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Abstract. Due to the ability of 3D-printers to build a wide range of
objects at low costs, many industries are rapidly adopting additive man-
ufacturing. However due to their sensing and communications capabili-
ties, 3D-printers are Internet of Things (IoT) devices that are vulnerable
to sophisticated cyberattacks, such as defect injection attacks. By mali-
ciously manipulating the behavior of a 3D-printer, an attacker can compro-
mise the integrity of a manufactured objects. To avoid detection, the adver-
sary also compromises the sensor data reported by the 3D-printer that the
operator could use to detect the attack. In this paper, we design a deep
neural network that can detect such attacks by predicting the power con-
sumption of a 3D-printer based on the object design and previous power
consumption observations. By analyzing the difference between the pre-
dicted power consumption and the observed one, we can determine if the
3D-printer is under attack. By measuring the power consumption of the
3D-printer at the power line with an independent sensor, we can determine
the true behavior of the 3D-printer without relying on sensor data reported
by the potentially compromised 3D-printer. Compared to previous works,
our proposed detection technique only requires cheap power sensors that
can be easily installed. We conduct extensive experiments on a real-world
additive manufacturing testbed and observe that our proposed method can
detect defect injection attacks with up to 96% accuracy.

Keywords: Security * Intrusion detection + Side-channel defense -
3D-printing - Additive manufacturing

1 Introduction

Additive manufacturing (AM) is rapidly being adopted by many industries includ-
ing healthcare [1,2], acrospace [3], and automotive [4]. In AM, 3D-printers man-
ufacture objects by depositing material in a layer-by-layer fashion, which allows
them to build a wide range of objects with complex geometries, and various lev-
els of tensile strength, heat transfer, etc. Compared to traditional manufacturing
where machines need tool retrofitting each time they build a new object, AM can
redirect 3D-printers to produce entirely different types of objects without changing
any of their parts [5]. Moreover, 3D-printers are Internet of Things (IoT) devices
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equipped with sensing and communications capabilities that allow factory man-
agers to monitor and control their AM operations in real-time [6,7].

However, the use of 3D-printers to build objects for safety-critical indus-
tries such as healthcare and transportation raises major cybersecurity concerns.
Sophisticated cyber attackers regularly target industrial control systems aiming
to steal intellectual property or sabotage their physical processes [8,9]. Standard
security controls, e.g., firewalls, intrusion detection systems, encrypted commu-
nications, etc. [10], can protect against many non-sophisticated attacks, such
as an adversary stealing object designs from an unencrypted source. Unfortu-
nately, standard security controls are inadequate to address sophisticated attacks
where the adversary has enough knowledge and resources to bypass these con-
trols. Therefore, it is crucial to design IoT-enabled AM systems that not only
allow operators to enhance their systems with improved monitoring and control
but also prevent malicious adversaries from compromising their operations.

A particularly serious sophisticated cyberattack against 3D-printers is the
defect injection attack [11,12]. In a defect injection attacks, the adversary intro-
duces defects into the additively manufactured objects to affect their integrity,
and ultimately lead to premature (and potentially life-threatening) failure. To
inject the defects, the adversary maliciously modifies the machine instructions
used to build the object in such a way that it changes the manufactured object’s
geometric or material properties. To avoid detection, the adversary replaces the
original sensor data transmitted by the 3D-printer to the operator with sensor
data that appears normal. For example, the adversary can collect sensor data
reported during normal operation, and then replay it during the attack while
deleting the true sensor data. Such attacks can be launched by compromising the
3D-printer firmware, launching a man-in-the-middle attack, or by compromising
the PC that controls the 3D-printer. Similar attacks where the adversary com-
promises both the physical process and the sensor data have been observed in
industrial control systems, e.g., [13]. Thus, to detect defect injection attacks, we
need access to information about the 3D-printer’s behavior that is independent
from the potentially compromised 3D-printer.

To detect defect injection attacks, researchers have proposed to analyze
sidechannel signals that carry information about the behavior of the 3D-printer.
By measuring the side-channel with a device that is independent of the 3D-
printer, it is possible to observe the behavior of the 3D-printer and detect when
it is compromised. Some works measure the acoustic emissions with microphones
[14-17] to measure the movements of the 3D-printer tools. However, they need
sophisticated microphones placed near the 3D-printers and can be affected by
interference from other nearby machines. Researchers have also proposed to mea-
sure the power consumption of the 3D-printers to detect defect injection attacks
[12,18]. Unfortunately, these works either require a complicated retrofit of the
3D-printer to measure the consumption of individual components [7], or rely on
an energy consumption model [18].
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In this paper, we propose to use a deep neural network to analyze the electri-
cal power consumption of a 3D-printer using a single off-machine sensor. Specif-
ically, our proposed deep neural network takes as input the object design and
the previously observed power consumption measurements to predict the power
consumption measurement. By analyzing the difference between the predicted
power consumption and the observed one, we can determine if the 3D-printer
is deviating from the known object design, and thus injecting defects into the
object. By measuring the power consumption of the 3D-printer at the power line
with an independent device, we can determine the true behavior of the 3Dprinter
without relying on sensor data reported by the potentially compromised 3D-
printer. Compared to previous works that employ sophisticated hardware, our
proposed detection technique only requires power sensors, which can be acquired
at low cost and can be easily installed on the power lines without retrofitting the
3D-printer. We conduct extensive experiments on a real-world additive manufac-
turing testbed. We measure the performance of our proposed detection method
under different types of defect injection attacks in terms of accuracy, precision,
and recall. We observe that it can successfully detect defect injection attacks
with up to 96% accuracy.

The rest of this paper is organized as follows. In Sect. 2, we present the system
model. Section 3 describes our use of deep learning and detection methodology.
Section 4 presents the implimentation and results of our model testing. Section 5
and 6 provide a conclusion and reference to future works to be done on this
subject.

2 Related Works

In this section, we provide a brief overview of works relating to additive manu-
facturing security.

Cybersecurity issues in additive manufacturing have received increased atten-
tion from researchers in recent years. Specifically, Yampolskiy et al. [19] describe
several attacks against 3D-printers, including defect injection attacks and how
they can be used to compromise the additively manufactured object’s shape and
material properties. Sturm et al. [20] describe void injection attacks, where the
adversary creates empty spaces within the objects. This type of attack is partic-
ularly challenging to detect since it requires complex imaging such as computer-
ized tomography (CT) scans, to observe the voids. Graves et al. [21] discuss how
defect injection attacks can be used to sabotage industrial control systems and
the consequences of these attacks. Do et al. [22] demonstrate how an attacker can
remotely manipulate the behavior of a 3D-printer. Belikovetsky et al. [11] imple-
ment a defect injection attack that introduces voids into a 3D-printed object.

Some researchers have designed methods to detect defect injection attacks.
Sturm et al. [23] propose to detect defects in a metallic additively manufac-
tured objects by comparing its impedance to that of a control defect-free object.
Unfortunately, this verification method only works with metallic objects, and
must be done after building the object, which can result in expensive material
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waste. Wu et al. [14] propose machine learning methods that analyze acoustic
and visual data from the additively manufactured objects. In [16], Belikovetsky
et al. propose to compare the acoustic emissions of a 3D-printer to a record-
ing of the same 3D-printer when it built a defect-free object. Gao et al. [17]
used acceleration, visual, audio, and magnetic field measurements to create an
accurate estimate of the 3D-printer’s movements. The observed movements were
compared to the defect-free objects to detect the attack. In [12], Belikovetsky
et al. propose to monitor the power consumption of individual stepper motors
inside the 3D-printer. However, these defect injection methods require the instal-
lation of multiple sophisticated sensors near, or inside, the 3D-printer, and thus
are expensive, difficult to implement, and subject to interference from nearby
machines. In particular, the method proposed in [12] requires opening the 3D-
printer and separating the wires that feed electrical power to each stepper motor
inside the 3D-printer. This poses a significant challenge to system operators since
they could have multiple machines, and disassembling them could be cumber-
some, complicated, and costly.

Salinas et al. [18], propose to identify defect injection attacks in a system
of multiple 3D-printers by observing their aggregate power consumption with
a single power consumption sensor installed on the power lines that feed the
machines. However, this approach only focuses on isolating the compromised
machine and assumes that an energy consumption model already exists.

In this work, we design a deep neural network mechanism that can detect
defect injection attacks and only requires a single power consumption sensor that
is cheap and can be easily installed on the power lines feeding the 3D-printer.
These power measurements are independent from the potentially compromised
measurements reported by the 3D-printer.

3 System Model

In this section, we develop a model that describes the operation of a 3D-printer,
and describe our considered threat model.

3.1 3D-printer Operation Model

We consider a 3D-printer that is controlled by a PC. The 3D-printer operates an
extruder head mounted on a gantry with three degrees of freedom. The planes
are denoted by x,y, and z, respectively, as shown in Fig. 1. To build the objects,
the extruder head deposits material on the printing bed. The 3D-printer cre-
ates objects from the bottom up in a layer by layer fashion. A set of tool-path
instructions transmitted from the controller PC to the 3D-printer determines the
extruder head’s speed and direction of movement. Besides the tool-path instruc-
tions, the controller PC sends several build parameters to the 3D-printer, such
as the temperature of the printing bed, speed of material extrusion, cooling fan
speed, etc. Figure 1 shows the planes of movement of the extruder head.
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Fig. 1. 3D-printer axes.

The 3D-printer implements the tool-path instructions by actuating a set
of stepper motors that, in turn control the position of the extruder head and
the material deposition. Let m&, m§, mg, m§, m§ denote the motors of the 3D-
printer. Motor m{ and motor m{ move the extruder head along the z and y
axes, respectively. Both motor m§ and mj drive the motion of the extruder head
along the z-axis. Motor m§ controls a gear that feeds material into the extruder
head.

Besides the stepper motors, the 3D-printer also controls two heaters and
two cooling fans. The first heater is used to maintain a constant temperature
at the baseplate to help keep the print in place as well as to aid in the bond-
ing of layers [24]. The second heater melts the material filament as it is fed
through the extruder head. The cooling fans are placed near the extruder head
to promote bonding between layers by reducing the temperature of the deposited

material [17].
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Fig. 2. 3D printing process chain.

3.2 Tool-Path Instruction Model

The 3D-printer builds objects by following tool-path instructions that specify
the path its extruder head needs to follow and the amount of material it needs
to deposit. To find the tool-path instructions, the controller PC first captures
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the surface geometry of the three-dimensional design in a stereolitography (STL)
file. Next, a slicing software, e.g., Slic3r, takes the STL file as input and outputs
the tool-path instructions for the 3D-printer. We show the work flow to find
tool-path instructions in Fig. 2.

Final X, Y, & Z
Position

Set Extruder Head |-[G8| F2625 [X64.12 Y68.892 70.425|

Position G1|F908|X64.574 Y68.526 [E6.091943
Define Printing I

Movement Printing Speed Raw Material Filament
in mm/min Displacement in mm

Fig. 3. Labeled G-Code example.

The tool-path instructions can be represented in several different formats. In
this work, we will focus on the G-code format. Specifically, tool-path instructions
coded in the G-code format specify the end position of the extruder head, the
speed of movement, and the position of the extruder gear, which determines the
amount of deposited material. Besides movement, G-code instructions can also
be used to set the temperature of the heaters. Figure 3 shows an example of a
set of G-code tool-path instructions initialize the position of the extruder head
and then move the extruder head while depositing material.

3.3 Extruder Head Movement Model

We model the movement of the extruder head based on the tool-path instructions
described in Sect.3.2. The objective is to describe the expected direction and
speed of movement of the extruder head based on the tool-path instructions.
Since a single tool-path instruction only specifies the final position of the extruder
head, we need two consecutive tool-path instructions to determine the extruder
head movement. In particular, let P, = {Xj, Y%} be the final position of the
extruder head specified by the kth tool-path instruction, where X and Y} are
the X and Y coordinates, respectively. Thus, the extruder’s initial position for
movement k is defined as X1 and Y;_1. Moreover, the change in position of
the extruder head during the kth tool-path instruction along the X and Y axes
is given by:

6X =X — Xp_1, 0V =Yp— Yy (1)

The movement of the raw material filament through the extrusion head can be
similarly modeled. Let Ej be the final position of the extruder filament after the
kth instruction. Then, the length of the raw material filament that is extruded
by the 3D-printer is given by:
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§E = E), — E_; (2)

Moreover, the speed at which the raw material filament moves during the
kth tool path instruction is usually directly specified by the G-code command.
We denote it by Fj. If F} is not specified, we use the speed specified in the most
recent tool-path instruction where the speed was specified.

Note that the extruder head moves along the Z-axis to raise the gantry after a
layer is finished. However, the movement along the Z-axis requires the operation
of two-stepper motors instead of one as it is the case with movement along the
X and Y planes. Since operating two motors results in a vastly different power
consumption, we leave the study of the Z-axis movements for future work.

3.4 Power Consumption Measurement Model

To build objects, the 3D-printer transforms alternating current (AC) from its
power source to direct current (DC) power, which is then routed it to the
step-per motors. Previous works, e.g., [12], attempt to detect defect injection
attacks by measuring the power consumption of the individual stepper motors,
which requires disassembly of the 3D-printer. Instead, to avoid retrofitting of
the 3Dprinter, we directly measure the overall AC power consumption of the
3D-printer using an AC current sensor that is placed between the 3D-printer
and the AC power source.

Since the AC current consumed by the 3D-printer follows a sinusoidal shape
whose amplitude varies proportionally to the total power consumed by the
3Dprinter, we can use information about the magnitude of the peaks and val-
leys to determine the power consumed to execute specific tool-path commands.
Specifically, let |I7| = [it,i2,...,ilY | be the vector of absolute peak AC current
samples taken by the sensor during tool-path instruction k, where N is the
total number of samples. Then, the average AC current peak during tool-path
instruction k is given by:

7P 1 Al -j
j=1

We note that although the average peak AC current I + discards the non-peak
current values, our experiments show that using I; provides enough information
for our deep neural networks to effectively detect the defect injection attacks.

3.5 Threat Model

We consider an adversary that aims to introduce a defect into the additively man-
ufactured objects by maliciously modifying the original tool-path instructions.
To avoid detection, the adversary intercepts the sensor measurements taken by
the 3D-printer and replaces them with sensor measurements that match the
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Fig. 4. A 3D-printer architecture under a defect injection attack.

tool-path commands of the original object design. To this end, the adversary
can launch one of several cyberattacks, including compromising the controller
PC or the firmware installed the 3D-printer. Moreover, the adversary seeks to
avoid detection by choosing to inject defects into the manufactured object that
are difficult to notice by visual inspection, e.g., a small modification to the
dimensions of the object. This threat model is shown in Fig. 4

The adversary can maliciously modify the original tool-path instructions in

several ways. In this work, we consider the following tool-path instruction mod-
ification attacks

1.

Insertion Attacks. In this type of attack, the adversary inserts one or more
additional tool-path instructions into the machine code that is executed by
the 3D-printer. The inserted command could be solely movement, or it could
also contain a command to deposit material with movement. This attack
introduces defects by printing material in unintended locations or by manip-
ulating the start position of the extruder for the next tool-path instruction.
Deletion Attacks. The adversary launches a deletion attack by removing
one or more tool-path instructions from the machine code executed by the
3D-printer. This attack can introduce a defect by removing commands which
print material at specific locations, or set the extruder position for the next
instruction.

Reordering Attacks. In this attack, the adversary swaps the order in which
two tool-path instructions are executed. The instructions need not be consecu-
tive. The swapped instructions lead to defects during the swapped commands
as well as the commands that follow, as the starting location of the extruder
head for those commands will now be modified.

Void Injection Attack. In this attack, the adversary prevents the 3Dprinter
from depositing material at certain positions and layers in such a way that a
cavity is introduced into the printed object. Voids lead to a modified cross-
section of the printed object, which will affect the stresses and strains that
object undergoes. This could ultimately lead to an object with less physical
integrity than the intended print [11].

Printing Speed Attack. In a printing speed attack, the adversary changes
the printing speed parameter of the 3D-printer. This attack can result in a raw
material filament pressure change that causes an alteration in its diameter
as it is extruded. This can affect the surface morphology and integrity of the
printed object [25].
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We assume the adversary does not compromise any other devices such as the
AC current sensor that we use in our proposed detection method. We also assume
that the operator can perform destructive testing on multiple manufactured
objects to collect power measurements while the printer builds objects when
there is no attack. This ensures that enough power consumption measurements
are available to train our proposed deep neural network.

4 Power-Based Deep Learning Attack Detection Method

In this section, we describe the proposed deep learning attack detection method-
ology.

To detect defect injection attacks in real-time, we propose to design a deep
neural network that takes the original tool-path instructions as input to output
a prediction about the power consumption of the 3D-printer. By comparing the
power consumption predicted by a deep neural network to the power consump-
tion observed by a sensor installed on the power line that feeds the 3D-printer, we
can determine if the 3D-printer is deviating from the original tool-path instruc-
tions. If the predicted and observed peak current consumptions differ by more
than the threshold, then we conclude that the printer is implementing a tool-
path instruction different from the original tool-path instruction used as input to
the deep neural network. We show our overall defect injection attack approach
in Fig. 5.

Previous Power k
Measurement —
Deep Neural N x Difference above

Tool-path Network thres%v
Instructions Predicted (
Power Measurement Calculate ‘ Attack detected
\ difference
—@—} D|ﬁerence bN
threshold No Attack
(;urrent Observed Power
Potentially eNsor Measurement
compromised
3D Printer

Fig. 5. Proposed attack detection procedure.

In the rest of this section, we explain in detail each step of our proposed
defect injection detection scheme.
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Fig. 6. Neural network architecture.

4.1 Deep Neural Network Architecture

We first present a deep neural network that predicts the power consumption of
a 3D-printer while it executes a specific tool-path instruction. The deep neural
network follows a multi-layer perceptron feedforward architecture as shown in
Fig. 6.

As described in Sect. 3.4, we use the average peak AC current I_f{ to mea-
sure the overall power consumption of the 3D-printer. Thus, our deep neural
network generates a prediction of the average peack AC current using the tool-
path instruction characteristics specified in the G-code command as described in
Sect. 3.3. Specifically, it uses as input the extruder head speed Fj, the previous
position of the extruder head given by X;_1 and Yj_1, the change in position
0 X} and 0Yy, the changes in the position of the raw material filament J E}, and
the average peak AC current from the previous tool-path instruction I v

The input values are given to the input layer, which calculates the inputs to
the first hidden layer, and so on until they reach the output layer. In particular,
the computations of the first hidden layer are defined as follows:

all = o (wll . x) (4)

where x € R7™! is a vector that contains the input values, altl € R**! is the
output of first hidden layer, and w!tl € R**7 is the matrix of weights for the first
layer, and o is the sigmoid activation function.

The hidden layer is fully connected to another hidden layer of the same size
i. The computations performed by the following hidden layers are defined as:

all = U(Wm Al pll) wi=2..j ®)

where all € R**! is the output of jth hidden layer, wlil € R¥*? and blil € R¥*1,
are the matrices of weights and biases for the jth layer respectively, and i is the
size of the jth hidden layer. This hidden layer is connected to another hidden
layer up to j layers.
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Finally, the last hidden layer j is fully connected to a dense output layer with
one node. The computations performed by the last layer are as follows:

1P = o (wlti] . all 1 pliti]) (6)

where [ ¢ is the final scalar output of the network and represents the predicted
average AC peak current for tool-path instruction k.

The ability of the deep neural network to accurately predict I ¥ depends on
the parameters w? and b’ (for all j). To find these parameters, the network
is trained using average peak AC current samples taken when the printer is
building an object without defect as we later describe in Sect. 5.3.

4.2 Detection of Abnormal Average Peak Current

To detect defect injection attacks against the 3D-printer, we propose to compare
the predicted average peak current I + to the observed one I +. Specifically, we
calculate the square error loss function for each tool-path instruction used to
build an object [26], i.e.,

Dy = (I} - I})* (7)

for all k. We then compare Dy to a threshold value ¢ to determine if there is
a defect injection attack. If Dy is less than the threshold value (for any k),
we conclude the printer is following the original tool-path instructions used as
input to the deep neural network. Otherwise, we conclude it is executing different
tool-path instructions, and thus it is under attack.

5 Experimental Evaluation

In this section, we implement our proposed defect injection attack detection
mechanism and evaluate its performance.

5.1 Testbed Implementation

To closely replicate a real-world 3D-printing scenario, we used a general-purpose
PC connected via USB to a LulzBot Mini 3D printer, as shown in Fig. 7. To take
AC load current measurements, we clamped a YHDC SCT-013 current sensor
around a single wire coming from the 120V power source (i.e., the wall outlet)
into the printer. This current sensor outputs voltage measurements that are lin-
early proportional to the magnitude of the current flowing through the wire. The
output voltage resolution of the sensor is .033V/1A. We used an oscilloscope to
observe the voltage output of the current sensor and collected the measurements
with the general-purpose PC. In practice, the controller PC would be different
from the PC collecting the measurements. However, to simplify the control of
the 3D-printer and the measurement collection, we used the same PC for both
functions.
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Fig. 7. Diagram of our experiment testbed for defect injection attack detection.

To control the 3D-printer and collect measurements, we developed a Python
application that sends tool-path instructions for a specific object design to the
printer, collects AC current measurements from the sensor. We also use this
application to implement the defect injection attacks by changing the tool-path
instructions as described in Sect.3.5. We also developed an application that
processes the AC current measurements and implements the deep neural net-
work detection mechanism. We use PyTorch version 1.4, an open-source machine
learning library, to train and implement the deep neural network. Both appli-
cations are run on a general-purpose PC with an Intel i7-7700HQ CPU, 16 GB
RAM, and an NVIDIA GeForce GTX 1050 graphics card.

5.2 Power Consumption Measurement Preprocessing

Before we can use the current consumption measurements to train the deep neu-
ral network, we need to preprocess the raw AC current measurements. Specifi-
cally, we first extract the peaks from the AC current measurements to form the
vector I;f as described in Sect. 3.4. Since some of the peaks stored in II’f may
correspond to the operation of the extruder heater, which does not contribute
information about the movement of the extruder head, we remove peaks that are
greater than a threshold. The threshold can be easily set due to the peaks corre-
sponding to the heater being several mA higher than the peaks that correspond
to stepper motors. After removing the peaks due to the heater, we can calculate
the average peak AC current I7 as described in (3). We show an example of raw
and preprocessed data in Fig. 8

5.3 Deep Neural Network Training

To train the deep neural network, we collected average peak current measure-
ments of the 3D-printer while executing different types of tool-path instructions.
Specifically, we first built the test object in Fig. 9 and collected the average peak
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Fig. 8. Effects of preprocessing.

current measurement for each of its 84 tool-path instructions. This process was
repeated 10 times. This test object results in tool-path instructions that contain
both single-plane instructions, i.e., movements parallel to one of the planes, and
double-plane instructions where the extruder head moves along two planes at
the same time, i.e., diagonal movements. The length of the movements required
by the tool-path instructions varies between .707 and 105.8 mm. We then paired
the pre-processed power consumption measurements with their corresponding
tool-path instructions to create a training data set for the deep neural network

described in Sect.4.1. Table 1 summarizes the types of tool-path instructions in
our data set.

20 mm

Fig. 9. 3D-model of the test object.

After building the training data set, we train the deep neural network
described in Sect.4 in Pytorch. We used the ADAM optimizer algorithm to
find the parameters of the deep neural network. The loss function was set to the
mean square loss, with a learning rate of .0015.

Moreover, we also build a testing data set that we later use to analyze the
performance of our deep neural network. Specifically, we build the test object 50
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Table 1. Types of tool-path instructions for the test object.

Instruction type | Number of appearances
No Movement 1
X-axis only 30
Y -axis only 14
X, Y-axis 39

times under each defect injection attacks described in Sect. 3.5, and measured
the average peak current of the 3D-printer for each tool-path instruction.

5.4 Hyperparameter Tuning

To find the deep learning network architecture that could best predict the power
consumption of the 3D-printer, we measured the performance of the neural net-
work under several hyperparameter combinations. Specifically, for each network
configuration, we re-trained the deep neural and measured the training loss, i.e.,
how well it predicts the average peak current, and the training time. We tested
several networks with a varying number of hidden layers, and a varying number
of neurons in each layer between 25 and 100.

We show the results in Fig. 10 and observe that the best performing archi-
tecture has 2 hidden layers of 100 neurons.

1000 mEE 2 Layers

w3 Layers
4 Layers

800

600

Time (s)

400

200

25 50 75 100
# of Nodes in Hidden Layers

Fig. 10. Training loss under best performing hyper-parameters.

We also measured the training time for each network model tested. Figure 11
shows the training time of the proposed neural network for varying number of
layers and layer sizes. We see that adding layers generally increases the training
time, while the size of the layers has little effect.

Based on the training loss and training time results above, we chose a deep
neural network with 2 hidden layers of 100 neurons to detect defect injection
attacks in our experiments.
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Fig. 11. Training time under varying parameters.

5.5 Results

We first evaluate the performance of the proposed deep neural network in detect-
ing the attacks described in Sect. 3.5 under varying values for threshold ¢. As
described in Sect. 4.2, after calculating the the square error value in (7), we need
to compare it to a threshold ¢. Figure 12 shows the accuracy of the deep neural
network to identify attacks for varying values of the threshold ¢. We see that
choosing a threshold of .73 gives a high accuracy for all attack types.
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8 —— Control
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: —-— Delete
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04 06 08 10 12 14 16
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Fig. 12. Attack detection accuracy.

Table 2 shows the performance of the proposed detection scheme when the
threshold ¢t = 0.7 for each of the attacks. The first column shows the type of attack
launched against the test object or if it was a defect-free print. The second col-
umn indicates the number of times our detection scheme correctly classified the
test object print as either defect-free or compromised. The third column shows the
number of types it incorrectly classified the object print. Columns four, five, and
six show the accuracy, precision, and recall of the proposed detection scheme under
each type of attack. We observe that the deep neural network is able to correctly
detect the insertion and deletion attacks in all 50 trials of the test object printing.
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We also observe that the reorder attacks can be correctly detected with an accu-
racy of 82%, precision of 95%, and recall of 82%. The detection scheme shows even
better performance for void attacks with an accuracy, precision, and recall of 98%,
96%, and 98%, respectively. The last row shows that the proposed method only
had two false positives out of 50 defect-free prints.

Table 2. Detection accuracy. Threshold = .73.

Attack Correct | Misclassified | Accuracy | Precision | Recall
Insertion 50 0 1.00 0.96 1.00
Deletion 50 0 1.00 0.96 1.00
Reorder 41 9 0.82 .95 .82
Void 49 1 0.98 .96 .98
Control Print | 48 2 0.96 NA NA

The reason why our deep neural network has a high-accuracy in detecting
the insertion and deletion attacks is that they result in high differences between
the predicted and observed average peak current not only during the affected
tool-path instruction but through the entire object build. This allows the neu-
ral network to have more opportunities to observe an abnormal average peak
current. Under a reorder attack, our deep neural network also achieves a high
accuracy but has fewer opportunities to detect the abnormal average peak cur-
rent since only the two swapped instructions will result in abnormal readings.
In void attacks, the extruder motor stops running, which results in differences
between the predicted and observed values. We show differences caused by void
attacks in Fig. 13.
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O O
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(a) Movement with Extrusion. (b) Movement without Extrusion.

Fig. 13. Effects of void attack
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6 Conclusions and Future Work

In this paper, we have investigated the problem of detecting defect injection
attacks against 3D-printers. Since the adversary can compromise the sensor
measurements reported by the potentially compromised 3D-printer, we use an
external sensor that measures the power consumption of the 3D-printer. We
then use a deep neural network that takes as input the object design and the
previously observed power consumption measurements and predicts the power
consumption measurement for the current tool-path instruction. If the differ-
ence between the predicted power consumption and the observed one is large,
we can determine that the 3D-printer is deviating from the known object design,
and injecting defects into the object. Previous works use sophisticated hardware
that is difficult to install and often requires the operator to disassemble the 3D-
printer. In contrast, our proposed detection technique only requires a low-cost
power sensor that can be easily installed without retrofitting the 3D-printer. Our
extensive experimental evaluations show that the proposed method can detect
several defect injection attacks with up to 96% accuracy.

In the future, we plan to investigate the application of our proposed attack
detection method in substractive manufacturing. Similarly to AM, substractive
manufacturing processes design files to produce G-Code or M-Code commands
that define the movement of the machine’s tools. However, instead of deposit-
ing material in specific locations as in AM, substractive manufacturing uses
CNC machines to shape blocks of raw material into the manufactured parts
using a number of tools (drills, saws, etc.). Our proposed method could be used
to monitor CNC machine power consumption, and detect malicious variations
in tool-path commands. Additionally, we plan to imporove the accuracy of the
system to more closely monitor indivudal stepper motors.
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