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Abstract. The design of a wireless mesh network is usually posed as
a multi-objective optimization problem. In this paper, we consider the
planning of a wireless mesh network in a rural region where the network
coverage and the cost of the architecture must be optimized. In addition,
mesh routers are heterogeneous, meaning that they may have different
transmission ranges. In the network model, we assume that the region
to serve is divided into a set of small zones of various types, including
cost-effective locations and zones of interest for which the coverage is
mandatory. The objective is then to minimize the number of routers,
their types and locations which maximize the coverage percentage of
mandatory zones in terms of coverage while minimizing the overall cost
of the architecture. To achieve this, we propose three multi-objective
approaches. We test the proposed approaches on several random topolo-
gies. The min-max regret metric is used to appreciate the quality of
solutions of the Pareto front of different approaches.

Keywords: Centre of mass + Simulated annealing - Multi-objective -
Mesh router - min-max regret

1 Introduction

Africa is the second-largest continent in size and population in the world after
Asia. However, Africa is still experiencing a low percentage of Internet penetra-
tion. According to [1], this percentage is barely over half of the rest of the world.
In addition, internet use in Africa is mainly restricted to urban or suburban
areas, while rural areas lack coverage because of the lack of guarantee of return
on investment. However, with the proliferation of wireless technologies, wireless
community networks have emerged as a cost-effective alternative for rural cov-
erage. Those networks are usually in form of wireless mesh networks (WMNs)
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[2]. WMNs are generally composed of nodes connected in a mesh topology to
extend the coverage of standard wireless networks. This type of network makes
use of off-the-shelf WiFi technology to provide an attractive approach to reduce
the digital gap between rural and urban areas. Several initiatives have emerged,
such as Zenzeleni Networks in South Africa or Mesh Bukavu in DR Congo. A
map of initiatives throughout the continent can be found in [3].

In rural areas, networks known as rural wireless mesh networks (RWMNs)
usually encompass a set of mesh routers (MRs), and a sole gateway connected to
Internet via a limited solution such as VSAT [4]. Because of the limited budget
during the design phase, the overall cost of the architecture should be minimised.
This is achieved by minimizing the number and identifying the locations of router
nodes that will maximise the percentage of the region to cover. For this reason,
the planning of WMNs in rural areas has been considered as coverage-driven
instead of capacity-driven [5], meaning that we have an area to cover rather than
a set of users to supply. Potsch et al. proposed a network planning tool for rural
wireless ISPs [6]. In their configuration, they consider a set of points to connect
(ISPs) rather than an area to cover. Recently, a new approach based on deep
reinforcement learning has been investigated to plan topologies for WMNs [7].

In real-life scenarios, the problem of mesh node placement in WMNs is a NP-
hard multi-objective and combinatorial optimization problem, and thus the com-
putational complexity grows exponentially [8]. Therefore, it requires approaches
based on meta-heuristics for its resolution.

This paper provides a new formulation of this problem and considers the
network model found in [9]. The region of interest is divided into small zones.
Each zone is either mandatory (i.e. requires network coverage) or optional (does
not require coverage).The model also identifies cost-effective locations for node
deployment. In real-life scenarios, network operators are also looking for such
locations during the planning stage of the network. Moreover, we consider the
fact that heterogeneous routers are used. The objective is then to minimize the
overall cost (which depends on the locations and types of mesh routers used)
while maximizing the coverage percentage of the zone of interest. To achieve this
goal, we propose and compare three multi-objective approaches: Multi-objective
Centre of Mass (MCM), Multi-objective Simulated Annealing (MSA) and Multi-
objective Simulated Annealing based Centre of Mass (MSAC).

This paper is organized as follows: Section 2 briefly presents related work in
WMN planning. Section 3 defines the network model and formulates the place-
ment problem. Section 4 presents the different approaches. Section 5 presents
the simulation setup and discusses the results of the different approaches. This
paper ends with a conclusion and future work.

2 Related Works

Benyamina et al. [10] provide a comprehensive survey of the planning problem in
WDMNs. Their work categorizes the design problem in WMNs depending on the
flexibility of the network topology, which can be predefined or not. In predefined
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topologies, each node in the network has a fixed location. The design problem
consists into defining new MAC protocols [11,12], optimising channel assignment
and efficient routing protocols [13-17] or defining cross layer techniques [18]. In
non-predefined topologies, the locations of some nodes must be defined: either
the location of the gateway(s) or those of mesh routers, or both. In this case,
the problem can be cast as a distribution problem involving facilities and loca-
tions, where mesh routers represent facilities and the areas to cover represents
locations.

Approaches to solve the placement problem in WMNSs are based on different
formulations proposed in the literature. Those formulations depend on the type
of node considered in the design problem: mesh routers [19,20], gateways(s)
[21,22], or both [23]. Earlier approaches for tackling this problem were based
on linear programming [24]. However, these solutions were limited to small size
networks since this problem is known to be NP-hard. For real size deployments,
search techniques and meta-heuristics have been used [9,19,20,25].

Several works formulate the node placement as a multi-objective optimiza-
tion problem with the aim of minimizing the cost and maximizing the coverage
of the quality of service of the network. In [9], authors considered a formula-
tion of mesh routers placement in which a set of clients must be covered in a
two-dimensional space. Then they provided a simulated annealing approach to
maximize the network connectivity and client coverage. The placement problem
of mesh routers in a rural region was introduced in [26]. This work was extended
later in [10] and [27], which employed approaches based on the Metropolis algo-
rithm and simulated annealing, respectively.

Most of the works in the literature assumes the routers to be homogeneous,
meaning that they have the same transmission range. In addition, the cost of
the network is typically assumed to depend only on router cost, which does not
take into account the dependence of cost on the installation location.

3 Placement Problem Formulation

We model a given region as a two-dimensional irregular form, and consider the
smallest rectangle that can contain this form. We divide the region into squares,
which are designated as elementary regions (ERs) as in [27,28]. Each ER can be
mandatory in terms of network coverage; or its coverage can be considered as
optional when the ER is not of essential interest. An ER can also be considered
as forbidden location, meaning it cannot host a node (for instance a lake, river,
road...). As in real-life scenarios, an ER can also represent an obstacle that
could hinder the connectivity. Moreover, we suppose that the region encompasses
cost-effective locations which can contribute to the reduction of cost. In the
following for simplicity we employ these abbreviations for the different types
of ER: Mandatory ER (MER); Non-line-of-sight ER (NER); Cost-effective ER
(CER) or Forbidden ER (FER).
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We define a set of matrices to characterize the ERs:

1 mandator
Coverage(x,y) = {0 optional. "
1 authorised,

Placement(x,y) = {0 forbidden. )

0 MER not covered,

Cover Depth(z, y) = { n MER covered by n routers.

0 no cost reduction,
¢ cost reduction (percentage).

(4)

The Coverage, Placement, and LowCost matrices indicate whether or not
ERs are mandatory, authorized, or cost effective (as node locations) respectively;
while CoverDepth specifies the number of number of nodes that cover ERs. Thus,
all relevant properties of the ER at (z,y) can be specified by the (z,y) entries
of matrices (1-4).

In contrast to previous works, we assume routers to be equipped with omnidi-
rectional antennas having different transmission ranges. The transmission range
TR; of a router R; is expressed as the number of ERs (i.e. TR; = 8 means that
the transmission range of R; stretches over 8 ERs).

Let p be an ER at position(z,y). If R; is located in p that means the centre
of R; is Ctr(j) = (x,y), then the set of ERs covered by R;, CA;, is given by
(5).

LowCost(z,y) = {

CAj ={(a,),(z — a)* + (y = b)* < TR} ()

The mesh router node placement problem in rural wireless mesh networks can
then be expressed as the determination of a minimum set of routers, their types
and locations, which maximizes the coverage of MERs, while minimising the
overall cost of the architecture. This cost can be minimised by first minimising
the number of routers required to cover the region, then by locating as many
routers as possible to cost-effective location. The objective functions are given
by (6) and (7).
sign(CoverDepth - Coverage)

>~ Coverage

(6)

f1 = max

|R|
1

fo= minlﬁ| Z 1 — LowCost(Ctr(z)) (7)

i=1
f1 maximises the percentage coverage of MERs, while fo minimizes the cost
of the architecture. To convert f; into a minimisation problem, we only consider
the MERs that are uncovered, in other terms with CoverDepth = 0. The new

objective function f] is then given by (8).

= minz sign((CoverDepth = 0) - Coverage)
L >~ Coverage

(8)
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Since we consider Wi-Fi technology standards, the deployment cost of a
router in rural regions is higher than the cost of the router itself since deploy-
ment requires a mast and an independent power source. However, this cost can
be greatly reduced by using cost-effective locations that may provide a power
source, and making the mast unnecessary.

4 Placement Approaches Based on Pareto Front

Two approaches are generally used in multi-objective optimisation: combining
objective functions into one by defining weights; or using Pareto front which
is composed of non-dominated solutions. Since the determination of weights is
usually subjective, the Pareto front approach is preferred.

Usually, objective functions in multi-objective optimization are conflicting.
For instance, reducing the number of uncovered MER ( f1) is done at the expense
of the cost of the architecture (f2). Rather than combining objective func-
tions, Pareto optimisation consists of trading-off conflicting objective functions
to determine a set of optimal solutions. In a Pareto optimisation, the Optimally
is based on the concept of dominance [29].

Definition 1 (Pareto Dominance): Let two solutions (with x1 # x3), 1 dom-
inates x5 if x1 is better than x5 in at least one objective function and not worse
with respect to all other objectives.

Definition 2 (Pareto Optimality): z* € X is a Pareto optimum if and only
if it is non-dominated by any other element of X. The set of Pareto optima is
called Pareto set.

Definition 3 (Pareto Front): The Pareto Front is the set of all Pareto optimal
solutions (non-dominated solutions).

An example of Pareto optimization with two functions is given in Fig. 1.
Three approaches based on Pareto fronts are proposed: Multi-objective Centre of
Mass (MCM), Multi-objective Simulated Annealing (MSA), and Multi-objective
Simulated Annealing based Centre of Mass (MSAC).

4.1 Initialisation and Global Parameters of Algorithms

The initial number of routers is unknown at the beginning. A set R of routers
with a total coverage RCover = + - TCover (the number of MER which repre-
sents the total area to cover) is randomly generated. The multiplicative factor
v is initially set to 1.5, and is gradually decreased to 1. When ~ changes, a
new R is generated. The initial solution is obtained by placing routers from R
randomly in the area to cover. For each router we randomly select an ER until
Coverage (ER) = 1 and Placement (ER) = 1 be satisfied. We therefore place
the current router in this ER. All the three algorithms are run nRun times.
When v = 1, the nRun decreases and ~ is reset. All the algorithms stop when
nRun = 0.
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Fig. 1. Example of Pareto optimization

4.2 Multi-objective Centre of Mass (MCM)

Algorithm 1: Multi-Objective Centre of Mass algorithm for single cover-
age
Input : f{: First Obj. Funct. (Coverage) fa: Second Obj. Funct. (Cost)
Output: arch: Pareto Front of non-dominated Solutions
begin
s:= InitialSolution();
(costcov)i= (f2(5).F1(s)):
arch:= createList(1,(cost,cov));
while stopping condition not met do
i := selectARouter();

if multiple coverage of i is too large a fraction then
Search for an ER with CoverDepth = 0, Coverage = 1, and

Placement =1 ;

else
| Move i to the centre of mass of his single coverage

end

s:= NewSolution(i); (cost,cov):= (fa2(s),f1(s));

if (cost,cov) is non-dominated by any (cost ,cov') in arch then
arch:=updateAndPrune(arch, (cost,cov));

reset stopping condition;

end
end

return arch
end

The MCM algorithm is an enhancement of the Centre of Mass of single coverage
(CM) algorithm [30]. It is an attempt to provide CM with features to support
multi-objective optimisation problems. The idea behind the MCM approach is
to reduce the area covered by multiple nodes by moving each node to the centre
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of mass of area it is covering alone. The idea is guided by the fact that new
uncovered MER can be easily reached in a small number of moves. The MCM
basic algorithm is given in Algorithm 1. The following expression is used to check
whether multiple coverage is too large a fraction at line 7, as in [30]:

(sCov(i) + mCov(i))? - rand(z) < (mCouv(i)))? (9)

where sCov(i) and mCov(i) represent respectively single and multiple cov-
erage of router i. rand(x) is used to provide some stochastic properties. More
details can be found in [15].

A new solution (line 11) is generated by accepting the new location of router
i while maintaining other routers in their current locations. If a non-dominated
solution is not found after a certain number of iteration (Stop-MCM), we suppose
therefore having reached the optimal and the algorithm stops. updateAndPrune
inserts (cost,cov) in arch and removes all dominated solutions from arch.

4.3 Multi-objective Simulated Annealing (MSA)

The MSA algorithm is an enhancement of SA algorithm proposed in [27]. The
flowchart of MSA is presented in Fig. 2.

A router is selected and randomly moved, and the coverage change of MER is
evaluated. If the change is accepted, we check if the new solution is not dominated
by any solution in arch. In this case, the new solution is inserted, updating arch.

The equilibrium state of MSA is controlled by Stop, and it is reached when
Stop = 0. Therefore, the temperature T decreases. MSA stops when T < Tip,
the minimal temperature.

4.4 Multi-objective Simulated Annealing Based CM (MSACQC)

The MSAC algorithm is a sequential combination of MCM and MSA. At the
first stage, the MCM algorithm is used. Then the output serves as the input for
MSA. The MCM will provide a rapid initial convergence, and MSA will refine the
solution. This can be considered as a multi-objective extension of the Simulated
Annealing based Centre of mass introduced in [28]. The flowchart of MSAC is
provided in Fig. 3.

5 Simulation Results

To compare the proposed approaches, we randomly generate 12 instances with
mandatory areas in terms of network coverage and cost-effective locations. We
consider two grids of 50 x 50 and 100 x 100, with Stop-MCM = 500, StopEq =
250, nRun = 20. Router transmission range TR € [6,10]. The unit represents
the length of an ER. If size (ER) = 20 m, the radius will be TR € [120m, 200 m],
and the grids 1km-1km = 1km? and 2km - 2km = 4km?. This is realistic since
802.11a/b/g/n routers have a theoretical outdoor transmission range ranging
120 m to 250 m. The simulations were conducted using Scilab 5.4.
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Fig. 2. Flowchart of MSA approach

Although this work is an extension of [9], it cannot be compared directly with
the original work because of the multi-objective nature of the new formulation.
The work in [9] did not consider the cost and was only focused on the coverage. To
evaluate the quality of solutions of the Pareto front of the three approaches the
min-max-regret criterion has been used. This metric is suited for non-repetitive
decisions, that means the replacement of a solution after its implementation will
not be acceptable. Given a solution s € S, its regret value under the scenario
x € X is defined by (10).

Rg(s,z) = (val(s(1),z) —val’(1))* + (val(s(2), z) — val’(2))? (10)

where z € {1,2,3} represents the different placement approaches, and val*
the optimal solution. Since we are in a minimisation problem using non-analytical
objective functions, we consider the utopia val® = (0,0), that means the num-
ber of MER that are uncovered is zero as well as the cost of the system.
The maximum regret value Rgpmq.(z) of solution s is defined as Rgmqz(s) =
maz.ex Rg(s,z). The min-max-regret value is therefore the solution with the
minimum maximum regret value. It can be defined by (11).

minge s Rgmaz (8) = minge smax e x (val(s, x) — vall) (11)
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Fig. 3. Flowchart of MSAC Approach

Table 1. max and min-max-regret values.

Instances 1.50 250 350 450 550 650
MCM 0,925 0,887 0,93 1,001 1,001 0,859
MSA 0,862 0,795 0,703 0,974 0,834 0,716
MSAC 0,78 0,722 0,583 0,922 0,777 0,786
Instances 1.100 2_100 3_100 4100 5-100 6-100
MCM 0,94 094 0,844 0,968 0,928 0,84
MSA 0,867 0,863 0,858 0,932 0,892 0,883
MSAC 0,961 0,884 0,892 0,926 0,916 0,842

Table 1 provides the max-regret value from different approaches for each in-
stance. The min max-regret value is in bold. From Table 1, MSAC provides the
min-max-regret value in x50 instances. However, in larger instances (x-100),
MSA dominates the others, apart from instance 5.100 where the MAS value is
less than the one of MSAC.

Although the min-max-regret minimizes “the regret” of choosing a solution
s, it can sometime skew the result. For instance, Figs. 4 and 5 present the Pareto
fronts produced by the different approaches respectively for instances 4_50 and
5_100. In both Figures, MSAC provides the best Pareto front, that means, the
Pareto front of MSAC dominated almost all the solutions of the Pareto fronts
of other approaches. In other terms, MSAC provides the best trade-offs with
the smallest cost percentage and the smallest percentage of uncovered MER. In
fact, MSAC is able to relocate as much as possible mesh routers to cost-effective
location to reduce the cost of the architecture, according to objective fo, while
maximizing the mandatory region covered by the set of selected routers.
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6 Conclusion and Future Work

In this paper we introduce a new formulation of the mesh router placement
problem in rural areas. Heterogeneous routers have been considered, as well as
cost-effective locations that can reduce the cost of the architecture. Three multi-
objective approaches have been defined to solve the problem: Multi-objective
Centre of Mass (MCM), Multi-Objective Simulated Annealing (MSA), and
Multi-Objective Simulated Annealing based Centre of Mass (MSAC). Simulation
results have shown a better min-max regret of Pareto front in small instances
and large instances respectively for MSAC and MSA. Although MSAC does not
provide the min-max regret value in most of large instances, in most of the cases
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it provides a better Pareto front, meaning a better trade-off between the cover-
age and the cost of the architecture. Apart from improving MSAC in terms of
quality of solution and robustness, future works will integrate suitable empirical
path loss models such those defined in [31].
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