40 and 09:20–9:40, IMF 1
gives a better approximation compared to the original data and all the other
combinations of IMFs (see Figs. 8(a), 8(b), 8(e), respectively and Table 3). For
the time windows 08:40–9:00 and 09:00–9:20, a combination of IMF 3 + IMF 4
and IMF2 + IMF 3, respectively, agree better with real data than all the other
IMF combinations and original data (see Fig. 8(c), Fig. 8(d), respectively and
Table 3). For the time-window 09:40–0:00, the original data approximate the
real data better than all the other IMFs and their combinations. However, IMF
1 approximates the real data with less than an MSE error of 1% difference
compared to the original data prediction.
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(a) Prediction for 08 : 00− 08 : 20. (b) Prediction for 08 : 20− 08 : 40.

(c) Prediction for 08 : 40− 09 : 00. (d) Prediction for 09 : 00− 09 : 20.

(e) Prediction for 09 : 20− 09 : 40. (f) Prediction for 09 : 40− 10 : 00.

Fig. 8. Traffic travel time predictions for the rush hours, 8:00–0:00, for the 20 minutes
time interval. The data is the date between 18-10-2016 to 24-10-2016 (Monday to
Sunday).

Table 3. The travel time predictions errors for the rush hours, 08:00–0:00, for 20 min
time-window (see Figs. 8(a) - 8(f)). MSE = mean square error, RMSE = root mean
square error.

Original data IMF 1 IMF 2 IMF 3 IMF 4 IMF 3 + IMF 4 IMF 2 + IMF 3 Best Approximation

MSE RMSE MSE RMSE MSE RMSE MSE RMSE MSE RMSE MSE RMSE MSE RMSE

08.00-08:20 0.2000 0.4472 0.0783 0.2796 0.2749 0.5243 0.9813 0.9906 0.1853 0.4304 IMF 1

08.20-08:40 0.2346 0.4844 0.2108 0.4592 0.2190 0.4679 0.7614 0.8726 0.2655 0.5153 IMF 1

08.40-09:00 0.2014 0.4488 0.2419 0.4919 0.2591 0.5091 0.2093 0.4575 0.2022 0.4497 0.1690 0.4112 IMF 3 + IMF 4

09.00-09:20 0.1787 0.4228 0.3306 0.5749 0.2405 0.4904 0.5427 0.7367 0.9815 0.9907 0.1542 0.3927 IMF 2 + IMF 3

09.20-09:40 0.1912 0.4373 0.1676 0.4094 0.8584 0.9265 0.8328 0.9126 0.3163 0.5624 IMF 1

09.40-10:00 0.1836 0.4285 0.1850 0.4301 0.3050 0.5523 0.2112 0.4595 0.3367 0.5803 Original data
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4 Conclusion

In this study, an EMD-based decoupling procedure is applied as a preprocessor to
SVR to improve the travel time forecasting. First, IMFs are obtained by applying
EMD to the original data, each IMF is used as a feature for SVR instead of the
original data. The prediction results are compared for the combination of the
IMFs and the original data. The KDD Cup 2017 data have been used for the
rush hours 08:00–0:00. The data set has been split into 20 min time windows and
a previous 20 min time-window has been used as a feature in the forecasting. All
the parameters are kept for all predictions.

As a result, for five out of six 20 min time-windows, IMF or IMF combina-
tions approximate the real data better than using original data in the prediction
process. The time-window that gives better results for original data, namely
09:40–0:00, only gives 1% better agreement compared to IMF 1. Therefore we
claim that the EMD based signal decomposition could be beneficial in forecasting
studies to obtain better approximations.

References

1. Kdd2017. https://tianchi.aliyun.com/competition/information.htm?spm=5176.
100067.5678.2.ru0ea4&raceId=231597. Accessed 15 Mar 2017

2. Alam, I., Farid, D., Rossetti, R.J.F.: The prediction of traffic flow with regression
analysis. In: Abraham, A., Dutta, P., Mandal, J., Bhattacharya, A., Dutta, S.
(eds.) Emerging Technologies in Data Mining and Information Security. Advances
in Intelligent Systems and Computing, vol. 813, pp. 661–671. Springer, Singapore
(2019). https://doi.org/10.1007/978-981-13-1498-8 58
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