
Real-Time Task Scheduling in Smart Factories
Employing Fog Computing

Ming-Tuo Zhou1(B), Tian-Feng Ren1,2, Zhi-Ming Dai1,2, and Xin-Yu Feng1,2

1 Shanghai Institute of Microsystem and Information Technology,
Chinese Academy of Sciences, Shanghai, China

mingtuo.zhou@mail.sim.ac.cn
2 University of Chinese Academy of Sciences, Beijing, China

Abstract. With the development of the newgeneration of information technology,
traditional factories are gradually transforming into smart factories. How to meet
the low-latency requirements of task processing in smart factories so as to improve
factory production efficiency is still a problem to be studied. For real-time tasks in
smart factories, this paper proposes a resource scheduling architecture combined
with cloud and fog computing, and establishes a real-time task delay optimization
model in smart factories based on the ARQ (Automatic Repeat-request) protocol.
For the solution of the optimizationmodel, this paper proposes theGSA-P (Genetic
Scheduling ArithmeticWith Penalty Function) algorithm to solve themodel based
on the GSA (Genetic Scheduling Arithmetic) algorithm. Simulation experiments
show that when the penalty factor of the GSA-P algorithm is set to 6, the total
task processing delay of the GSA-P algorithm is about 80% lower than that of the
GSA-R(Genetic Scheduling Arithmetic Reasonable) algorithm, and 66% lower
than that of the Joines & Houck method algorithm; In addition, the simulation
results show that the combined cloud and fog computing method used in this
paper reduces the total task delay by 18% and 7% compared with the traditional
cloud computing and pure fog computing methods, respectively.

Keywords: Smart factory · Fog computing · ARQ protocol · Genetic algorithm ·
Resource scheduling

1 Introduction

The new generation of information technology such as the Internet, Internet of Things,
cloud computing, fog computing, artificial intelligence, big data, etc. has brought valu-
able development opportunities for many industries [1, 2]. Traditional industries are
undergoing technological changes caused by the development of information technol-
ogy. Smart factory was born under such a background [3, 4]. Compared with traditional
factories, smart factories need to process massive amounts of data. At present, there are
two mainstream processing methods. One is to use remote cloud computing for pro-
cessing and return the results. However, this method has many drawbacks [5], such as:

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2021
Published by Springer Nature Switzerland AG 2021. All Rights Reserved
L. Peñalver and L. Parra (Eds.): Industrial IoT 2020, LNICST 365, pp. 18–33, 2021.
https://doi.org/10.1007/978-3-030-71061-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71061-3_2&domain=pdf
https://doi.org/10.1007/978-3-030-71061-3_2


Real-Time Task Scheduling in Smart Factories Employing Fog Computing 19

relatively large delay and high bandwidth requirements. And there is no guarantee of
security and privacy.

In order to alleviate this problem, another method, fog computing is proposed [6],
which transfers computing, storage, control, and network functions from the end to the
fog, thereby reducing data transmission delay and the required bandwidth. It allows a
group of adjacent end users, network edge devices, and access devices to collaborate to
complete tasks that require resources. Therefore, many computing tasks that originally
required cloud computing canbe effectively completed at the edge of the network through
the distributed computing resources around the data generating device.

The rest of this paper is as follows: Sect. 2 is related works, Sect. 3 analyzes the task
scheduling framework, Sect. 4 establishes the mathematical model of the system, and
discusses the GSA-P algorithm. Section 5 shows and analyzes the simulation results,
and we summarize and draws the conclusion in Sect. 6.

2 Related Works

There have been some related studies on this issue. Olena Skarlat et al. optimized the
resource allocation problem of the cloud and fog [7], reduced the task delay by 39%, and
provided a fog resource allocation scheme for delay-sensitive applications. Luxiu Yin
et al. replaced virtual machines with containers to execute tasks in smart factories [8],
and proposed a container-based task scheduling algorithm. The task execution is divided
into two steps: first consider whether the task is accepted or rejected, and then consider
whether to run on the local fog node or upload to the cloud. Experimental verification
shows that the task scheduling algorithm reduces the task execution time by 10%. Hend
Gedawy et al. used a group of heterogeneous mobile and Internet devices to form an
edge micro cloud [9], under the condition of ensuring that the energy consumption is
below the threshold, maximize the computing throughput and minimize the delay. In
order to solve this non-linear problem, they used heuristic algorithms. The simulation
results show that the computational throughput is increased by 30% and the delay is
reduced by 10% to 40%.

However, the existing research still has some shortcomings: First, the current task
scheduling of smart factories is basically based on fog computing or cloud computing,
but when the task volume is large, blindly handing over tasks to fog resource computing
will lead to The calculation pressure of the fog node is too high, and once the task is
completely delivered to the cloud resource for calculation, it will cause the problem of
excessive delay; Second, in the actual production environment, network packet loss will
have some impact on communication, but in the current research on resource scheduling
analysis, the impact of network packet loss on task processing is not considered.

Compared with other research, this article has made overall improvements in system
models and algorithms based on the characteristics of today’s smart factories. First,
we improve the fog computing framework, and then model the problem based on the
improved framework, and finally use the improved genetic algorithm to solve the fog
computing resource scheduling model. The work and main contributions of this paper
are as follows:



20 M.-T. Zhou et al.

1) Framework improvement: In order to further reduce the delay of real-time tasks
in smart factories, this article adds cloud computing resources to the traditional fog
computing architecture, so that the current fog computing architecture can disassem-
ble a part of the task when the computing pressure is high. And deliver it to the cloud
for processing. At the same time, considering the impact of network packet loss on
task delay during actual task transmission, and based on this impact, a time delay
optimization model for smart factory real-time tasks under constraint conditions is
established.

2) Algorithm improvement: the real-time task delay model based on the improved
framework is a NP (Nondeterministic Polynomially) problem with constraints. For
this problem, we usually use heuristic algorithm to solve it [10], such as genetic
algorithm [11], but the traditional genetic algorithm has some shortcomings that
are difficult to solve the constraint problem. Therefore, this paper proposes GSA-
P algorithm, which transforms the original constraint problem into unconstrained
problem by constructing penalty function.

3) Simulation verification: The real-time data simulated in this paper adopts the indus-
trial Internet of Things data of real-time path planning of industrial robots [12], and
4 fog nodes and a cloud server are set up. In the simulation, the difference of approx-
imate optimal solution under different penalty factors is compared. Meanwhile, the
differences of optimization results of GSA-P, GSA-R, Joines&Houck method are
compared. Finally, the performance improvement of cloud collaborative processing
compared with cloud computing and pure fog computing is demonstrated.

3 Scheduling Frameworks in Smart Factories

3.1 Task Classification

In a smart factory, there are multiple tasks with different requirements for delay and
storage. In order to improve the production efficiency of the smart factory, it is necessary
to effectively classify the different tasks in the smart manufacturing factory. According
to the task’s tolerance to delay and the size of task data, tasks can be divided into the
following categories.

1) Real-time tasks with low load: tasks with small data volume and low latency
requirements, such as: judgment of the operating status of key smart devices and
faults.

2) Real-time tasks with high load: tasks with large data volume and low latency require-
ments, such as: monitoring the quality of products in the entire manufacturing pro-
cess, processing video information in the factory, and production materials in smart
factories registration.

3) Storage tasks: tasks that can accept low latency, such as: data analysis for each
production line and analysis of the energy consumption of the entire factory, and
other intelligent calculations and processing that can improve the efficiency of the
factory.



Real-Time Task Scheduling in Smart Factories Employing Fog Computing 21

In the case of 1), due to the small size of data and less requirements for computing
resources, the task can be allocated to fog resources for processing.

In the case of 2), due to the large size of data for this type of task, if the data is only
deployed on the fog node for calculation, it will cause excessive pressure on the fog node
calculation, therefore, cloud computing is needed to reduce the computational pressure
of fog nodes.

In the case of 3), regardless of the size of the task’s data, it can be directly transferred
to the cloud server for processing, and the result will be returned at an appropriate time.
Therefore, for the entire smart factory system, the task scheduling framework can be
seen in Fig. 1.

Fig. 1. Task scheduling framework

3.2 Scheduling Framework for Real-Time Tasks

We refer to 1) and 2) in Sect. 2.1 collectively as real-time tasks. For real-time tasks,
we need to consider how to divide tasks. For low-load real-time problems, we need to
appropriately allocate tasks to the fog node cluster. For high-load real-time tasks, we
have to consider allocating tasks on cloud servers and fog node clusters at the same time.

Therefore, we consider adding a fog management node to assign tasks to fog nodes
and cloud servers. When a real-time task is delivered, the fog management node deter-
mines the task distribution. The scheduling framework of real-time tasks can be seen in
Fig. 2.

This papermainly studies the resource scheduling of real-time tasks in smart factories
under this framework.



22 M.-T. Zhou et al.

Fig. 2. Real time task scheduling framework

4 System Model

4.1 Time Delay Optimization Model Based on ARQ Protocol

The real-time task scheduling framework described in Sect. 2.2 can be regarded
as a weighted undirected graph G(V, E) as shown in Fig. 3, where V =
{F1,F2, . . . ,Fi,FM , . . . ,Fm,C} is a vertex set, Fi is the fog node, FM is the fog man-
ager, C is cloud server E = {

eFM F1 , . . . , eFM Fi , . . . , eFM C
}
is the edge set, eFM Fi a

communication link between fog node Fi and fog manager, weight on edge is WFMFi .
The fog manager only allocates tasks and does not perform specific tasks. The comput-
ing power of Fi is denoted as AFi , the computing power of C is denoted as AC . For m
fog nodes and 1 cloud server, Task D can be divided into m subtasks of different sizes,
which is denoted asD = {

d1, d2, . . . , dj, . . . , dC , . . . , dm
}
, where dC is the subtask that

is assigned to the cloud server.

Fig. 3. Undirected graph of fog exclusive node



Real-Time Task Scheduling in Smart Factories Employing Fog Computing 23

The total delay of Fi processing task dj can be expressed as:

Ta
(
Fi, dj

) = dj
AFi

+ Tt
(
Fi, dj

)
(1)

where
dj
AFi

is the computing delay of the Fi processing task dj, Tt
(
Fi, dj

)
is the

communication delay between Fi and FM by transfer dj.
Similarly, the total delay of cloud server C processing task dj is:

Ta(C, dC) = dc
AC

+ Tt(C, dc) (2)

where dC
AC

is the computing delay of C processing task dC , Tt(C, dc) is the
communication delay between C and FM by transfer dC .

When the network transmits task dj, dj is divided into several packets. Suppose a
packet length is Lp and the data transmission rate between Fi and FM is vi,when there
is no network packet loss between communication links, the delay of a data packet’s
successful transmission is calculated as follows:

TSi = Lp
vi

(3)

In the actual transmission process, there must be a packet loss rate between links.
When packet loss occurs on the network, the stop-and-wait ARQ protocol is often used
to retransmit data packets. The principle of the stop-and-equal ARQ protocol [13] is:
after the data message is sent, the sender waits for the status report of the receiver, if the
status report message is sent successfully, the subsequent data message is sent, otherwise
the message is retransmitted.

Let TL represent the time required for data packet transmission between Fi and FM

when there is a packet loss rate, ignoring the queue delay. Suppose n is the number of
times of transmissions required to successfully send a data packet, and Ei is the packet
loss rate between Fi and FM . When the m-th data packet is transmitted incorrectly, the
probability of its n-th transmission success is:

P(m = n) = (1 − Ei)E
(n−1)
i ∀ n = 1, 2, 3 . . . (4)

According to the TCP protocol, the waiting time before retransmission is generally:
Tout = 2 × TSi , the size of a single packet is Lp = 1448B, Therefore, the packet
transmission time between Fi and FM can be expressed as:

TL = TSi + Tout

∞∑

n=1

(n − 1)P(m = n) (5)

Combining Eq. (4), we can finally get the average transmission time of a single data
packet when the packet loss rate is Ei:

TL = TSi
1 + Ei

1 − Ei
(6)



24 M.-T. Zhou et al.

Therefore, the communication delay Tt
(
Fi, dj

)
caused by the transmission of dj between

Fi and FM is:

Tt
(
Fi, dj

) = dj
Lp

× TL = dj
vi

× 1 + Ei

1 − Ei
(7)

Similarly, we can get the delay between Fi and C:

Tt(C, dC) = dC
vC

× 1 + EC

1 − EC
(8)

In summary, when the fog node and cloud server are not faulty, the total time delay
T

(
dj, dC

)
spent by the task can be expressed as:

T
(
dj, dC

) = max
{
Ta

(
Fi, dj

)
,Ta(C, dC)

}
j = 1, 2, 3, . . . (9)

When processing real-time tasks, in order to reduce the processing delay of tasks, it is
necessary to integrate the computing power of all fog nodes and the computing power of
cloud server to find a task D allocation methodD = {

d1, d2, . . . , dj, . . . , dC , . . . , dm
}
to

minimize formula (10). Therefore, we finally get the constrained optimization problem:

minT
(
dj, dC

)
j = 1, 2, 3, . . .

s.t. 0 ≤ dj, dC ≤ D
(10)

m−1∑

j=1

dj + dC = D

4.2 GSA-P Algorithm

In Sect. 3.1, the real-time task delay optimization problem belongs to NP problem with
constraints. GSA algorithm can not effectively deal with the optimization problem with
constraints, so it needs some additional skills to dealwith constraints.Whenusing genetic
algorithm to do constrained optimization, the following two ways are generally used:

1) A penalty function is used to transform a constrained problem into an unconstrained
one.

2) Reasonable crossover andmutation operators are designed so that only chromosomes
satisfying constraint conditions can be generated in each iteration.

In this section, we discuss the first method.

Construct Penalty Function
For the NP problem with constraints, this paper uses the method of constructing penalty
function to solve it. The penaltymethod generally divides the solution space into feasible
region and infeasible region, and the solution that does not meet the constraint conditions
belongs to the infeasible region. If the current solution is close to the constraint boundary,



Real-Time Task Scheduling in Smart Factories Employing Fog Computing 25

the penalty function value is very small, otherwise the penalty function value is very
large. When the penalty method is used to solve the problem, an excellent penalty
function ψ(x) is very important because it can guide the iterative results to the feasible
region, and at the same time, it transforms the constrained optimization problem into
unconstrained optimization problem by punishing the infeasible solution.

When the penalty function is used to punish the infeasible solution, the idea can be
taken as follows:

1) Death penalty: For an infeasible solution, directly adjust its fitness to a size that is
very easy to be eliminated, and let it be eliminated directly.

2) Static penalty: Static penalty will reduce the fitness value of the individual who
violates the constraint in the fitness function, but the penalty coefficient will not
change with the iteration of the algorithm.

3) Dynamic penalty: The penalty coefficient will change with the iteration times, in
order to ensure convergence, the penalty coefficient will gradually become larger.

4) Adaptive penalty: the idea of adaptive penalty is to get feedback from the itera-
tive process of genetic algorithm, and automatically change the penalty function
according to the solution.

In order to ensure that the greater the degree of deviation of the solution from the
feasible region, the greater the penalty, this paper designs an adaptive penalty function
based on the concept of offset. First construct the chromosome of genetic algorithm:
xi = {

δ1, δ2, . . . , δj, . . . , δm, δC
}
, where δj is scale factor, it is defined as:

δj = dj
D

j = 1, 2, 3, . . . (11)

Then, the original constraint can be converted to:

s.t. 0 ≤ gj(xi) ≤ 1 j = 1, 2, 3 . . . (12)

h(xi) − 1 = 0

where gj(xi) and h(xi) is:

gj(xi) = δj j = 1, 2, 3 . . . (13)

h(xi) =
m−1∑

j=1,

δj + δC (14)

Suppose that gz
(
xj

)
, gf

(
xj

)
is the positive and negative offset value of the solution

xi to the inequality constraint function in the problem, respectively. Then we can use
(15)–(16) to express it:

gz(xi) = max
{
0, gj(xi) − 1

}
j = 1, 2, 3 . . . (15)



26 M.-T. Zhou et al.

gf (xi) = min
{
0, gj(xi)

}
j = 1, 2, 3 . . . (16)

Similarly, we have the positive and negative offset value of h
(
xj

)
:

hz(xi) = max{0, h(xi) − 1} (17)

hf (xi) = min{0, h(xi) − 1} (18)

In the chromosome set {xi}, we can find the infeasible solution set according to (15)–

(18), it is denote as
{
xrejectj

}
, thus, the positive and negative offset degrees constrained

in Eq. (12) are introduced:

Gz(xi) = gz(xi)

max
{
gz

(
xrejectj

)}
− gz(xi)

(19)

Gf (xi) = gf (xi) ∨
min

{
gf

(
xrejectj

)}
∨ −gf (xi)∨

(20)

Hz(xi) = hz(xi)

max
{
hz

(
xrejectj

)}
− hz(xi)

(21)

Hf (xi) = hf (xi) ∨
min{hf

(
xrejectj

)
∨ −hf (xi)∨

(22)

Based on (19)–(22) we can define φ(xi), ξ(xi) as the offset degree of the current solution
xi to the inequality constraint function, its expression is:

φj(xi) =
⎧
⎨

⎩

10 ≤ gj(xi) ≤ 1
e−Gz(xi)gj(xi) > 1
e−Gf (xi)gj(xi) < 1

(23)

ξ(xi) =
⎧
⎨

⎩

1h(xi) = 1
e−Hz(xi)h(xi) > 1
e−Hf (xi)h(xi) < 1

(24)

Finally, according to (23)–(24), we set the dynamic penalty function in the genetic
algorithm as:

ψ(xi) =
⎛

⎝2 − 1

2

⎛

⎝ξ(xi) + 1

m

m∑

j=1

φj(xi)

⎞

⎠

⎞

⎠

β

(25)

where β is penalty factor. If xi is a feasible solution, the value of the penalty function
ψ(xi) = 1. When xi is not a feasible solution, 1 < ψ(xi) < 2β , so as to ensure that the
penalty function ψ(xi) can appropriately penalize the infeasible solution according to
the constraints, and the greater the β is, the greater the penalty is.



Real-Time Task Scheduling in Smart Factories Employing Fog Computing 27

By introducing a penalty function, the original constrained optimization problem is
finally transformed into an unconstrained optimization problem:

minT
(
dj, dc

) × ψ(xi) j = 1, 2, 3, . . . (26)

GSA-P algorithm Flow
In summary, the algorithm flow of GSA-P is as follows, and the flowchart is shown in
Fig. 4:

1) Initialization: Define the scale of chromosomes as Y, the number of fog nodes as k,
and the number of cloud servers as 1, so the length of each chromosome is equal to
the number of fog nodes without fog manager plus the number of cloud servers, that
is, k − 1 + 1 = k. Chromosomes are as defined in Sect. 3.2.1: xi = {δ1, δ2, ..δk}.

2) Use the penalty function as the fitness function in the genetic algorithm to calculate
the fitness value of each chromosome xi. The fitness function is expressed by:

f (xi) = T
(
dj, dc

) × ψ(xi) (27)

3) Calculate the fitness value. Because there is no need to ensure the feasibility of the
solution during the cross-mutation process, the chromosome can be cross-mutated
by the random method.

4) Keep individuals with large fitness function values to ensure that the genes of
outstanding individuals can be preserved.

Fig. 4. GSA-P flow chart



28 M.-T. Zhou et al.

4.3 GSA-R Algorithm

Asmentioned inSect. 3.2, in addition to the penalty function, a reasonable cross-mutation
operator can be designed to ensure that the solution during the iteration is a feasible
solution, in order to compare the GSA-P and the GSA-R.

This paper combines theGSA algorithmwith the reasonable cross-mutation operator
in reference [14], and obtains an algorithm GSA-R that solves the constrained optimiza-
tion delay problem, which can ensure that the offspring generated after cross-mutation
does not violate the constraint condition. TheGSA-R algorithmflow is, and the flowchart
is shown in Fig. 5:

1) Initialization: same as GSA-P
2) According to 10, calculate the fitness value of each chromosome xi:

f (xi) = T
(
dj, dC

)
(28)

3) Select two parent individuals from individuals with appropriate fitness values, and
then perform crossover operations. The relationship between offspring and parents
in crossover operations is as follows:

xs1 = λ × x1 + (1 − λ) × x2 (29)

Fig. 5. GSA-R flow chart



Real-Time Task Scheduling in Smart Factories Employing Fog Computing 29

xs2 = (1 − λ) × x1 + λ × x2 (30)

The above formula can ensure that the feasible solutions are still feasible solutions
in the process of crossover.

4) According to the method proposed in reference [14] during mutation operation,
boundary mutation and non-uniform mutation are used for feasible and infeasible
solutions respectively.

5 Simulation Experiment

5.1 Simulation Environment

In the simulation, the number of fog nodes is set to 4, and a cloud server is added at the
same time. The computing power of each fog node and cloud server is different. The
data transmission capabilities of fog nodes, cloud servers, and management nodes are
different. The packet loss rates are also independent of each other. The computing power
and data transmission rate of fog nodes and cloud servers are set in reference [15]. The
relevant parameters of the fog nodes and servers that handle real-time tasks are shown
in Table 1.

Table 1. Parameters related to fog exclusive node and cloud server

Parameter type F1 F2 F3 F4 C

CPU frequency (GHz) 4 4.5 5 3 10

Bandwidth (Mbps) 100 350 200 250 50

Packet loss rate 0.0232 0.014 0.0154 0.0175 0.02

In the simulation, the real-time task data uses the industrial Internet of Things data
of the real-time path planning of industrial robots [53]. The amount of data transmitted
for each path planning task is 125 KB, and the CPU cycles required to calculate the path
planning task is 200M. The basic parameters of the GSA-P and GSA-R algorithms: the
population size is 100, and the maximum number of iterations is 3000.

5.2 Results and Analysis

Comparison of Penalty Factors
When using the penalty function, the main problem is how to choose an appropriate
penalty factor β. In order to verify whether the solution with the lowest delay obtained
by the GSA-P algorithm is a feasible solution when the penalty factor β is different, this
paper changes the β Range to simulate and analyze the GSA-P algorithm.

In the simulation, the value of β is set to {20, 15, 10, 8, 6, 4}, the GSA-P algorithm
iterates 3000 times to obtain the lowest delay, and then when different values of β are



30 M.-T. Zhou et al.

Fig. 6. Simulation diagram of GSA-P when different penalty factors

calculated, the GSA-P algorithm is calculated whether the solution with the lowest time
delay meets the constraint conditions, count 50 results for comparison.

It can be seen from Fig. 6 that the greater the β is, the greater the probability that the
solution is a feasible solution.

For example, when the penalty factor β = 20, due to the large penalty factor, the
penalty for the infeasible solution is large, so the chromosome population will be more
concentrated in the feasible region.

When β is a small value, for example, β = 4, the ethnic group will search in the
infeasible region more actively, but because the penalty is small, the solution may be an
infeasible solution.

We can also see from the line that when the value is 20, 15, 10, 8, the final solution in
most cases is a feasible solution or an approximate feasible solution, but when the value
is less than 6, due to the penalty is small, the result is very different from the feasible
solution. Therefore, in order to ensure that the results are feasible, β should be set as
larger than 6 as possible when solving.

Comparison of GSA-R and GSA-P Algorithms
According to Sect. 4.2.1, it is better that β ≥ 6. But the value of β is not the bigger the
better. This simulation compares GSA-P algorithm with GSA-R algorithm, and obtains
a value upper limit of β. At the same time, the performance of GSA-P algorithm is
compared with that of Joines&Houck method [16]. The simulation result is shown in
Fig. 7.



Real-Time Task Scheduling in Smart Factories Employing Fog Computing 31

Fig. 7. Performance simulation diagram of GSA-R and GSA-P algorithms

It can be seen from Fig. 7 that when β is large, searching for the optimal solution to
the infeasible region is discouraged, and it is more likely to converge to a local optimal
solution.

As shown in Fig. 7, when the β of the GSA-P is set to 20 and 15, the final optimal
delay obtained by GSA-P is larger than that of the GSA-R.

When β is small, the population will actively search for the optimal solution in the
infeasible region, so it can find the global approximate optimal solution.

When the β of the GSA-P is set to 10, 8, and 6, the final optimal delay obtained
is smaller than that of the GSA-R. When the penalty factor is set to 6, the total task
processing delay of GSA-P algorithm is about 80% lower than that of GSA-R algorithm,
and about 66% lower than that of Joines&Houck method.

Comparison of Different Computing Scenarios
This section compares the difference between cloud and fog calculation methods and
other calculationmethods. In the simulation, the number of iterations is 3000, the GSA-P
algorithm is used, and the penalty factor β = 6.

It can be seen from Fig. 8 that the calculation method of cloud-fog collaboration is
better than pure cloud or pure fog computing.

Although the cloud computing capability is powerful and can reduce the calculation
delay of the task, the cloud server is generally far away from the smart factory, the
network link bandwidth is limited, and there is a large communication delay. Therefore,



32 M.-T. Zhou et al.

the total latency of pure cloud computing task processing is larger, and as the number
of tasks increases, the performance gap becomes more and more obvious.

Compared with the pure fog computing method, the cloud-and-fog collaborative
computing method introduces a cloud server with powerful computing capabilities, and
the total task delay can be reduced through reasonable task allocation.

Fig. 8. Performance simulation diagram under different calculation scenarios

Compared with the traditional cloud computing method and fog computing method,
the method adopted in this paper can reduce the total task delay by 18% and 7% when
the number of users is 500, thereby ensuring the improvement of the efficiency of the
smart factory.

6 Conclusion

For real-time tasks in a smart factory, this paper first establishes a time delay optimization
model for real-time tasks in a smart factory based on the ARQ protocol. But this model
is an NP problem with constraints, ordinary genetic algorithms cannot solve it. In this
paper, the GSA-P algorithm is proposed on the basis of the GSA algorithm, which
transforms the constraint problem into a non-constraint problem by designing a penalty
function.

Simulation experiments show that when the penalty factor of the GSA-P is 6, the
delay is reduced by 80% compared with the GSA-R, and 66% lower than the Joines&
Houck method algorithm. When the number of users is 500, cloud and fog collaboration
computing method used in this paper reduces the task delay by 18% compared with the



Real-Time Task Scheduling in Smart Factories Employing Fog Computing 33

traditional cloud computing method, and reduces the total task delay by 7% compared
with the fog computing method.

In the future work, we will further discuss the resource scheduling problem in the
intelligent factory. We will not only consider the processing of real-time tasks, but also
study the processing methods of storage tasks.

Acknowledgement. This work was supported by the Science and Technology Commission of
Shanghai Municipality under Grant 18511106500.

References

1. Yang, Y., Luo, X., Chu, X., et al.: Fog-Enabled Intelligent IoT Systems, pp. 29–31. Springer,
Cham, Switzerland (2019). https://doi.org/10.1007/978-3-030-23185-9

2. Chiang, M., Zhang, T.: Fog and IoT: an overview of research opportunities. IEEE Internet
Things J. 3(6), 854–864 (2016)

3. Mourtzis, D., Vlachou, E., Milas, N.: Industrial big data as a result of IoT adoption in
manufacturing. In: ES, pp. 290–295 (2016)

4. Gazis,V., Leonardi,A.,Mathioudakis,K., et al.: Components of fog computing in an industrial
internet of things context. In: 2015 12th Annual IEEE International Conference on Sensing,
Communication, and Networking - Workshops (SECON Workshops). IEEE (2015)

5. Fazio,M., Celesti, A., Ranjan, R., et al.: Open issues in schedulingmicroservices in the cloud.
IEEE Cloud Comput. 3(5), 81–88 (2016)

6. Chen, N., Yang, Y., Zhang, T., et al.: Fog as a service technology. IEEE Commun. Mag. 1–7
(2018)

7. Skarlat, O., Nardelli, M., Schulte, S., et al.: Resource provisioning for IoT services in the fog.
SOCA 11(4), 427–443 (2016)

8. Luxiu, Y., Juan, L., Haibo, L.: Tasks scheduling and resource allocation in fog computing
based on containers for smart manufacture. IEEE Trans. Industr. Inform. 1–1 (2018)

9. Gedawy, H., Habak, K., Harras, K., et al.: [IEEE 2018 IEEE International Conference on
Edge Computing (EDGE) - San Francisco, CA (2018.7.2–2018.7.7)] 2018 IEEE International
Conference onEdgeComputing (EDGE) -AnEnergy-Aware IoTFemtocloudSystem, pp. 58–
65 (2018)

10. Wei, G., Vasilakos, A.V., Zheng, Y., et al.: A game-theoretic method of fair resource allocation
for cloud computing services. J. Supercomputing 54(2), 252–269 (2010)

11. Zhan, Z.H., Liu, X.F., Gong, Y.J., et al.: Cloud computing resource scheduling and a survey
of its evolutionary approaches. ACM Comput. Surv. 47(4), 1–33 (2015)

12. Miettinen, A.P., Nurminen, J.K.: Energy efficiency of mobile clients in cloud computing. In:
Usenix Conference on Hot Topics in Cloud Computing USENIX Association (2010)

13. Li, Y., Li, J., et al.: The research on ARP protocol based authentication mechanism. In:
International Conference on Applied Mathematics, Simulation and Modelling (AMSM)
(2016)

14. Ximing, L., Haoyu, Q., Wen, L.: Genetic algorithm for solving constrained optimization
problem. Comput. Eng. 36(014), 147–149 (2010)

15. Xiao, M., Hassan, M.A., Wei, Q., Chen S.: Help your mobile applications with fogcomput-
ing. In: Seattle, WA, USA : 2015 12th Annual IEEE International Conference on Sensing,
Communication, and Networking - Workshops (SECON Workshops), pp. 1–6 (2015)

16. Ichalewicz, Z.: A survey of constraint handling techniques in evolutionary computation
methods. In: Proceedings of the 4th Annual Conference on Evolutionary Programming,
pp. 135–155. MIT Press, Cambridge (1995)

https://doi.org/10.1007/978-3-030-23185-9

	Real-Time Task Scheduling in Smart Factories Employing Fog Computing
	1 Introduction
	2 Related Works
	3 Scheduling Frameworks in Smart Factories
	3.1 Task Classification
	3.2 Scheduling Framework for Real-Time Tasks

	4 System Model
	4.1 Time Delay Optimization Model Based on ARQ Protocol
	4.2 GSA-P Algorithm
	4.3 GSA-R Algorithm

	5 Simulation Experiment
	5.1 Simulation Environment
	5.2 Results and Analysis

	6 Conclusion
	References




