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Abstract. Although anchors are the most common in cooperative local-
izations, they are not the optimal in the class of equality constraints
which provide the global reference information for deriving absolute loca-
tions. Using Cramér-Rao lower bound (CRLB) to evaluate the localiza-
tion accuracy, this paper derives the optimal equality constraints that
achieve the lowest CRLB trace under given constraint number, and ana-
lyzes the feasibility of constructing the optimal constraints before know-
ing the node ground truth locations. Simulations compare the perfor-
mance between the anchor-type constraints and the optimal ones, and
suggest a cooperative localization algorithm by using the optimal equal-
ity constraints.
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1 Introduction

Knowing the locations of a large number of nodes is essential to performing
location based service (LBS) in wireless sensor networks (WSN), 5G, and Inter-
net of things (IoT) [1,2]. Compared with the traditional localization approaches
such as global positioning system (GPS), cooperative localization introduces
the measurements between the unknown nodes to construct a lowcost localiza-
tion strategy, which can be implemented during internode communications [3,4].
But internode measurements provide only the node location information rela-
tive to each other. To get the absolution locations, global constrains, e.g., anchor
locations, should be introduced to fix the relative locations onto a coordinate
system [5].

Restricted to the anchor-type constraints, where to deploy the anchors is crit-
ical for ensuring the localizability and improving localization accuracy, which is
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known as anchor selection problem. Based on the exhaustive search of all possi-
ble anchor locations, some empirical results are derived to offer some guidance
on anchor deployment [6]. Despite the difficulty in finding the optimal anchors,
whether introducing anchors is the optimal for constructing global constraints
is questionable.

This paper extends the anchor-type constraints to general equality con-
straints, and derives the optimal ones that can provide the most accurate loca-
tion estimate. The accuracy of the location estimate is quantified by performing
Cramér-Rao lower bound (CRLB) analysis [7] under given internode measure-
ments and global constraints, which offers the lower bound of the variance of any
unbiased estimate and is independent of specific localization algorithms. From
the CRLB analysis, it can be found that anchor-type constraints are far from
the optimal in terms of localization accuracy.

The practicability of constructing optimal equality constraints is also con-
sidered in this paper. Compared with the anchor-type constraints which are
constructing by locating a small portion of the nodes, constructing the optimal
equality constraints needs the ground truth node locations apriori. Actually, it
is proved in this paper that no global constraints can be taken as the optimal
for all possible node locations. Therefore, it is suggested that the rough prior
locations of the nodes can be used to derive suboptimal equality constraints. In
our prior work [8], a specifical case under minimally constraint number has been
investigated for calibrating rough GPS locations, which is extended to general
equality constraints in this paper.

The following of this paper is organized as follows. Section 3 reviews the lit-
erature related to the problem. Section 3 introduces the internode measurement
model, and provides the CRLB under general equality constraints. Section 4
derives the optimal equality constraints and discuss how to use the optimal
equality constraints in practice. Simulations in Sect. 5 compare the anchor-type
constraints with the optimal ones, and exhibit the performance of the maximum
likelihood estimates of the node locations under the optimal equality constraints.

2 Related Work

In cooperative localization, the measurements between the nodes can be used
to aid the location estimate [9], so that the nodes at unknowns locations can
be located in a multi-hop manner under the existence of a small portion of
anchors/references (i.e., nodes at known absolute locations) [9,10]. This greatly
alleviates the burden on the task of node localization as opposed to manual
calibrations, or reduces the cost on the devices as opposed to being equipped
with global positioning system (GPS) modules.

The above process is conventionally called anchor-based localization, where
abundant algorithms are built by fusing the relative location information con-
tained in internode measurements and absolute location information embodied
in anchor positions [11–17]. These algorithms provide the absolute location esti-
mates for unknown nodes, but it is somewhat complicated to answer the question
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that which information dominates the localization accuracy. Conventionally, one
may fix the anchors and investigate the influence from the internode measure-
ments, where the Cramér-Rao lower bound (CRLB) analysis serves as a conve-
nient tool [9]. Or on the contrary, one can also fix the internode measurements
to investigate how the number and positions of anchors affect the localization
accuracy, which is the well-known anchor selection problem [18–21]. Although
these approaches help to answer that question in some extent, the relatively high
cost in producing/deploying the anchors and the difficulty in finding the opti-
mal anchor deployment pose challenges in the design of efficient and applicable
anchor-based localization system.

On the other hand, anchor-free Localization uses only internode measure-
ments, where no anchors are involved [22]. Since the internode measurements
involve merely relative location information, only the network’s relative config-
uration [23], or called relative map [24], can be estimated, while the network’s
transformation uncertainty, including global translation, rotation, reflection and
in some cases scaling, can not be specified yet. To investigate the relative config-
uration, statistical shape analysis methods are introduced to explore the “shape”
of the network [5], where the optimal minimally constraint system is derived to
specify the location, orientation and sometimes scaling of the network [8]. How-
ever, in existing work, the optimality is restricted to the minimally constraint
systems, which usually 3 for 2-dimensional rigid network. For other equality
numbers, the optimality has not been explored.

3 Problem Formation

3.1 Internode Measurements

Let us consider n nodes, whose locations are si = [si,x, si,y]T , i = 1, 2, . . . , n,
distributed on a two-dimensional plane. Each node, say the ith node, emits
wireless signal with a preset strength Pi (dBm), and any other node, say the
jth node, receives the signal and records the received signal strength (RSS) Pj

(dBm). When both the emission strength Pi and the received strength Pj are
available, the signal attenuation ri,j = Pi − Pj can be measured, which follows
the signal attenuation model

ri,j = 10α log10 ‖si − sj‖ + εi,j , (i, j) ∈ E (1)

where α > 2 is a path-loss exponent, ‖ · ‖ denotes Euclidean norm, and εi,j ,
(i, j) ∈ E , are independent and identically distributed Gaussian noises with
mean 0 and variance σ2. E is the set of the connected edges, where (i, j) ∈ E
means the signal emitted from the ith signal can be received by the jth node.
Here, the measurements are assumed to be symmetrical, so that any (i, j) ∈ E
is required to fulfill i < j for simplicity.
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3.2 Global Constraints

The internode measurement model (1) specifies only the relative location infor-
mation between the nodes. To get the absolute locations, global constraints, or
named global reference information are needed. In this letter, the global con-
straints are restricted to equality constants

g(s) = 0 (2)

where the location vector s = [sT
1 , sT

2 , . . . , sT
n ]T , and the constraint number is k.

For example, when anchor-type constraints are chosen, the equality constraints
can be represented as

g(s) = [sj − aj ]j∈A = 0 (3)

where aj , j ∈ A, are known anchor locations, A is the index set of the anchors,
and the constraints number is twice of the number of the anchors.

The introduction of global constraints contributes both the network local-
izability and localization accuracy. For a two-dimensional localization problem,
when the internode (distance) measurements are sufficient to make the network
globally rigid, e.g., fully connected, only 3 equality constraints are required to
specify the two-dimensional location and orientation (up to a global reflection) of
the network. When the internode measurements are not sufficient, more equality
constraints are required. The minimum number of the equality constraints (2)
to make the network rigid, named minimally constrained system (MCS) [23],
depends on the spatial dimension and network connectivity, where the perfor-
mance has been explored in [8]. But due to the internode measurements noise,
introducing more global constraints might be required to improve the localiza-
tion accuracy, where the optimal ones are explored in this letter. Notably, we do
not use the equality constraints to identify the local/global reflections, where the
latter can identified by some inequality constraints or proper initials in iterative
localization algorithms.

3.3 CRLB

Constrained CRLB analysis is performed on the measurement model (1) under
the constraints (2). In statistics, CRLB serves as a lower bound for the variance
of any unbiased estimate, and can be asymptotically achieved by the maxi-
mum likelihood estimate (MLE). To avoid the discussion of specific localiza-
tion algorithms, the performance metric in this paper is set as the CRLB trace,
which serves as a benchmark for the performance of most localization algorithms
[3,15,25].

Under the measurement model (1), the log-likelihood function of s is

l(s) =
1

2σ2

∑

(i,j)∈E
(10α log10 ‖si − sj‖ − ri,j)

2 + c (4)

where the constant c is independent of s. This log-likelihood function leads to
the (Fisher information matrix) FIM of s as
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J = E
[
∂l(s)
∂s

∂l(s)
∂sT

]
= σ−2FTF (5)

where E[·] denotes the expectation operation and F is stacked in row by
[
01×2(i−1),aT

i,j ,01×2(j−i−1),aT
j,i,01×2(n−j)

]
(6)

where
ai,j = −aj,i =

10α

loge 10
si − sj

‖si − sj‖2 . (7)

The FIM J is rank deficient. It requires the global constraints (2) as a regular-
ization condition to obtain the CRLB. By implementing the constrained CRLB
theory [26,27], the CRLB of s can be represented as

C = U
(
UTJU

)−1
UT (8)

where U is a 2n-by-(2n − k) matrix whose columns form an orthonormal basis
of the null space of GT = ∂g(s)

∂sT
, and g(s) is properly designed so that UTJU is

invertible.
Throughout the following of this paper, finding the optimal equality con-

straints is formulated as constructing g(s) = 0 to minimizing the CRLB trace
tr(C).

4 Optimal Equality Constraints

The optimal equality constraints refer to the equality constraints g(s) = 0 that
minimizes the trace of the constrained CRLB (8). These equality constraints can
be constructed by corresponding global measurements, which produce the most
accurate location estimates together with the internode measurements.

4.1 Construction

We first derive the lower bound of the trace of (8), and provide a method to
construct the equality constraints to achieve this bound, seen in Proposition 1.

Proposition 1. The trace of the CRLB (8) is lower bounded by
∑2n−k

i=1 λ−1
i ,

where λi is the ith largest eigenvalue of the FIM (5).

Proof 1. We first represent the CRLB trace tr(C) by the eigenvalues of
UTJU as

tr(C) = tr
(
U

(
UTJU

)−1
UT

)

= tr
((

UTJU
)−1

)

=
2n−k∑

i=1

λ−1
i

(
UTJU

)
(9)

where λi

(
UTJU

)
denotes the ith largest eigenvalue of UTJU.
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Note that UTJU = σ−2UTFTFU, it owns the same non-zero eigenvalues as
σ−2FUUTFT . Since

σ−2FUUTFT ≤ σ−2FFT = J (10)

we have
λi

(
UTJU

) ≤ λi (11)

where λi denotes the ith largest eigenvalue of the FIM J.
Substituting (11) into (9), we get a lower bound of the CRLB trace as

tr(C) ≥
2n−k∑

i=1

λ−1
i . (12)

�

The lower bound
∑2n−k

i=1 λ−1
i is achieved when the columns of U are the

eigenvectors corresponding to the 2n−k largest eigenvalues of J. In other words,
the lower bound

∑2n−k
i=1 λ−1

i is achieved when the columns of G = ∂gT (s)
∂s span

the subspace related to the k smallest eigenvalues of J. For example, the following
constraints

GT s − b = 0 (13)

are optimal constraints, where the columns are G the eigenvectors refers to the
k smallest eigenvalues of J.

But constructing (13) needs the node locations, which is possible only in
simulations or experiments where the ground truth locations of the nodes are
known. In practice, no ground truth locations are available, so we should find
other approach to construct the equality constraints which are the optimal for
all possible node locations. Do these constraints exist?

4.2 Feasibility

Unfortunately, no equality constraints keep the optimal for all possible node
locations, as proved in Proposition 2.

Proposition 2. There is no g(s) = 0 whose CRLB trace achieves the lower
bound

∑2n−k
i=1 λ−1

i for all s ∈ R
2n.

Proof 2. It is easy to verify from the proof of Proposition 1 that the trace of the
CRLB (8) achieves its lower bound

∑2n−k
i=1 λ−1

i if and only if the columns of U
span the eigenspace corresponding to the 2n−k largest eigenvalue of J, and thus
the columns of G = ∂gT (s)

∂s span the eigenspace corresponding to the k smallest
eigenvalues of J.

Note that the null space of J involves the vectors 1x = [1, 0, . . . , 1, 0]T ∈ R
2n,

1y = [0, 1, . . . , 0, 1]T ∈ R
2n, and vs = [s1,y,−s1,x, . . . sn,y, ,−sn,x]T ∈ R

2n, there
should exist a 3-by-k matrix T(s) which makes the equalities

[1x,1y,vs]T = T(s)
∂g(s)
∂sT

(14)
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hold.
Since g(s) = 0, we have

[1x,1y,vs]T = T(s)
∂g(s)
∂sT

=
∂T(s)g(s)

∂sT
. (15)

Therefore, there must exist a function g̃(s), which is the last element of T(s)g(s),
satisfying ∂g̃(s)

∂s = vs to make the last equality in (15) hold. But such g̃(s) does not
exist since ∂g̃(s)

∂s1,x
= s1,y and ∂g̃(s)

∂s1,y
= −s1,x lead to two contradictory expressions

of g̃(s) as

g̃(s) =s1,xs1,y + c1

= − s1,xs1,y + c2, (16)

where c1 and c2 are independent of s1,x and s1,y, respectively. Therefore, there
exists no g(s) = 0 whose CRLB trace achieves the lower bound

∑2n−k
i=1 λ−1

i

uniformly across all s ∈ R
2n. �

Although constructing the optimal equality constraints is unfeasible in prac-
tice, one can still construct suboptimal constraints to fulfil practical requirement.
For example, if the nodes’ rough locations are available, (13) can be constructed
and its performance can be evaluated through biased CRLB analysis similar to
Proposition 6 in [5], where the constraint number k can be selected according to
the quality and the quantity of the internode measurements. Anchor-type con-
straints are also admissible, where anchor selection problem can also be viewed
as a sparse construction of G (13).

When the internode measurements are sufficient to make the network rigid,
at least k = 3 global constraints, named minimally constrained system [5], are
required to locate the nodes up to local reflections. In this case, one can maximize
the log-likelihood (4) directly, then superimpose the results onto the node ground
truth locations through global translations and rotations/reflections. This super-
imposing operation produces an MLE under the optimal equality constraints. It
achieves the lower bound of the CRLB (8) asymptotically as the measurement
noise decreases to zero, seen in [28].

5 Simulations

Anchor selection in cooperative localization refers to providing absolute locations
of a small portion of the nodes to ensure the localizability and increase the
localization accuracy. In previous work, although some empirical strategies are
suggested, finding the optimal anchor set actually requires the exhaustive search
of all possible anchor sets [6]. Viewed the optimal selection of the anchors as some
equality constraints, we use the optimal equality constraints as a benchmark
for anchor selection problem, and investigate its relationship with the optimal
anchor set.
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Table 1. Sensor locations

Sensor no. i si,x si,y Sensor no. i si,x si,y

1 6.5574 2.7603 16 8.2346 9.5929

2 0.3571 6.7970 17 6.9483 5.4722

3 8.4913 6.5510 18 3.1710 1.3862

4 9.3399 1.6261 19 9.5022 1.4929

5 6.7874 1.1900 20 0.3445 2.5751

6 7.5774 4.9836 21 4.3874 8.4072

7 7.4313 9.5974 22 3.8156 2.5428

8 3.9223 3.4039 23 7.6552 8.1428

9 6.5548 5.8527 24 7.9520 2.4352

10 1.7119 2.2381 25 1.8687 9.2926

11 7.0605 7.5127 26 4.8976 3.4998

12 0.3183 2.5510 27 4.4559 1.9660

13 2.7692 5.0596 28 6.4631 2.5108

14 0.4617 6.9908 29 7.0936 6.1604

15 0.9713 8.9090 30 7.5469 4.7329

We randomly generate 30 nodes on a 10-by-10 plane, whose locations are
given in Table 1. Under the assumption that network is full-connected and the
measurement variance is 1, we can derive the FIM (5) and get the CRLB (8)
under the anchor-type constraints for a given anchor set. In simulations, the
exhaustive search of all possible anchor set is performed under given anchor
number respectively.

Figure 1 shows the boxplot of the logarithm of the CRLB traces where the
anchor number varies from 3 to 8, with the comparison of the corresponding
optimal equality constraints. Similar trends can be found between the optimal
anchor set and the optimal equality constraints, which hints the use of the opti-
mal equality constraints as a benchmark for anchor selection. In fact, the CRLB
trace under the optimal equality constraints evaluates the quality of the intern-
ode measurements, which can be used to determine the refinement of the localiza-
tion accuracy should be achieve by improving internode measurement accuracy
or introducing more global constraints.

We also investigate the constrained MLE of the node locations, which max-
imizes the likelihood (4) under the optimal equality constraints (13). In our
simulations, the nodes deployed at the locations Table 1, and the variance of
the measurement error ranges from −30 dB to 30 dB. To construct equality con-
straints, we introduce three types of reference, i.e., ground truth reference, low
error reference obtained by disturbing the ground truth locations using zero
mean Gaussian noise with variance 0.01, and high error reference obtained by
disturbing the ground truth locations using zero mean Gaussian noise with vari-
ance 1. 1000 simulations are performed to get the mean squared error of the
estimates.
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Fig. 1. Boxplot of CRLB traces: Under given anchor number, the CRLB trace of the
optimal anchor selection (blue circles: ◦) from all possible anchor sets is compared
with the CRLB trace of corresponding optimal equality constraints (black asterisk: ∗).
(Color figure online)

Just as the theoretical result that the mean squared error of the MLE
approaches the CRLB asymptotically when measurement noise approaches zero,
the mean squared error of constrained MLE derived through 1000 simulations
approaches the CRLB under the optimal equality constraints constructed by
using the node ground truth locations, seen in Fig. 2. In practice, suboptimal
equality constraints constructed by using the reference locations, which can be
viewed as the rough estimates of the node locations, can be used to derive the
constrained MLE. Compared with the mean squared error of the reference loca-
tions, which are −2.4772 for the low error reference and 18.3801 for the high error
reference, the location estimates under both the case are refined under moderate
internode measurement noise. However, unlike using the ground truth reference,
using the error reference introduce some bias which cannot be eliminated by
improving internode measurement accuracy.

How to choose the suitable number of the equality is also investigated in
simulations, seen in Fig. 3. Similar as the simulations in Fig. 2, we fix the variance
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Fig. 2. Mean squared error of constrained MLE: Under given the variance of the mea-
surement noise, the mean squared error of constrained MLE under ground truth refer-
ence (black asterisk: ∗)), low error reference (blue triangles: �), and high error reference
(green square: �) are compared with the CRLB trace (red line: −). (Color figure online)

of the measurement noise at 1, and ranges the constraint number from 3 to 30.
Other settings are the same as the ones in Fig. 2.

Using the ground truth reference, it is obvious that introducing more equality
constraints can reduce the location estimate error asymptotically to zero. But
taken the reference error into consideration, more equality constraints may cause
large bias that can not be eliminated by improving the internode measurement
accuracy. Therefore, there exists a trade-off between the contribution of equality
constraints and the fault caused by reference error, which should be balanced
by choosing suitable number of the equality constraints. In Fig. 3, it is preferred
to choice only 3 equality constraints in high error reference case and 13 equality
constraints low error reference case.
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Fig. 3. Mean squared error of constrained MLE: Under given constraint number, the
mean squared error of constrained MLE under ground truth reference (black asterisk:
∗)), low error reference (blue triangles: �), and high error reference (green square: �)
are compared with the CRLB trace (red line: −). (Color figure online)

6 Conclusions

The optimal equality constraints for the internode RSS measurements are
derived by constrained CRLB analysis, which outperform the anchor-type con-
straints in terms of localization accuracy. Compared with the exhaustive search
of the optimal anchor sets, the optimal equality constraints can be directly
derived from the eigen subspace of the FIM of the internode measurements,
which serve as a bench mark for the anchor selections. In practice, although
the optimal equality constraints cannot be derived because of the unknown
ground truth locations, the references with locations error can be introduced to
construct suboptimal constraints to provide relatively accurately location esti-
mated by exploring the internode measurements. The results are not restricted
to the internode RSS measurements. It can be directly derived from other range
based measurements such as distances or time-of-arrivals (ToAs), and extended
to angle-of-arrivals (AoAs) with some modifications.
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7 Discussions and Future Work

Although introducing node rough locations can produce suboptimal constraints
which fix the relative locations provided by the internode measurements onto a
predefined coordinate system, the performance needs further study. Some direc-
tions are given below.

1. How to set the optimal constraint number? Using the ground truth loca-
tions, it is obvious that introducing more constraints can improve the local-
ization accuracy. But in practice, since the constraints are constructed by the
locations with error, the relative locations provided by the internode mea-
surements may be contaminated by the constraints. Therefore, we hope the
suboptimal constraints contribute more on the node locations that cannot
provide by the internode measurements, which may be controlled by the con-
straint number.

2. Whether recursively updating the locations used in constructing suboptimal
constraints can improve the localization accuracy?

3. Under the consideration of constraint error, whether the performance of the
linear constraints constructed by the eigenvalue decomposition of the FIM is
a good choice compared with other type constraints.
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