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Abstract. Software Defined Networking (SDN) definitely brings along benefits
such as manageability, automation of network and management processes amongst
others, however, at the expense of major drawbacks such as huge investment in
SDN-capable hardware, vendor lock-in and backward incompatibility with legacy
devices. SDN itself being based on a new concept, provides very few aspects in
common with traditional networking devices with each SDN vendor usually lim-
iting the SDN capabilities to their own devices only. Even with the introduction
of open protocols such as OpenFlow with the aim to provide vendor neutrality,
backward compatibility still remains a problem. This paper is geared towards
addressing the main issues governing the migration towards SDN and hence pro-
vide the desired vendor neutrality, backward compatibility without compromising
on networking features, security, ease of deployment and management inter alia.
With this concept in mind, an SDN Middleware System has been conceptualized
to offer the aforementioned features whereby the backend of the system would be
responsible to intercept, inspect and process OpenFlow configurations from the
SDN Manager and the SDN Controller and thereafter interpret these commands
converting them into the desired configuration in legacy networking terms after
which, the legacy nodes are configured with the equivalent of the legacy vendor
OS.
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1 Introduction

Software Defined Networking (SDN) has been one of the major recent changes that has
been introduced into the networking era after a long influence of traditional networks.
The main key of SDN in tandem with Network Function Virtualization (NFV) is geared
to provide automation in the implementation, configuration and operation of networking
nodes such as switches, routers, firewalls with minimal manual intervention contrasting
against legacy networking principles [1].

Today, key players in the networking ground are massively campaigning software-
defined solutions and laying forward advantages to encourage the adoption of SDN.
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However, challenges in the migration towards SDN still prove to be undealt with such as
huge investments, insufficient multi-vendor interoperability and backward compatibil-
ity with legacy systems amongst others [2]. The Open Networking Foundation (ONF)
established itself to mitigate the issue of interoperability while providing a unified net-
working protocol known as the OpenFlow to uniform SDN controller platform. Still, it
should be noted that not all network devices are SDN capable and there are yet many
legacy network devices in current use.

In this context, this paper aims at assessing the feasibility of optimizing the way
SDN works in such a way that legacy networking systems can still make optimal use of
software-defined technology irrespective of vendor, hence, addressing the fundamental
issues of interoperability and backward compatibility, while reducing the investments
involved in the adoption of SDN technology. This would promote the development of a
proposed SDN Middleware System that would be able to bridge the gap between SDN
standards and legacy networks.

1.1 Problem Statement

The migration towards an SDN platform is highly dependent on the network architecture
and inventory which can also imply that SDN adoption requires a major network refresh
in order to have SDN capable devices that can support protocols such as OpenFlow.
OpenFlow has been established to provide vendor neutrality but however, vendors are
putting today their own SDN solutions that are to a major extent, proprietary [3, 4]. These
proprietary solutions offer limited interoperability among different vendor devices and
the operation is mostly limited to their in-house solutions only.

Hence, SDN is difficult to be deployed in legacy networks that are not SDN-aware
such as routers, switches and firewalls which are still very widely in use today. Riverbed
Global survey 2017 highlights that 85% of business decision makers claim to be still
several years away from digital transformation due to part of their legacy infrastructure
[5]. This in turn signifies that a majority of the market is still dependent on their current
legacy infrastructure. Migration towards an SDN solution would be more than a paradigm
shift and even with open protocols such as OpenFlow, there exists limited documentation
for the configuration, implementation and operation of OpenFlow across a multi-vendor
network topology and a suitable migration plan. Even Cisco who had once developed
the OpenFlow based controller has announced the End of Life [6]. Very little attention
is being given to the inclusion of legacy network devices and how they can fit into the
SDN scenario.

2 Background Study

In this section, we will provide a brief overview of the SDN concepts and the SDN
architecture. An overview of the OpenFlow protocol is also provided.

2.1 Software-Defined Networking Concepts

The SDN Architecture. The basis of SDN Architecture can be summarized into 3
principles:
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1. Decoupling of controller and data planes.
2. Logically centralized control.
3. Exposure of abstract network resources and state to external applications [11].

Traditional routers and switches incorporate a strong amalgam between the control and
data planes. This tandem rendered management operation such as configuration and
troubleshooting very challenging. In order to alleviate these issues, traffic engineering
approaches to separate control and data plane was a must. Over time, equipment vendors
implemented packet forwarding logic directly into the hardware, separate from the con-
trol plane software. In addition, another issue that needs to be addressed with isolation
of the control plane is to have a single management platform (later defined as the SDN
controller) which would act as the “brain” of the network architecture. As compared to
local control in conventional networks, the centralized SDN controller would therefore
be responsible to provide control traffic to the network equipment via programmability
in the control plane through the SDN controller and since a uniform control platform is
maintained, a network-wide visibility, scalability and decision-making could be achieved
[11].

Having key roles, SDN controllers are designed to provide better adaptive network
path selection, while minimizing outages during network changes such as routing and
providing enhanced security such as blocking suspected attack traffic. The SDN con-
trollers assume the role of logically centralizing control procedures while providing
standardized communication protocols — which is possible with the use of OpenFlow as
open routing software. This would imply that a single server (the SDN controller) can
store all the routing, switching rules and contain all the decisions while the networking
devices being controlled would in turn rely on the intelligence of the SDN controller [7,
12—14]. Figure 1 depicts the typical SDN Architecture that has been devised and which
is used by most SDN platforms including OpenFlow.

Management Application plane

—— SDN application (= 0)

W/ A-CPI: Application-controller plane interface
Controller plane

Management
functions
(0SS)

> SDN controller

N
]T . D-CPI: Data-controller plane interface
< Data plane

—1 Network element (= 1)

Fig. 1. SDN architecture overview [11]

The OpenFlow Protocol. The OpenFlow Protocol aka OpenFlow Switch Protocol set
up by the ONF is the medium that defines how the OpenFlow controller communicates
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with the OpenFlow switches. Similar to a traditional switch, the OpenFlow switch relies
on basics such as routing and switching but with certainly a major variety of features.
However, one major difference in the configuration between these two is that OpenFlow
switches need to be managed by an OpenFlow controller which can configure the switch
through the OpenFlow switch’s tables. This is equally applicable to OpenFlow and
OpenFlow-hybrid switches, where the latter can perform both traditional networking
and SDN capabilities at the same time but would still require an OpenFlow controller
for the OpenFlow segment to be operational.

1. Flow table.
2. Group table.

Figure 2 shows the SDN architecture within an OpenFlow switch and the main
components of the OpenFlow switch and its interaction with the OpenFlow controller.

Controller Controller

(I OpenFlow Protocol
OpenFlow Switch

Datapath

| 4

|

OpenFlow | | OpenFlow :
Ch|anne| Channel : Group | | Meter
I | Table | | Table

Control Channel

Flow Flow Flow
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Table [ 2| Table [2 " 2| Table
Pipeline

Fig. 2. Main components of an OpenFlow switch [15]

Each of the above tables may contain individually a set of different flow entries and
group entries respectively. Therefore, the OpenFlow controller can add, update, delete,
flow entries and group entries using the OpenFlow Switch protocol. A flow table would
contain a set of flow entries where each entry would define parameters similar to the
policy, condition and action triad but specific to the OpenFlow protocol such as match
fields, actions on traffic, and instructions among others.

Within the flow table, the matching sequence of traffic compared against the flow
entry starts in a top-down approach where the first matching entry in each table is
executed first and if a policy and condition is matched, the corresponding actions as
defined in the flow table entry are applied. Otherwise, if there is no suitable match, the
result is based on the Table-miss flow entry parameters that define what action to take
when no match has been found, for example this can be allow/drop on no match.

Traffic matching a flow entry can be as an action, forwarded to either a physical or
virtual port and actions can be set to redirect traffic to a group that can provide additional
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processing. In this case, a group entry would therefore contain a set of actions determined
by the group type itself [15].

2.2 Current Research Developments

Currently, there exists very limited research material regarding the compatibility of
legacy devices with OpenFlow controllers or other SDN venues. Most of these researches
are geared towards the performance analysis of OpenFlow controllers in a lab network
with limited deployment in practical network setups [16—18]. The issue of legacy device
support is addressed partly by [19] where the use of home gateways to be integrated in an
OpenFlow-based SDN network while at the same time exploiting the hardware available
to accelerate traffic and its processes. However, it can be inferred that home gateways
(CPEs) are not suitable to fit into an SDN topology since they lack advanced function-
alities and granular access to physical registers which are usually vendor-locked. The
“HARMLESS” approach as depicted in [20] is among the few that partially addresses
the research problem concerns and the strategy here is to add a SDN switch that can add
SDN capability to legacy network systems by including a layer of virtualization based
on Tagging and Hairpinning. Among the few papers, [20] focusses on operability and
cost of legacy networks in SDN networks but yet, we consider the approach to techni-
cally insufficient since HARMLESS would require additional hardware such as server
for spine topology where the use of 10G switches are solicited with overwhelming port
capacities and additional CPU which is at the expense of providing a low-cost solution.
The research from [21] provides a good basis to use the OpenFlow configurations but
provides very limited information on how the interpretation and conversion is realized
from the OpenFlow, how the administration is handled and how it can be used for var-
ious configurations. The research lacks qualitative evaluation and test cases that would
suit more than the TCMA performance. The incremental deployment of SDN as men-
tioned in [22] provides a limited practical approach on how SDN can be implemented
into hybrid networks. Following the critical review of several papers [16-20, 23, 24] itis
with concern that we conclude that limited importance is being given to the main aspects
of SDN adoption which we believe to be primordial and hence form the very basis of
this research which is geared towards support for legacy devices, multi-vendor sup-
port, device discovery, ability for multiple configurations, minimal required resources,
ease of implementation and management, cost effectiveness, security, scalability and
performance.

3 Proposed SDN Middleware System

Typically, a basic SDN topology would require the SDN controller in the Control Plane,
the OpenFlow switch in the Data Plane with the network elements associated to the
switch and the OpenFlow Manager in the Management/Application Plane that would be
used to manage the configuration of the SDN controller. The functionalities of a practical
SDN environment would be as per Fig. 3.
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OpenFlow SDN OpenFlow Network
Manager Controller Virtual Switch Equipment

Fig. 3. Practical SDN setup

During the end-to-end network configuration of the switch to allow data plane process
the traffic of the network elements, several protocols are used. First, the configurations
executed in the OpenFlow Manager are triggered via the HTTP/s to the SDN controller.
The SDN controller sends its configuration (flows) up to the OpenFlow switch via Open-
Flow protocol while for the Data plane layer on the OpenFlow switches, it is the usual
TCP/IP stack protocol that is preserved.

However, in order to have the control of non-SDN compliant devices, there is the
need to have the middleware that would bridge the gap between the configuration of
SDN and legacy devices and hence, through a single management console as well. This
can be achieved by having terminal direct access to the manageable legacy switches via
remote management protocols such as SSH. In this light, the approach of the proposed
middleware is to be able relay the information input into the OpenFlow Manager which
would be the management console, to both the SDN controller and the configuration
of legacy devices. In this project, the middleware is highly leveraging on the fact that
the configurations “pushed” from the OpenFlow Manager are in HTTP requests and
responses while the parameters are most commonly sent via JSON scripts.

In the proposed solution, the middleware should therefore be able to effectively “tap”
into the path across the flow sequence from source (OpenFlow Manager) to sink (Network
Devices) and interpret the HTTP/S/JSON messages from the OpenFlow Manager parsing
them into the proprietary language based on the operating system of the legacy switch.
The middleware would therefore fit into the topology as proposed in Fig. 4.

The SDN Middleware System proposed will have several uses one of which is fun-
damentally to be able to gain management of a “hybrid” architecture — containing both
SDN-capable and legacy network nodes. This is typically the observed scenario in prac-
tice where either campus or data center networks even though have part of their net-
work SDN-ready, still retain some of the legacy networking devices such as routers and
switches especially those that offer compatibility with older protocols/services.
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Fig. 4. SDN middleware in practical hybrid architecture

4 Design

In this section, the detailed design of the SDN Middleware System is provided comprising
of its architecture and software component.

4.1 General Architecture

Figure 5 outlines the overview of the proposed architecture for the SDN Middleware Sys-
tem depicting the primary components within the architecture. The Middleware server
would logically sit in between the path from the SDN Manager towards the network
nodes while passing through the SDN controller for configurations. The first aim is that
the Middleware server should be able to familiarize with the network by identifying
the different legacy nodes that are connected. Next, it should be able to intercept and
inspect the SDN messages that are being configured from the SDN manager along the
path towards the sink (legacy nodes). The Middleware server would then process these
SDN/OpenFlow messages into appropriate interpretation that would be then used as
configuration parameters to be deployed to the legacy nodes.

4.2 Software Design

Initialization of the Middleware. As abasic requirement of the Middleware service, it
should be able to connect and manage legacy network nodes in the first instance making
this feature the very basis of the Middleware solution. This pre-requisite would involve
the Middleware to have the ability to keep a known repository of the legacy device
nodes and their respective Cookie mapping such that each device connected can be
uniquely represented (to be discussed in the later section) that are connected and further
details such as Management IP, Vendor are highly desirable. This would be similar to
a topology inventory map closely related to a sort of a neighbor/discovery table of the
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Fig. 5. SDN middleware general architecture

architecture. In order to address this issue, the use of device discovery is highly solicited
— this includes the use of protocols such as LLDP for devices directly connected to the
Middleware while SNMP for those that are remotely connected.

Interception of SDN Messages. Whenever a flow deployment is executed from. OFM,
the OpenFlow Manager calls a corresponding RESTCONF API from the OpenDaylight
controller which is specific to the configuration deployed. Further to this, the command
is executed through a HTTP PUT request which embeds a set of parameters corre-
sponding to the RESTCONF API in a sequence of JSON parameters. It is much easier
to capture and decipher the HTTP commands rather than intercepting the OpenFlow
protocol messages between the controller and the OpenFlow switches the former being
more structured (JSON as compared to OpenFlow messages that are more complex to
interpret). Therefore, the flow of the command is from the SDN manager towards the
SDN controller and the PUT request is executed at the SDN controller.

The interception of these messages can either be done at port or service level or by
tapping from the interface itself but at the expense of careful filtration and inspection
of only related information using packet-capture and packet-inspection tools. The SDN
Middleware System shall therefore leverage on intercepting these HTTP commands and
strip the different parameter values which will be further processed to generate relevant
configurations in the proprietary script of the legacy devices.

Inspection of SDN Messages. Following the interception of messages, the gathered
raw data would have to be further filtered to obtain the desired parameters through the
process of inspection. Deep-packet inspection would be used to further drill down into
the details following the HTTP messages. The parameters that interest the most are the
JSON objects with their member key and values that are located inside the HTTP PUT
requests. These parameters will be the variables to be interpreted to build the commands
for the legacy nodes.
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Processing the SDN/OpenFlow Messages. OpenFlow configurations are sent from the
SDN controller to the OpenFlow switch by making use of flow entries within flow tables
as viewed in Sect. 2. The parameters that are used within the definition of flow entries
are those that are actually embedded within the JSON and have been inspected earlier.
The summary of operation of each of these fields are as per below:

e Match Fields — contain the parameters to be used to determine a match in ingress and
egress port headers. For example, match source IP address or MAC address.

Priority — contain the precedence of the flow entry.

Counters — contain the hit count whenever packets match the parameters set.
Instructions — set the action to be taken for e.g. drop, output port-no. etc.

Timeouts — the maximum amount of time before the flow is disregarded by the switch.
Cookie —denotes an opaque data value that maybe used to filter flow entries following
flow modification or flow statistics but is not used for packet processing.

e Flags — Modify the way flow entries are managed.

One way the SDN controller can determine to which switch the configuration is sent
is usually through the OpenFlow Device ID which should be unique throughout the
SDN domain. Since the OFM/SDN controller can see only the switches connected via
OpenFlow but does not show any visibility on legacy nodes, the SDN Middleware System
shall itself run on OpenFlow as the back-end connector with the OFM and thus, the
SDN Middleware will also be managed and configured using the OFM itself. Therefore,
extrapolating this in practical scenario, there will be a single SDN Middleware System
to control various legacy nodes and given that the SDN Middleware System runs on
OpenFlow, the OFM will be showing only one OpenFlow switch which is the Middleware
itself but there would be no way to select the specific legacy node. So therefore, there
should be at least one unique identifier value that can be used to determine the specificity
of each of the legacy device. In order to address this issue, given that the Cookie (this
Cookie value is restricted to OpenFlow and not in reference to the HTTP cookies) value
in a flow entry is an opaque value that is not used in decision making, the Middleware can
make use of the Cookie value in order to determine the identity of the switch to which the
configuration is to be sent. A different parameter could also be used as unique identifier
for the legacy switches as well. The decision-making process in terms of OpenFlow
Device ID and Cookie value is demonstrated as per Fig. 6.

Referring to Fig. 6, each legacy switch has been assigned a specific Cookie value
(in hexadecimal) of 0x001 and 0x002 respectively. In this specific SDN domain, the
OpenFlow Manager will be able to see two OpenFlow switches connected and active
with the SDN controller. The SDN controller will still be differentiating among the
different OpenFlow switches using the device ID (here ID = 1234 for the OpenFlow
switch and ID = 1001 for the OVS underlay within the Middleware). Therefore, to send
a configuration to OpenFlow switch, the Device ID is directly selected while to send
configurations to legacy nodes, specifically to the Middleware, the Device ID of the latter
(1001) would be selected. The Middleware will in turn pass the JSON parameters and the
legacy node is determined by the Cookie value, for example, if a flow entry with Cookie
value with 0x001 is encountered, the Middleware would know that this configuration is
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Fig. 6. Decision-making of the SDN controller and middleware

meant for Legacy Switch 1. This also means that a table of values of Cookie v/s Switch
needs to be populated and maintained as a legacy node is added to the Middleware.

OpenFlow messages sent between the controller to the OpenFlow switch are char-
acterized by their OpenFlow command message. For example, insertion of a flow entry
into a table, it would correspond to an OFPFC_ADD message and a modification of an
existing flow would be an OFPT_FLOW_MOD request. The different types of request
provide information regarding the nature of the configuration is to be done on the Open-
Flow switch i.e. whether it is an add request, delete request among others. This infor-
mation in the OpenFlow header is also parsed by the Middleware to interpret into the
type of command to be executed on the legacy node.

Preparation of the Command Block. The parameters that have been processed from
the JSON into OpenFlow protocol will be stored in variables within a local repository
of the Middleware. These variables will then be used in the command execution process
in sending the configuration to the legacy nodes. Prior to that, it would be important
to known how each of the different OpenFlow commands will be “converted” into the
legacy command. For example, assuming the case where a command from the SDN
manager is sent to the SDN controller to create an Access Control List (ACL) between
two hosts, the Middleware should be able to interpret and parse the parameters into an
ACL entry that can then be applied to different legacy nodes. However, the main issue is
that OpenFlow messages are more elusive compared to legacy network configurations
that are more easily interpretable in terms of keywords that can be found within the
configuration lines. This is a major “limitation” of OpenFlow since OpenFlow messages
are difficult to be interpreted, however the easiest approach is to program the Middleware
such that based on the correlation of the retrieved parameters, it can interpret the logic
behind the OpenFlow command. Below is a sample flow entry within an OpenFlow-based
OVS.
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cookie=0x777, duration=189.072s, table=200, n packets=0,
n bytes=0, priori-
ty=2,ip,nw_src=192.168.100.100,nw_dst=192.168.100.200 ac-
tions=drop

From the above, example of OpenFlow command, the following can be extracted:

Cookie = 0x777

Table ID, Priority = 200,2

Network Source = 192.168.100.100
Network Destination = 192.168.100.200
Actions = Drop

The parameters of this flow entry within the flow table relates to the an OpenFlow
entry to block traffic from source network 192.168.100.100 and destination network
192.168.100.200. Since the source and destination networks are of /32 subnet mask,
this means that this corresponds to a host-to-host deny ACL entry when mapped to
legacy network configuration. As shown in Fig. 7, the matched flow-entry components
are mapped to the respective variables within the Middleware which will be used for the
command execution process.

. OpenFlow JSON
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Y <«+—>» flowentry = »  parameters
Variables 2
components Inspection
R == —— ~
“ \
Network_Source Match €
Fields
Network_Destination

Priority

"match": {
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|
|
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|

"order": ©

Fig. 7. Mapping of variables in middleware

Command Execution. Each different legacy device coming from a different vendor,
OS/Firmware version or capability is most likely to have its own language set in terms of
command configuration and this entails to exquisite command execution on per-device
basis and a generic command set might not be applicable for all legacy nodes. Command
execution implies pushing of the desired configuration into the legacy device for which,
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other than the command itself, the privilege to apply the configuration is required. Thus,
in this design, the command execution would be done by performing an SSH to the
legacy device and executing the commands through a preconfigured script and scripting
techniques which will contain the instructions based on the OS/Firmware and variables
that have been stored previously. Along with the instructions and parameters, remote
device access credentials are fundamental to be able to have the privilege to perform the
configuration. Therefore, it will also be required that these credentials to be input and
stored into a repository via the management console. This will be parsed through the
Device Registration process.

5 Implementation

The implementation of the SDN Middleware System has been made using open-source
based solutions as far as possible mostly to provide scalability for adjustments and limit
the cost of development. The SDN Middleware System architecture is loosely based on
a Linux platform atop having the following running features of:

e OpenFlow vSwitch to interface with the SDN Controller/Manager.

e Node-Red on Linux (Ubuntu) Platform which retains the backbone of the Middleware
engine based on JavaScript.

e TShark component to provide packet-capture features.

e MySQL Database to provide repository.

e Apache HTTP server with PHP (LAMP) and JavaScript for providing Middleware
GUI features.

5.1 Initialization of the SDN Middleware System

The first action of the Middleware would be to be able to perform neighbor discovery
in order to gather information on the different legacy nodes that have been connected
thereto. The protocols used depends on how the devices are connected to the Middleware
and in this case, given that the legacy nodes are directly connected, LLDP protocol for
neighbor discovery has been used, another major reason being LLDP support by multiple
vendors. The implementation has been done as the LLDP service installed on the Linux
and a Shell script polling devices at specific intervals of 30 s which is the default LLDP
frequency timer. The output of this repeated process is then processed to extract the
required parameters such as Vendor, System Name, and others which are then used to
update the table “Inventory” within the database and this acts as the node inventory for
listing the connected devices and also updating the entries for changes.

5.2 Interception of SDN Messages

The interception of messages involves the deep packet inspection of the egress traffic
of the SDN Manager towards the SDN controller and for this purpose, TShark variant
of Wireshark has been used to effectively sniff the traffic on the interface that is being



A Middleware for Integrating Legacy Network Devices 133

used to tap the traffic (in this scenario). In order to simplify the sniffing process, filters
for TCP protocol ports at Transport layer and HTTP PUT requests at the level of the
Application layer have been used to increase efficiency. These packets specifically would
contain the parameters being sent to the SDN controller. Given the bulky output during
HTTP/S inspection, the output following the inspection is first written in a file locally
on the Middleware before further processing/inspection of SDN messages can begin.
However, the payload of this HTTP request contains the actual data elements that are
required for the Inspection part. This payload would be in raw HEX format.

5.3 Inspection of SDN Messages

The output of the Inspection is in raw format and embeds several other HTML codes
along with the HTTP PUT request. The purpose of the Inspection layer is to strip the
required information only, to have it handy in a format that would be suitable for further
processing of the SDN messages. In this context, since the intercepted output is raw,
unparsed format, the inspection would result in extraction of the payload in JSON format
that would ease the processing steps. The content of the stored file will have its data
payload extracted and the HEX converted to string format following which, with the
help of indexing methods, only the required payload in the JSON format is extracted.
This JSON script is then used for further processing and at the same time, logged to the
Middleware database for logging and auditing purposes. This format serves as the base
material that would be used in the building of the command blocks for code execution.
The output of the Inspection process would give an output in a readable structure that
contains specifically the parameters that will be used for further processing.

5.4 Processing of SDN Messages

This segment of the implementation will deal with the extraction of required parameters
from the extracted JSON format into a set of variables that will thereby be used for com-
mand execution part. Thus, this involves deeper analysis of the inspected data to match
against the components of Flow Entries within a flow table. This has been conceived
in practice by the indexing of the keyword components of the JSON and storing each
component and its respective defined parameter into a well-structured table within the
Middleware’s internal database. Similarly, this algorithm for parameter extraction has
been developed using JavaScript in Node-Red with the output of this process used for
storage and triggering for command preparation.

5.5 Command Preparation and Execution

This part of the implementation process is the most fundamental since it deals with
the final aspect of the Middleware’s process which is to successfully be able to send
the configuration to the legacy device based on the language the configurations on the
legacy device is based on. During the implementation, the language that has been tried
to abide to is the Cisco IOS. As depicted in the earlier sections, the components being
analyzed compose of an OpenFlow entry that is complementary to the Cisco IOS Access
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Control List. Similarly, each vendor would have its own language set for configuration
but yet, the parameters to be used within the configuration remain the same variables
throughout the different vendors. Hence, this segment would interpret these parameter
options as variables from the Middleware’s database and embed them appropriately as
per the language set of the vendor (in this case Cisco IOS) and send this configuration to
be executed at the legacy device. When it comes to execution, it is primordial to have the
privilege to be able to configure the device for which credentials such as Username and
Password would be required. To address this issue, the implementation also involves a
Device Registration process that would allow the entry of the device’s credentials that
are bound to the Cookie which form the device’s identity and until the device has not
been registered, no command execution will take place.

The command execution is invoked upon the value of the Cookie ID and the con-
figuration has been implemented through a Shell Script that based on the Cookie ID
would fetch the corresponding device details from the Middleware’s database, such as,
IP address, Username and Password. After gaining SSH access, the Shell Script pertain-
ing to the device configuration itself is then executed into the device and the appropriate
logs such as time and command execution are stored back into the database for log-
ging and auditing purposes. Based on the value of the Cookie following the inspection
process, the configuration values are extracted from the database and a Shell script is
generated in an executable format.

6 Test Results

The test bench used has been in a scenario with OpenDaylight OpenFlow controller,
OpenDaylight OpenFlow Manager, and legacy devices based on Cisco I0S and HP
ProCurve switches. For test input data at the SDN Manager, the equivalent of Access
Control List as an OpenFlow Flow entry has been configured and deployed on both
the Cisco I0S and HP ProCurve switches and the same OpenFlow configuration has
been extrapolated using a Flow entry to perform static NAT (SNAT). This has produced
successful results in converting these commands to their legacy counterparts in Cisco
IOS and HP ProCurve for the ACL part while the SNAT was successfully tested on a
Cisco router. The SDN Middleware System has been implemented on a Virtual Machine
with 4 vCPU, 8 GB RAM and 50 GB disk space. Figure 8 and 9 provide the timeline
since the command is executed at the SDN Manager up to the configuration of the legacy
node.

19:08:56 -  19:08:57 -
6 19:08:57 19:08:59 19:08:59 - 19:09:08
8 SSH Command Write Write to Flash

19:08:56 19:08:57 19:08:58 19:08:59 19:09:00 19:09:01 19:09:02 19:09:03 19:09:04 19:09:05 19:09:06 19:09:07
19:08:55 19:09:08

Fig. 8. Timeline of events for configuration size of 1.2 KB for an ACL
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19:38:30 - 19:38:49 19:38:49 - 19:38:56

Command Write Write to Flash

19:38:27 19:38:56

19:38:29 -
19:38:30

SSH

19:38:27 19:38:30

Fig. 9. Timeline of events for configuration size of 4.5 KB for an ACL

It can be inferred that the average of the process duration from the time the command
has been executed from the SDN Manager until the configuration is saved is 12 s where
the majority of this time is consumed by the legacy node to save the configurations to
the flash (8 s) as compared to the performing the configuration onto the device itself
(Command Write) takes only 2 s. SSH and Configuration Execution processes take
only 1 s each which also means that the SDN Middleware System itself performs the
Interception of the SDN messages, Inspection of the SDN messages, Processing of the
OpenFlow commands and Preparation of command block processes in only 1 s altogether
demonstrating a highly time-efficient system. The long time for writing the configuration
to the flash is considered normal since these devices need to copy the configuration from
the running memory to the flash and storing as the startup configuration file and by
default these legacy nodes have limited resources as well and these results are therefore
deemed acceptable since the Command Write process takes only 2 s relatively and this
is where the configuration gets added onto the device but onto the volatile memory and
it is normal that command execution onto volatile memory takes less time than saving
the configuration.

From the above, it can be inferred that for a configuration file size of 4.5 KB, the
mean end-to-end process is completed within 31 s where the majority of this time is
consumed in writing the command to the device (19 s) while the least time is taken to
establish the SSH session (1 s). A long time of 19 s for the command write is expected
since the configuration 4.5 KB would contain bulkier configurations of more lines of
command. The results for the time duration for the configuration script sizes of 1.2 KB
and 4.5 KB are compared side-by-side as per Fig. 10 to give a comparison of the different
times taken by each process with increase in configuration size.

The statistical summary in Fig. 10 gives a much more in-depth comparison of the
different process times. It can be deduced that despite the variation in configuration
size, there are two processes namely SSH establishment and Writing to Flash that have
remained constant at 1 s and 8 s respectively for both configuration sizes. This would
mean that SSH and Writing to Flash are independent of configuration size and this
is theoretically correct since firstly, SSH establishment occurs before the Command
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Legend

Configuration
Execution

B ssH

. Command Write

e

[ Write to Flash
Config Size 1.2 KB Config Size 4.5 KB

Fig. 10. Comparison of time duration for configuration sizes of 1.2 KB and 4.5 KB

Writing process and simple consists of key exchange and authentication. Next, writing
to flash is dependent on the hardware resources in copying the running configuration
into the startup configuration making these two processes as independent variables.
However, executing the configuration onto the legacy device definitely depends on the
configuration size as depicted by Fig. 10 where there is in an increase of 2 s is noted
for a configuration increase from 1.2 KB to 4.5 KB which is deemed normal since a
larger SDN command execution would imply more processing involved at the level of the
Middleware in terms of packet interception, processing of SDN messages and extraction
of the parameters in building the command block.

On a final note, it can be said that the SDN Middleware System metrics comply
to the requirements in terms of performance metrics especially when comparing to the
time involved in the configuration when manual intervention is required to configure the
legacy device.

7 Evaluation of the SDN Middleware System

This section provides a cost and performance evaluation of the proposed SDN
Middleware System.

7.1 Novelty and Contribution

Our paradigm approach compared to previous research works aims at providing a Mid-
dleware that can inspect, interpret, convert and execute the SDN functions while provid-
ing the dashboard for Device registration, selection, auditing among others altogether
within a single solution. This method has been clearly shown to perform conversion of
OpenFlow commands without the use of APIs and amidst a practical test case scenario
of a hybrid network architecture where the SDN controller manages the SDN-ready
switches while the SDN Middleware manages the legacy nodes while providing higher
granularity of configuration.



A Middleware for Integrating Legacy Network Devices 137

7.2 Cost Evaluation

Throughout the design and implementation of this project, cost aspects have been given
great considerations and as far as possible, any expense or purchase of software or hard-
ware resources have been overridden at its best. For this purpose, a maximum number
of open-source products have been solicited to establish the minimal cost target. For the
implementation, there has been only EVE-NG and VMware Workstation Pro that are
licensed products that have been used. Again, these can also be considered to be void
as inclusion for the costs since EVE-NG has only been used to emulated the Cisco I0S
virtual platform and same configuration has been tested on a hardware Cisco device as
well while VMWare Workstation Pro has been used to host the Ubuntu Linux Kernel
for the different services. Hardware requirements being minimum, our hosting environ-
ment has been a laptop and undoubtedly, the OVF could be deployed in any virtualized
environment and no specific hardware are required as such. The requirements would
be specific to a basic Virtual Machine resource provisioning. As mentioned during our
choice of the following components, Ubuntu Server Platform, Node-Red, OpenDay-
light Open Flow Manager, OpenDaylight SDN Controller, LAMP architecture, LLDP
services among others, all of these have been built using open-source solutions rendering
the SDN Middleware Architecture free from any CAPEX and OPEX.

7.3 SDN Middleware System Performance

This aspect covers the overall performance of the SDN Middleware System in terms
of processing, memory and disk usage while in use. It is to be also noted that during
the implementation, the SDN Manager, the SDN Controller, Open vSwitch and the
Middleware components have been installed on the same virtual machine for ease of
testing. The performance metrics of the system have been monitored and recorded over
a period of approximately 10 h of intermittent usage. It can be inferred that the system
uses a maximum of 17% of the provided resources. It can be deduced that the virtual
machine, again encompassing all components utilizes an average of 5.4 GB of RAM
(with an idle RAM usage, unused memory of 2.65 GB) which is reasonable for a system
running the SDN Manager, SDN controller, LAMP, Node-Red and Open vSwitch in
addition to normal Linux processes.

8 Conclusion

The prime motive behind this paper lies today’s inevitable problem of the amalgam of
operations between Software Defined Networking and legacy networking devices which
pose not only a disparity in the technological timeline but also broaden the financial
gap whilst leaving the network industry, the only choice of fully migrating to SDN
in one go. This major hurdle remains among the primordial reasons of the reluctance
or repulsion towards SDN today. For this reason, this paper has as main objective to
the bridge gap between SDN and traditional networking devices by the deployment
of a proposed SDN Middleware System capable of providing interoperability between
OpenFlow-based SDN and legacy protocols and vendor neutrality without compromising
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the financial aspect. In this paper, it has been shown how the SDN Middleware System
has been devised to perform packet inspection to capture, inspect and understand the
SDN messages into a meaningful form from where the required parameters are used to
produce the equivalent legacy OS configuration. In addition, the legacy configuration
can also be varied to suit the OS depending on the legacy device to provide compatibility
across multiple vendors. The functionalities of the SDN Middleware System have been
put to test to achieve an execution time of the automatic process of deployment from the
SDN Manager up to the device configuration to be achieved within approximately 12 s
which is undoubtedly much lower than that of a human-intervened manual process. At
the same time, it has been illustrated how multiple configurations can also be executed
through the SDN Middleware System and how it also provides the GUI platform for ease
of management while interconnecting the different segments. It should be highlighted
that all the implementation of the SDN Middleware System has been designed based
on an open-source platform to render the Middleware to zero cost of software operation
where only hardware resources are required. Taking all these aspects into consideration,
it can definitely be concluded that the devised SDN Middleware System complies to the
aims of this paper and based on the results, it can be classified as a major contribution in
this field of research to establish the basis towards vendor neutrality and interoperability
in the adoption of SDN.
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