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Abstract. Camera systems capture images from the surrounding envi-
ronment and process these datastreams to detect and classify objects.
However, these systems are prone to errors, often caused by adverse
weather conditions such as fog. It is well known that fog has a negative
effect on the camera’s view and thus degrades sensor performance. This is
caused by microscopic water droplets in the air, that scatter light, reduce
contrast and blur the image. Object detection algorithms show severely
worse performance and high uncertainty when exposed to fog. However,
they need to work safe and reliable in all weather conditions to enable full
autonomous driving in the future. This work focuses on the evaluation of
several state-of-the-art object detectors in normal and foggy environmen-
tal conditions. It is shown that the detection performance deteriorates
considerably when exposed to fog. Further, the results suggest that some
algorithms are more robust towards fog than others.
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1 Introduction

One of the greatest challenges still remaining to enable fully autonomous vehi-
cles, is the ability to drive safely and reliably even in low visibility conditions.
Safety systems rely on data from surround sensors to correctly perceive their
environment. Although most sensors perform well in good visibility conditions,
their performance degrades extremely during adverse weather conditions such as
rain, fog and snow. Hasirlioglu et al. showed that the effects of rain on camera,
lidar and radar sensors degrade sensor performance [6,8]. Reway et al. evalu-
ated camera-based object detection by simulating various environmental condi-
tions [19].

Camera-based object detection is of high importance when it comes to vehicle
safety. Currently, the camera is the only sensor that can reliably interpret a
situation, due to its ability to recognize the semantic of an object. Early, accurate

This work is supported under the FH-Impuls program of the German Federal Ministry
of Education and Research (BMBF) under Grant No. 13FH7I01IA.

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2021
Published by Springer Nature Switzerland AG 2021. All Rights Reserved

A. L. Martins et al. (Eds.): INTSYS 2020, LNICST 364, pp. 211-222, 2021.
https://doi.org/10.1007/978-3-030-71454-3_13


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71454-3_13&domain=pdf
https://doi.org/10.1007/978-3-030-71454-3_13

212 T. Rothmeier and W. Huber

and reliable detection results can prevent traffic accidents and thus save lifes. In
the last few years huge progress has been made in the field of computer vision,
mostly induced by the success of neural networks for object detection tasks.
However, these novel algorithms are not yet able to completely mimic human
perception. Furthermore, most of the algorithms have been trained under good
weather conditions, which leads to problems and high uncertainty under poor
visibility conditions.

Poor visibility can occur in fog, for example. Fog consists of microscopic
water droplets in the air that scatter light and lead to reduced contrast, color
saturation and less precision in contours and details. These effects grow with
increasing distance to the object and lead to an overestimation of the distance
to the object ahead [13,21].

In this work we focus on performance evaluation of camera-based object
detection under foggy weather conditions. We want to quantify the extent to
which the uncertainty of the predictions and the localisation error change with
increasing distance to the object. Furthermore we aim to give a comparison of
different object detectors in dense fog. The evaluation is based on data recorded
in the adverse weather chamber of CARISSMA on which a car attrap moves
from the camera sensor.

Outline. This paper is organised as follows: Sect. 2 gives an overview of related
work towards object detection in adverse weather. Section 3 describes our exper-
imental setup, data preparation and evaluation methods. Section 4 shows the
results of the object detectors on our test scenario, while Sect. 5 summarizes our
contribution and discusses limitations and future work.

2 Related Work

In recent years, neural networks, especially Convolutional Neural Networks
(CNNs), have increasingly emerged as the standard for object detection and
object recognition. There is a large variety of object detectors that use different
features and sensor data as input. However, most of them share similar basic
concepts that can be roughly divided into one-stage-detectors and two-stage-
detectors. The following section will give a short overview of object detectors
and shortly summarize their underlying concepts.

An example for a two-stage-detector is Faster R-CNN [18]. In the first stage a
feature map is given to a Region Proposal Network (RPN) that proposes regions
of interest that might contain an object. In the second stage the proposed regions
of the RPN are then classified by another network layer. Since two network passes
are required, these detectors are slower than networks that predict location and
class in a single step.

In order to address this issue other architectures were proposed that only
require one network pass, so called one-stage-detectors. Well known examples
are YOLOv3 [17], Single-Shot-Detector (SSD) [12] and RetinaNet [10]. They
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differ from two-stage-detectors as they omit the region proposal stage and there-
fore predict bounding boxes and object classes in a single network run. This
leads to faster inference times than with two-stage-detectors. SSD uses multiple
feature maps at different scales, to predict bounding boxes and classify objects at
different size. Similarily YOLOv3 uses a feature pyramid to extract features from
3 different scales. It is trimmed for fast inference time. RetinaNet introduces a
new focal loss, that aims to tackle to problem of class imbalance encountered
during training of dense detectors.

Although there is lots of progress in the field of object detection, adverse
weather conditions still pose a huge problem. In [1,5,23] techniques for fog
removal in images were proposed in order to recover scene contrasts and thus
improve the overall image quality as a pre-processing step for object detectors.

Furthermore, approaches for the detection of fog in images are being
researched. The only reliable information in images with fog is loss of contrast
and blurring of the image. However, information about presence and density of
fog could help to decrease uncertainty in object detection. Pavlic et al. proposed
an approach to detect the presence of fog in images and classify it using Gabor
Filters [14,15].

Volk et al. present a method to improve object detection algorithms by aug-
menting training data with synthetic rain variations [22]. Hnewa et al. tested
YOLOvV3 and Faster R-CNN under clear and rainy weather conditions and gave
an overview of promising approaches to improve object detection under rainy
weather conditions [9)].

Reway et al. showed the drop of camera sensor performance in different day-
time and weather conditions using a virtual simulation [19]. Therefore a real
camera is placed in front of a high resolution monitor that films the simulated
environment. Hasirlioglu et al. evaluated in [7] the performance of a camera
sensor mounted inside a car with raindrops on the windshield. They measured,
how these raindrops affect the performance of two different object detectors in
between one wiping action. They showed that false detections increase propor-
tionally with the amount of raindrops on the windshield. In [8] the performance
of camera, radar and lidar sensors were assessed. Here, an adverse weather facil-
ity was used which is capable of simulating reproducible rain with different
intensities.

Object detection does not solely rely on the camera sensor for detecting
objects. An automated vehicle e.g. is equipped with a set of different sensors
like camera, lidar and radar. These redudant sensor data can be used in fusion
architectures for object detection. Pfeuffer et al. introduced a data fusion archi-
tecture based on deep neural networks that unifies the sensor streams to improve
detection capabilities [16]. Bijelic et al. [2] collected a large set of data for camera
and lidar and proposed a deep multimodal sensor fusion approach for improving
object detection in bad weather.

In this work we focus on the performance evaluation of camera-based object
detection algorithms in dense fog, as automotive camera sensors are cheap and
are already widely used in existing cars. In particular, the contribution of our
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work is to present a test method to measure the performance of object detectors
in fog. Furthermore we contribute by evaluating several object detectors with
the presented test method and show that the performance of different object
detectors varies under the same environmental conditions.

3 Method and Materials

In this section we describe the experimental setup of our test scenario, the
recorded dataset, the object detection algorithms and the evaluation metrics
that were applied. We will speak of normal weather conditions when no fog is
present.

3.1 Experimental Setup

In order to compare the performance of object detectors in different weather
conditions we prepared a dynamic test scenario. Videos were recorded with a
standard automotive camera with a resolution of 2 megapixels at a frame rate
of 24 frames per second.

We recorded our test data in the indoor test facility of CARISSMA which
is capable of simulating dense fog up to a human visual range of 20m. A stan-
dardized Euro NCAP Vehicle Target (EVT) [20] was positioned in front of the
camera with a distance of 1m. The EVT is placed on a unmanned vehicle plat-
form that is constantly moving away from the camera at a speed of 20 km/h over
a distance of 50 m. Figure 1 shows the experimental setup with and without fog.
The scenario mimics a highway scene with a car moving away from the camera
sensor. The same scenario was recorded for five times under normal conditions
and five times with dense fog. The EVT is the only object visible in the camera’s
field of view (FOV).

Fig. 1. Image sequence of the EVT moving away from the camera sensor. The sequence
on top shows the test setup under normal conditions. The sequence on bottom shows
the test setup with dense fog. Between the shown images from left to right are 55
frames each.
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3.2 Dataset Preparation

As a dataset we used a set of ten videos recorded in the indoor test facility
of CARISSMA. Half of the videos were recorded in normal weather conditions,
while the other half was recorded with fog. All videos were edited to match the
point in time when the EVT starts and stops. From the edited videos, we took
220 frames per video, where the first frame is always the point in time when
the vehicle begins to move. In total, we considered 2200 frames, 1100 for normal
and foggy conditions each. Each frame was hand labeled with a bounding box
enclosing the EVT. The size of each frame was downscaled to a resolution of
800 x 600 pixels.

3.3 Object Detection

For the evaluation of the object detection algorithms under normal and foggy
environmental conditions we chose four object detection algorithms: Faster R-
CNN, SSD, YOLOv3 and RetinaNet. These algorithms are all capable of detect-
ing objects in real time and with high accuracy. Each of them uses a pre-trained
weight file trained on the COCO dataset. The COCO training split contains
118.000 images for training with 80 different object categories [11].

We have chosen different variants for each algorithm, which differ in training
time and training image size. This gives us a better insight into how the algo-
rithms behave and how training images and training time affect performance. For
SSD we chose SSD-300 and SSD-512 and for YOLOv3 the variants YOLOv3-416
and YOLOv3-spp. They only differ in training image size. For the algorithms
RetinaNet and Faster R-CNN, we have selected two variants that differ in terms
of training time marked as 1x and 3x. The 3x variants were trained three times
as long as the 1x variants.

Each object detector was executed on each image from the data set and pre-
dicted a confidence score, a class and an associated bounding box. The detection
threshold was set to 0.1. This means that each result with a predicted confidence
score of greater than the value of 0.1 was saved to a file for further processing.

3.4 Evaluation Metrics

In order to evaluate the object detectors against each other we considered several
object detection metrics from the PASCAL VOC Challenge [4]. We considered
the Intersection over Union (IoU), also known as the Jaccard similarity coeffi-
cient. It is defined by

Nnb
oy < @realant) (1)

area(a U b)
where a N b denotes the intersection of the predicted box with the ground
truth box and a Ub the union of their bounding boxes. IoU is a measure for the

accuracy of an object detector’s predicted bounding boxes.
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Furthermore we plot a Precision-Recall-Curve for each algorithm. It is a plot
of precision and recall for ranked confidence scores. Precision is a measure for
the accuracy of an object detector, whereas recall measures the the amount of
returned results, also called sensitivity. Precision and Recall are defined by

True Positives

Precision = :
TeCSION = T ue Positives + False Positives )

Recall True Positives 3)
ecall =
True Positives + False Negatives

where a True Positive (TP) is defined as a correct detection with ToU > ¢. A
False Positive (FP) is either a wrong detection or a detection with JoU < t. The
ToU threshold value t is defined as the value above which we consider the IoU
of a bounding box to be sufficiently correct. A False Negative (FN) is a ground
truth that was not detected due to a low confidence score.

Additionally, we calculate the Average Precision (AP) for every object detec-
tor which is the estimated area under curve of a Precision-Recall-Curve. It is
defined by

AP = Z(Tn+1 - rn)pinterp(rnJrl) (4)

n=0
The interpolated precision pinierp(n+1) is defined by taking the maximum

precision at each recall level r, where the corresponding recall value is greater
than r,41. It is defined by

pinterp(rnJrl) = F:gg?:)il p(f) (5)

4 Results and Discussion

In this section we present the results of the object detection algorithms on our
recorded dataset. First, we will investigate how increasing distance affects detec-
tion results and the predicted bounding boxes. Then we look at precision and
recall, plot a Precision-Recall-Curve and calculate the AP for each algorithm. It
is to note, that we do not consider inference time in our evaluation.

4.1 Detection over Time

Confidence Score. For the evaluation of the detection capabilities we run each
object detector on every frame in our dataset and save the predicted confidence
scores, classes and bounding boxes. The evaluation results of all algorithms under
normal and foggy environment conditions can be seen in Fig. 2. It shows the
confidence scores of the respective algorithms on the left side and the IoU on
the right side. For each value in the graph the average of the respective five
recordings was taken.
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Fig. 2. Evaluation results of object detection for the dynamic scenario. The plots on
the left show the confidence score for each frame and algorithm. The plots on the right
show the IoU for each frame and algorithm. The values of confidence and IoU are
averaged over five recordings each. (Color figure online)

The distance to the EVT increase with the number of frames. It should be
noted that the frames do not accurately reflect the actual distance driven, as
the unmanned vehicle platform may have minimal inaccuracies in the trajectory
and acceleration.

Regarding Fig. 2 it is clearly visible that the object detectors show high
performance under normal conditions. For most frames the confidence scores
are higher than for the respective scenario with fog. We found that almost all
algorithms - except of Faster R-CNN - have problems to detect the EVT within
the first 30 frames, when the EVT is not completely visible in the camera’s FOV.
This is indicated by a low confidence score at the beginning and consequently
higher uncertainty about the object class. This effect increases further with the
presence of fog and leads to missed detections for the case of SSD-300.

Regarding the object detectors under foggy conditions, it can be seen that
the confidence scores start to decrease with increasing distance. The fog particles
scatter light and lead to reduced contrast and unsharp contours. This leads to
a degradation in the object detector’s performance.
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However, there are also measureable differences among the algorithms. While
YOLOv3, Faster R-CNN and RetinaNet show decreasing confidence scores
around frame 100, the SSD algorithm’s score decreases already at frame 60.
Also the SSD algorithm is unable to detect the EVT at all after frame 120. The
rest of the algorithms are still capable of detecting the EVT until frame 190,
although with a low confidence score near zero. YOLOv3 managed to detect the
car in one video for all frames, therefore it does not drop below a value of 0.2 in
the evaluation.

For the authors of this paper the EVT is still clearly visible as a car up to
frame 150. From this point on it becomes more difficult to recognize the EVT,
but it is still often recognizable until the last frame. The human vision boundary
for fog is marked in Fig.2 as red line.

Intersection over Union. In the previous section we evaluated the confidence
scores over time. However, a high confidence value alone is not sufficient for
object detection. Therefore we evaluate the quality and correctness of the pre-
dicted bounding boxes in this section. The results of the comparison of IoU can
be seen in Fig. 2 on the right side.

In normal conditions the IoU for each algorithm is constantly above a value
of 0.8. Hence, all algorithms can detect the location of the EVT with high accu-
racy in normal environmental conditions. We cannot even notice a decrease in
performance with increasing distance.

For the fog environment we also see very accurate bounding box predictions.
It is to note that an IoU value of 0 was chosen when there is no bounding box
predicted for a frame. For SSD, RetinaNet and Faster R-CNN the IoU value
stays above a value of 0.8 as long as there exists a prediction. If no detection
result is available, this can be recognized by outliers in the curve that drop to a
value of 0. We can note, that even in foggy conditions the bounding boxes are
highly accurate, even when the size of the EVT becomes small.

For YOLOv3 algorithm we see a steady decrease in IoU starting at frame
100. It seems to have problems to detect the correct boundaries of the EVT
when the image contours become blurred and contrast decreases.

4.2 Overall Detection Capabilities

In this section we analyze the overall detection capabilities of each algorithm
in normal and foggy environmental conditions. The results of our analysis can
be seen in Fig. 3. We calculate precision and recall and plot a Precision-Recall-
Curve. As IoU threshold we have chosen a value of 0.5.

All of the object detectors have very high precision and recall in the normal
environment. This can be seen from the high curve, which only begins to fall at a
high recall value. However, the same object detectors show significant differences
when tested on the foggy dataset. All algorithms show a high drop in performance
compared to normal weather conditions.

Table 1 shows the AP for each detector under foggy and normal environmen-
tal conditions. The highest performing algorithm is RetinaNet-1x. It shows the
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Fig. 3. Precision-Recall-Curves for the dynamic object detection scenario under normal
and foggy environmental conditions.

best overall results on our dataset with an AP of 0.807 on the foggy dataset. It
is only by a value of 0.192 worse than under normal weather conditions. SSD
and YOLOv3 show a decline of more than 0.6 in AP compared to normal envi-
ronmental conditions.

RetinaNet and Faster R-CNN are the most promising detectors. We also
found that the models with less training cycles (1x) show higher AP than the
corresponding models with more training cycles. RetinaNet-1x has an AP that
is 0.292 higher than RetinaNet-3x. We see a similar behavior for Faster R-CNN.
Those models could be less overfit to training data and thus be more unbiased
towards environmental conditions.

For SSD we see that the model with larger training image size (SSD-512)
performs better than the one with smaller image size (SSD-300). Here, the SSD-
300 model seems to underfit as its performance is worse for the normal and the
foggy case. YOLOvV3 shows a contrary behaviour: The model with larger training
image size (YOLOvV3-spp) has worse performance than the model with smaller
training image size (YOLOv3-416). Further research would be necessary at this
point to clarify this behavior.

While we see very high AP for all models under normal conditions, there is
still a large gap between the algorithms when exposed to bad visibility conditions.
Our evaluation indicates, that different models are suited better to run in foggy
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environmental conditions and that training time and training parameters also
have an effect on the performance under adverse weather conditions.

Table 1. The AP for algorithms under normal and foggy conditions.

AP (Normal) | AP (Fog) | Difference
SSD-300 0.893 0.080 0.813
SSD-512 0.983 0.361 0.622
YOLOv3-416 0.996 0.181 0.785
YOLOv3-spp 0.907 0.068 0.839
RetinaNet-1x 0.999 0.807 0.192
RetinaNet-3x 0.997 0.515 0.482
Faster R-CNN-1x | 0.998 0.728 0.270
Faster R-CNN-3x | 0.992 0.526 0.466

5 Conclusion

In this work we performed a dynamic indoor test under controllable environ-
mental conditions. We recorded data with and without fog and evaluated vari-
ous object detectors on it. The results were first analysed time-based and then
examined for their general performance.

We showed that our tested object detection algorithms show high confidence
and IoU in the scenario without fog. Even with increasing distance the overall
performance is still high. In contrast, the object detectors in fog show strongly
reduced performance. The uncertainty about the existence of the EVT raises
with increasing distance to it.

However, while we see a general decline in performance, we have noticed that
the algorithms also show strong differences among themselves when exposed to
fog. We could show that RetinaNet and Faster R-CNN have a generally higher
accuracy and sensitivity than the other tested algorithms. In addition, we found
better results when the algorithms were trained for less time in the case of
RetinaNet and Faster R-CNN. We explain this by the fact that the algorithms
are less biased due to less training time and therefore also recognize blurred and
low-contrast structures in the image as a vehicle. With these results we contribute
towards testing object detection algorithms in adverse weather conditions.

The results of this work are limited in that we consider a very simple sce-
nario with only one object. Furthermore, only the performance in dense fog is
considered, other environmental influences like rain or snow are neglected. How-
ever, it should be noted that the evaluation method was deliberately kept simple
in order to obtain representative results. New, and more complex scenarios can
be designed and researched based on the test method and evaluation approach
presented in this work.
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Future work should adapt the training data to take weather conditions

into account. In addition, the algorithms should be made more independent
of weather domains. A first approach was already explored in the work of Chen
et al., where they proposed a domain adaptive Faster R-CNN which is more
robust towards different domains [3].

References

10.

11.

12.

13.

14.

15.

Berman, D., Treibitz, T., Avidan, S.: Non-local image dehazing. In: 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1674-1682.
IEEE, Las Vegas, June 2016

Bijelic, M., et al.: Seeing through fog without seeing fog: deep multimodal sensor
fusion in unseen adverse weather. arXiv:1902.08913 [cs], February 2020

Chen, Y., Li, W., Sakaridis, C., Dai, D., Van Gool, L.: Domain adaptive faster R~
CNN for object detection in the wild. In: 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 3339-3348. IEEE, Salt Lake City, June 2018
Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The
Pascal Visual Object Classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303—
338 (2010)

Fattal, R.: Single image dehazing. ACM Trans. Graph. 27(3), 1-9 (2008)
Hasirlioglu, S., Kamann, A., Doric, I., Brandmeier, T.: Test methodology for rain
influence on automotive surround sensors. In: 2016 IEEE 19th International Con-
ference on Intelligent Transportation Systems (ITSC), pp. 2242-2247, November
2016

Hasirlioglu, S., Reway, F., Klingenberg, T., Riener, A., Huber, W.: Raindrops on
the windshield: performance assessment of camera-based object detection. In: 2019
IEEE International Conference on Vehicular Electronics and Safety (ICVES), pp.
1-7, September 2019

Hasirlioglu, S., Riener, A.: Challenges in object detection under rainy weather
conditions. In: Ferreira, J.C., Martins, A.L., Monteiro, V. (eds.) INTSYS 2018.
LNICST, vol. 267, pp. 53-65. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-14757-0_5

Hnewa, M., Radha, H.: Object detection under rainy conditions for autonomous
vehicles (2020)

Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollér, P.: Focal Loss for Dense Object
Detection. arXiv:1708.02002 [cs], February 2018

Lin, T.Y., et al.: Microsoft COCO: Common Objects in Context. arXiv:1405.0312
[cs], February 2015

Liu, W., et al.: SSD: Single Shot MultiBox Detector, vol. 9905, pp. 21-37.
arXiv:1512.02325 [cs] (2016)

Oakley, J., Satherley, B.: Improving image quality in poor visibility conditions
using a physical model for contrast degradation. IEEE Trans. Image Process. 7(2),
167-179 (1998)

Pavli¢, M., Belzner, H., Rigoll, G., Ili¢, S.: Image based fog detection in vehicles.
In: 2012 IEEE Intelligent Vehicles Symposium, pp. 1132-1137, June 2012

Pavlic, M., Rigoll, G., Ilic, S.: Classification of images in fog and fog-free scenes for
use in vehicles. In: 2013 IEEE Intelligent Vehicles Symposium (IV), pp. 481486,
June 2013


http://arxiv.org/abs/1902.08913
https://doi.org/10.1007/978-3-030-14757-0_5
https://doi.org/10.1007/978-3-030-14757-0_5
http://arxiv.org/abs/1708.02002
http://arxiv.org/abs/1405.0312
http://arxiv.org/abs/1512.02325

222

16.

17.

18.

19.

20.

21.

22.

23.

T. Rothmeier and W. Huber

Pfeuffer, A., Dietmayer, K.: Optimal Sensor Data Fusion Architecture for Object
Detection in Adverse Weather Conditions. arXiv:1807.02323 [cs], July 2018
Redmon, J., Farhadi, A.: YOLOv3: An Incremental Improvement. arXiv:1804.02
767 [cs], April 2018

Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: Towards Real-Time Object
Detection with Region Proposal Networks. arXiv:1506.01497 [cs], January 2016
Reway, F., Huber, W., Ribeiro, E.P.: Test methodology for vision-based ADAS
algorithms with an automotive camera-in-the-loop. In: 2018 IEEE International
Conference on Vehicular Electronics and Safety (ICVES), pp. 1-7. IEEE, Madrid,
September 2018

Sandner, V.: Development of a test target for AEB systems, p. 7 (2013)
Schechner, Y., Narasimhan, S., Nayar, S.: Instant dehazing of images using polar-
ization. In: Proceedings of the 2001 IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition. CVPR 2001, vol. 1, p. I, December 2001
Volk, G., Miiller, S., von Bernuth, A., Hospach, D., Bringmann, O.: Towards robust
CNN-based object detection through augmentation with synthetic rain variations.
In: 2019 IEEE Intelligent Transportation Systems Conference (ITSC), pp. 285-292
(2019)

Xu, Z., Liu, X., Chen, X.: Fog removal from video sequences using contrast limited
adaptive histogram equalization. In: 2009 International Conference on Computa-
tional Intelligence and Software Engineering, pp. 1-4 (2009)


http://arxiv.org/abs/1807.02323
http://arxiv.org/abs/1804.02767
http://arxiv.org/abs/1804.02767
http://arxiv.org/abs/1506.01497

	Performance Evaluation of Object Detection Algorithms Under Adverse Weather Conditions
	1 Introduction
	2 Related Work
	3 Method and Materials
	3.1 Experimental Setup
	3.2 Dataset Preparation
	3.3 Object Detection
	3.4 Evaluation Metrics

	4 Results and Discussion
	4.1 Detection over Time
	4.2 Overall Detection Capabilities

	5 Conclusion
	References




