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Abstract. Big data is large volume of data produced on a daily basis.
Distributed storage systems (DSS) is environment that handles, man-
ages and stores those data. The main drawbacks are the lack of system
storage capacity, the network device failures that can appear anytime,
on time data processing and the system efficiency. All above mentioned
issues can be overcome by applying different coding techniques for data
distribution. Till this moment many coding schemes are proposed by the
researchers. Determining the most efficient code for usage is still a tricky
question, which yields an adequate comparison strategy for code selec-
tion. The basic Dimakis comparison method offers analysis between the
codes regarding the parameters storage per node and download band-
width to be repair one node. Total comparison method includes in the
analysis the total number of nodes in the system together with the over-
all storage and total downloaded bandwidth in the repair process, with
notation that the file size for all codes must be same. In this paper, we are
proposing new method for comparison, called Normalized, that enables
consideration of broader spectrum of parameters and not necessarily the
same file size of the proposed codes.

Keywords: Comparison methods · Distributed storage systems
(DSS) · Efficient DSS system · Reconstruction process · Repair process

1 Introduction

Cloud data centers are very important thread for data management, especially
of the ‘Big Data’ production. These centers acts as distributed storage systems
(DSS). DSS is network of many server (nodes) interconnected among them that
stores large number of data, keeps the data reliable and safe, and enables fast
retrieval of the message for the user. The main function, data storage, is per-
formed as the information (file), of size |F| bytes, is divided into smaller pieces
and then each piece is distributed on physically separated device (node) in the
network. The possibility for network/device failure that guarantee data relia-
bility is provided by adding redundancy. Currently, most of the systems use
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repetition code for redundancy, i.e, two more copies of each file piece are stored
in different locations (nodes). The consequence of this technique is the storage
overhead.

Introducing the Maximum Distance Separable (MDS) codes adapted for DSS
[1–4] deals the information storage problem by making optimal storage vs. relia-
bility data trade-off. Erasure codes are also interesting for the researchers [5–10].
They are efficient in decreasing the overall system storage. The codes function in
a manner that they are taking the entire message F of size |F| = LK and parses
in blocks of size K. L is number of info-words and K number of symbols within
one info-word to be distributed/stored in the DSS system. Then each block K is
divided into smaller chunks, with size α, and each chunk is stored in one of the
n nodes in the network. The chunk is calculated as α = K

k , where k is number
of info symbols for the encoding/storage process. Knowing that the DSS system
is defined as network of n nodes (servers), the parameters n and k depends of
the code [n, k] chosen for data storage. Later, the value k(k < n) is used for
determining the number of nodes to which the Data collector (DC) connects in
order to retrieve the original stored information. This process in a sense of DSS
is known as reconstruction.

Another issue in the DSS network is a node failure and losing everything
stored on it. In this situation if node i fails, a new node i′ (newcomer) that
will replace the failed one is programmed to connect to any k surviving nodes,
to download from them everything what is stored, by α amount of data, and
by proper computation to restore the lost information. This process is known
as repair. For completing of this process, a lot of unnecessary data going to
be downloaded and just few of them will be used in the computations. This
means inefficiently high download repair bandwidth that the erasure codes can
not handle with.

Interesting solution that deals this problem is introduced by Dimakis
et al. [11,12]. There, the authors offer new kind of codes known as regener-
ating. The code characterization is done by the primary parameters [n, k, d] and
secondary parameters [α, β,K]. The meaning of n, k and α is same as the one
mentioned above, d(d ≥ k) shows the number of nodes that need to be contacted
to be finish the repair process and β(β < α) is the amount of data downloaded
from those d nodes. Precisely, during the repair process, a newcomer contacts d
alive nodes and downloads from them β quantity of information, unlike in era-
sure codes, where contacts k nodes and downloads from there everything what
is stored α. Thus, the repair bandwidth is γ = dβ symbols and is used to recover
what was lost. Some researches that are based on the regenerating codes can be
found in [13–17].

Till now, there are lot of code constructions proposed that will work efficiently
in DSSs. How to choose which one performs the best, is an open question in this
area. The simplest solution is to compare the codes. But, finding a suitable com-
parison method to do that is a problem. The first attempt is made by Dimakis
et al. in [12]. Their method use two parameters for comparison, either will be
measured by the storage per node, α, or repair bandwidth for one node, dβ.
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Later, in [18] is introduced the Total method that extends the comparison to a
total system storage and a total repair bandwidth for more failed nodes. In this
paper, we are proposing new method for comparison, called Normalized, that
gives more realistic output than the existing ones. The proposal is upgrade of
the Total concept and the normalization is done over the file size. This allows
codes comparison with different file size, in contrast to the others where the
file size must be the same. The validity and efficiency of our approach is done
through examples, where we compare four various codes (Regenerating, Rep-
etition, Reed-Solomon based DSS and Clay) using the three above mentioned
methods.

The paper is organized as follows, in Sect. 2 are given the theorems that
describe the trade-off curves of the Dimakis, Total and the new proposed com-
parison method. In Sect. 3 is given description of the codes involved in the com-
parison procedures. Section 4 analysis the results from the comparison processes
and Sect. 5 concludes the paper.

2 Trade-Off Curve for DSS

Coding for DSS is a process that first parses the input-string F , of size |F|,
into L info-words u[�] each K symbols (q-ary symbols) long. Next, the data from
each info-word u (focusing on one block, thus drop the index �) is mapped into
a code-matrix C of dimensions n × α,

C =

⎛
⎜⎜⎜⎜⎜⎜⎝

C1
...

Ci
...

Cn

⎞
⎟⎟⎟⎟⎟⎟⎠

, (1)

where the content of each C row is stored in one of the n nodes in the network.
In general the encoder is a vector function, E = (E1 . . . E i . . . En) which

yields the code-matrix C = E(u). Thus, R = k
αn is the code rate. The recon-

struction process happens when the data collector (DC) wants to reconstruct
the original information F stored in the system. During this process, the DC
connects to any k(n > k ≤ d) nodes and downloads from them by α quantity of
symbols. Overall collects kα data and from them obtains the entire original mes-
sage of size |F| = LK log2 q bytes. Mathematically, the reconstruction process
can be described as

u = D(Ci1
. . . Ci�

. . . Cik
).

The repair process happens when a node fails, and the trigger is prompted by
a new node (newcomer), which connects to d(n − 1 ≥ d ≥ k) alive nodes in the
network and downloads from them by β(β ≤ α) symbols. The total downloaded
bandwidth is γ = βd symbols that is used to recover the lost data previously
stored in the failed node. In other words

u = R(Cj1
. . . Cj�

. . . Cjd
).
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Authors in [11] proved that code with parameters (k, d, α, β) of a q-ary regen-
erating code that reliably stores one info-word of size K must satisfy the following
condition

K ≤
k−1∑
i=0

min {α, (d − i) β} . (2)

The download-bandwidth and the amount of storage can not be minimized
in a same time, therefore, a tradeoff between the repair bandwidth, γ = dβ, and
the storage per node, α, exists and is made explicit in Theorem 1.

Theorem 1 (Storage-Bandwidth Tradeoff curve [11]). For any value α ≥
α∗(n, k, d, γ), the points (n, k, d, α, γ) are feasible, and linear network codes suf-
fice to achieve them. It is information theoretically impossible to achieve points
with α < α∗(n, k, d, γ). The threshold function α∗(n, k, d, γ) is the following:

α∗(n, k, d, γ) =

{
K
k γ ∈ [f(0),+∞]

K−g(i)γ
k−i γ ∈ [f(i),+f(i − 1)]

(3)

where

f(i) � 2Kd

(2k − i − 1)i + 2k(d − k + 1)
, (4)

g(i) � (2d − 2k + i + 1)i
2d

. (5)

where d ≤ n − 1. �

The storage-bandwidth tradeoff theorem in [11], here refer as Dimakis, estab-
lishes that no code exists with pairs of values that are under this curve.

In [18] authors made modification of the previous Dimakis trade-off curve
and relates the total storage in the system and the total bandwidth needed for
the repair process. Definition of this trade-off curve is given in following.

Theorem 2 (Total Comparison [18]). Let (n,K, k, d, α, β), when d ≤ n − 1,
be a set of parameters for a DSS code. The Total-downloaded-data and the Total-
storage-data trade-off curve Stotal(Btotal) joining the points (Btotal

i , Stotal
i ) i ∈

{0, . . . , k − 1} is given by

Btotal
i =

2dKL

(2k − i − 1)i + 2k(d − k + 1)
, (6)

Stotal
i =

n

k − i
(KL − g′

i Btotal
i ), (7)

in which

g′
i =

(2d − 2k + i + 1)i
2d

, (8)
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is, by definition, the Total Storage-Bandwidth Trade Off Curve for codes with
the given set of parameters. �

Proof. The Total comparison extends the Theorem 1 idea introducing wider
picture of the DSS system. Precisely, takes care not only on one-node repair
bandwidth, γ = dβ, and storage per node, α, but also counts the number of nodes
in the DSS and potentially the necessity of having more nodes for repairing.
Thus, modifying Eq. (4), (3) and (5) by multiplying with L and Ln, accordingly,
are obtained (6) and (7).

Theorem 3 (Total Storage-Bandwidth Feasible Region). A DSS code
with parameters (n,K, k, d, α, β), d ≤ n − 1, has Total Bandwidth, tβ =
βdL log2 q, and Total Storage, tα = αnL log2 q, such that

tα ≥ Stotal(tβ) if Btotal
k−1 ≤ tβ ≤ Btotal

0 (9)

tα ≥ Stotal(Btotal
0 ) if tβ ≥ Btotal

0 (10)

no DSS code exists with tβ < Btotal
k−1 . �

Proof. One node repair bandwidth is defined as number of nodes, d, contacted
during the repair process of one failed node and downloaded from them by β
quantity of information, or γ = dβ. Storage per node, α, is the amount of data
stored on each node in the DSS. The Total concept considers also all nodes
in the system, the info-word, file size and all potential simultaneously failed
nodes. So, calculating now the overall DSS storage the obtained Total Storage is
αnL log2 q, and the whole downloaded bandwidth or Total bandwidth becomes
βdL log2 q. The total storage-bandwidth tradeoff theorem establishes that no
code exists with pairs of values (tα, tγ) that are under the curve Stotal versus
Btotal, defined with Theorem 2. Because those two values are interdependent,
means that the Total Storage value must be above each point that lies on the
curve with correspondence to the Total Bandwidth.

In this paper, the main contribution is introduction of new comparison
method. The proposed method is a variation of both the storage-bandwidth
tradeoff theorem and total storage-total downloaded data tradeoff theorems. A
similar tradeoff curve is established relating the quantities Normalized Storage
and Normalized Download-bandwidth, defined as follows.

Definition 1 (Normalized Storage). Let F be a file to be stored in a Dis-
tributed Storage System. The ratio of the total number of bytes stored on n nodes
of the network, αnL log2 q, to the size of the file, |F| = LK log2 q (bytes), or, in
other words,

ηα � αnL log2 q

LK log2 q
=

αn

K
(11)

is defined as Normalized Storage. �



258 N. Paunkoska (Dimoska) et al.

Proof. Normalizing the Total Storage, tα = αnL log2 q, over the file size, |F| =
LK log2 q, is obtained Eq. (11).

Definition 2 (Normalized Download-bandwidth). Let F be a file to be
stored in a Distributed Storage System. The ratio of the total number of bytes
downloaded from d nodes of the network (when the procedure to repair one node
out of the n nodes is activated), βdL log2 q, to the size of the file, |F| = LK log2 q
(bytes), or, in other words,

ηβ � βdL log2 q

LK log2 q
=

βd

K
(12)

is defined as Normalized Download-bandwidth. �

Proof. Normalizing the Total Bandwith, tβ = βdL log2 q, over the file size, |F| =
LK log2 q, is obtained Eq. (12).

The trade-off function relating Snor (the normalized storage) and Bnor (the
normalized bandwidth) is described by the theorem stated next.

Theorem 4 (Normalized Storage-Bandwidth Tradeoff curve). Let a set
of parameters for a DSS code be (n,K, k, d, α, β), when d ≤ n−1. The piecewise
linear curve Snor(Bnor) joining the points (Bnor

i , Snor
i ) i ∈ {0, . . . , k−1} is given

by

Bnor
i =

2d

(2k − i − 1)i + 2k(d − k + 1)
, (13)

Snor
i =

n

k − i
(1 − g′

i Bnor
i ), (14)

in which

g′
i =

(2d − 2k + i + 1)i
2d

(15)

is, by definition, the Normalized Storage-Bandwidth Trade Off Curve for codes
with the given set of parameters. �

Proof. The Normalized comparison extends the Theorem 2 idea by normalizing
the outcomes with the number of symbols stored in the system, K, derived form
Eq. (11) and (12). Precisely, normalizing Eq. (6) with K is obtained (13) and
normalizing Eq. (7) with K is obtained (14).

Theorem 5 (Normalized Storage-Bandwidth Feasible Region). A DSS
code with parameters (n,K, k, d, α, β), d ≤ n − 1, has Normalized Bandwidth,
ηβ, and Normalized Storage, ηα, such that

ηα ≥ Snor(ηβ) if Bnor
k−1 ≤ ηβ ≤ Bnor

0 (16)
ηα ≥ Snor(Bnor

0 ) if ηβ ≥ Bnor
0 (17)

no DSS code exists with ηβ < Bnor
k−1. �
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Proof. Normalized Storage is defined with Eq. (11) and Normalized Bandwidth
with (12). The normalized storage-bandwidth tradeoff theorem establishes that
no code exists with pairs of values (ηα, ηγ) that are under the curve Snor versus
Bnor, defined with Theorem 4. Because those two values are interdependent,
means that the Normalized Storage value must be above each point that lies on
the curve with correspondence to the Normalized Bandwidth.

The main motivation behind Theorem 5 is its ability to allow comparison
of diverse DSS coding schemes (having disparate parameters). Let say, if we
compare two codes by the storage per node parameter, then the code with
smaller storage is better. This approach have unfair output, because for example
doesn’t care about the overall system storage and in this sense may give worse
performance. Hence, the coding scheme comparison based on the normalized-
storage versus normalized-bandwidth tradeoff curves is file size independent,
unlike Dimakis and Total methods described in Theorem 1 and Theorem 2.
To make this point clear we examine and illustrate the quality of the tradeoff
curves using three diverse codes. The chosen codes are defined with values as:
first one (n,K, k, d) = (14, 1, 8, 13), second (n,K, k, d) = (10, 1, 6, 9) and third
(n,K, k, d) = (15, 2, 10, 14). Figure 1 is based on Theorem 1, Fig. 2 on Theo-
rem 2 and Fig. 3 on Theorem 4. The plots give the trade off curves applied on
the chosen codes together with their achievable regions.

Fig. 1. Trade-off curve Storage-per-node vs. Total-repair-bandwidth for parameters
(n, K, k, d) = (14, 1, 8, 13) (marked with a triangle), (n, K, k, d) = (10, 1, 6, 9) (marked
with a circle) and (n, K, k, d) = (15, 2, 10, 14) (marked with a square).

From the graphs we can conclude that all three comparison methods gives
different outputs. Dimakis method take into consideration only two parameters:
storage per node and bandwidth to repair one node and claims that square code
is the best. Total method includes plus the number of nodes in the system yield-
ing the overall storage and total downloaded bandwidth for the repair process
and favors the circle code. And the normalized concept gives broader picture of
parameters by allowing choosing arbitrary code file size and demonstrate that
the triangle code is best.
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Fig. 2. Trade-off curve Total storage vs. Total repair bandwidt considering fair com-
parison procedure for parameters (n, K, k, d) = (14, 1, 8, 13) (marked with a trian-
gle), (n, K, k, d) = (10, 1, 6, 9) (marked with a circle) and (n, K, k, d) = (15, 2, 10, 14)
(marked with a square).

3 Overview of DSS Codes

This section elaborates the construction of four diverse DSS codes that will be
used in the comparison analysis. Precisely, gives description for the functioning
and efficiency of the Regenerating Code, Repetition, Reed-Solomon based DSS
and Clay code.

3.1 Regenerating Code

The general Regenerating code construction is presented in [11]. Here, we will
give explicit construction through an example.

Example 1. The parameters of the code C[n, k, d], are n = 4, k = 2, d = 3.
The file size |F| is arranged as a vector u = (u1, . . . , uK) of K = kα = 4 q-ary
symbols, where α = 2. Further, the vector u is arranged in a matrix M given as,

M =
(

u1 u2

u3 u4

)
. (18)

Then the matrix M is multiply by encoding matrix Ψ with properties explained
in [11] and a code-matrix is generated,

C =

⎛
⎜⎜⎝

u1 u2

u3 u4

u1 + u2 + u3 + u4 u1 + 2u2 + u3 + 2u4

u1 + 2u2 + 3u3 + u4 3u1 + 2u2 + 3u3 + 3u4

⎞
⎟⎟⎠ , (19)

with dimension (α × n) = (2 × 4). The number of distinct blocks or vectors
u = (u1 u2 u3 u4) in F is L, then, |F| = LK log2 q. In this example, for |F| = 4
symbols, means L = 1.



Normalized Comparison Method for Finding the Most Efficient DSS Code 261

Fig. 3. Trade-off curve Normalized total storage vs. Normalized total repair band-
width for parameters (n, K, k, d) = (14, 1, 8, 13) (marked with a triangle), (n, K, k, d) =
(10, 1, 6, 9) (marked with a circle) and (n, K, k, d) = (15, 2, 10, 14) (marked with a
square).

The reconstruction of the original message is done by downloading α = 2
data from any k = 2 nodes (choosing any two rows from the code-matrix C).
The vector u = (u1 u2 u3 u4) then is obtained by solving four equations with
four unknowns.

For the repair process if node i = 4 fail, the new added node, i′ = 5 (the
repair-node), contacts d = 3 nodes and downloads from them by β = 1 data. The
collected data is represented by the parity-information P matrix of dimension
d × β given as

P =

⎛
⎝

p1
p2
p3

⎞
⎠ =

⎛
⎝

c1,1 + 2c1,2

2c2,1 + c2,2

3c3,1 + c3,2

⎞
⎠

=

⎛
⎝

u1 + 2u2

2u3 + u4

4u1 + 5u2 + 4u3 + 5u4

⎞
⎠ .

(20)

With these information the newcomer regenerates the lost vector by proper
combination of the parity vector components. In this example the regenerated
vector would be

(c5,1 c5,2) = (5u1 + 7u2 + 8u3 + 7u4, 6u1 + 9u2 + 6u3 + 6u4),

obtained with multiplication among P and
⎛
⎝

1 2
2 1
1 1

⎞
⎠ . (21)
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Thus, the newly stored repaired information in the network would be

C =

⎛
⎜⎝

u1 u2

u3 u4

u1 + u2 + u3 + u4 u1 + 2u2 + u3 + 2u4

5u1 + 7u2 + 8u3 + 7u4 6u1 + 9u2 + 6u3 + 6u4

⎞
⎟⎠ . (22)

3.2 Repetition Code

Repetition code construction given in [5] takes the original message to be stored
in the system and represents as a vector u = (u1 u2 . . . uLK). What is dis-
tributed in the system is depicted by the matrix C = (C [1]; . . . ;C [n]), where
C [n] = . . . = C [1] = M = u is seen as multiplication of 1 × n matrix with all
elements equal to one’s and the input vector u, i.e.

C =
(
1 . . . 1

)
M. (23)

Example 2. To create a repetition example we take n = 3, k = 1. Knowing that
d = k, we have d = 1, and n = α = β, α = β = 3. For K = 1, L = 1, and
message matrix M = ui for i = 1, . . . , n we get

C [i] =
(
1 1 1

)
M

=

⎛
⎝

ui

ui

ui

⎞
⎠ .

(24)

The reconstruction and repair processes are simply done by contacting k or d
nodes, accordingly, and downloading from them by α or β data.

3.3 Reed-Solomon Based DSS Code

Reed-Solomon (RS) based DSS codes introduced in [4], which are MDS codes,
are better alternative then the repetition codes. Each input block is a vector
of k q-ary symbols. Hence, the elements of the code-matrix are belonging to
a Finite Field Fq. The file of size |FRS | = KRSLRS is stored by parsing into
LRS vectors of size k = KRS , then, they are encoded into a vector of size
αn. For reconstruction of the original file, the DC contacts k distinct nodes and
downloads from them k vectors of size β = α data. Next, it performs proper data
decoding and obtains the wanted file. For the repair process new node contacts
k = d vectors of size α and downloads from them β = α. Then, performs proper
decoding and encoding, and the content of the failed node is regenerated.

Example 3. A RS based DSS-code C[n, k, d] with parameters [7, 3, 3] is obtained
by taking the vector u = (u1, u2, . . . , uk) and using a RS-code generating matrix,

G =

⎛
⎜⎜⎜⎝

g1,1 g1,2 . . . g1,n

g2,1 g2,2 . . . g2,n

...
...

. . .
...

gk,1 gk,2 . . . gk,n

⎞
⎟⎟⎟⎠ . (25)
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Every block u will give rise to a RS-codeword w = (w1, . . . , wj . . . , wn). With
K = k = 3, β = α = 1 and d = k = 3 we have the code-matrix

C =

⎛
⎜⎜⎜⎜⎜⎜⎝

w1

...
w�

...
wn

⎞
⎟⎟⎟⎟⎟⎟⎠

. (26)

3.4 Clay Code

Clay (short for CoupledLayer) codes represents a subset of the MSR (Minimum
Storage Regenerating) codes. They have simpler construction for the decoding
repair process, achieved by pairwise coupling across multiple stacked layers of
any single MDS code [19]. Using this way of code construction it can be decreased
the normalized repair bandwidth by increasing the value of (d − k + 1).

Example 4. The example for Clay code have the parameters: [n, k, d, α, β,K] =
[4, 2, 3, 4, 2, 8]. After the encoding process the data is distributed across n = 4
nodes, from which k = 2 are data nodes and n − k = 2 are parity nodes. On
each node is stored a superbyte consist of α = 4 bytes. This makes the storage
overhead nα

kα = n
k = 2 that is the ratio between the total number nα = 16 of

bytes stored to the number K = kα = 8 of data bytes. When there is a failed
node, the data downloaded from each of the d = 3 helper nodes are β = 2 bytes,
which results in a normalized repair bandwidth of dβ

kα = d
k(d−k+1) = 0.75.

Data distribution process is done in several steps explained in [19]:

– A pair of coordinates to represent a layer are used
– Pairing of vertices and bytes
– Transforming from uncoupled to coupled-layer code
– Encoding the clay code

• Load data into the 2 data nodes of coupled code
• A pairwise reverse transformations used to be obtained the data stored

in the 2 data nodes of uncoupled code
• A MDS code is used in layer-by-layer fashion for determining the data

stored in the parity nodes of uncoupled code
• A pairwise forward transformation is used for obtaining the data to be

stored in the parity nodes of coupled code

4 Analysis of the Different Comparison Procedures

This section gives analysis of the different comparison methods efficiency and
validity. The four already described examples of codes Regenerating, Repetition,
Reed-Solomon based DSS and Clay are considered in the comparison processes.
The emphasis is put on the various chosen codes parameters and different file
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sizes, this is done to be more evident the meaning of the usage of an adequate
comparison method. The focus is put on the comparison technique that includes
normalization of the total storage and total downloaded bandwidth with respect
of the file size. The normalization operation enables comparison of codes with
different file sizes and different parameters concerning the bandwidth and the
storage.

Precisely, normalization is done over the file size defined as |F| = LK log2 q,
concerning the total bandwidth and the total storage given with,

Tγ = βdL log2 q, (27)

Tα = αnL log2 q. (28)

Thus, the axes on the graph to determine Normalized-Repair-bandwidth and
Normalized-Total-storage, the Eqs. (27) and (28) need to be normalized over the
file size and to become

Nγ =
Tγ

KL log2 q
=

βdL log2 q

KL log2 q
=

βd

K
, (29)

Nα =
Tα

KL log2 q
=

αnL log2 q

KL log2 q
=

αn

K
. (30)

4.1 Regeneration Code

Following Example 1 the regeneration code scheme has bandwidth of γ = βd = 3
symbols and storage-per-node of α = 2 symbols, where n = 4 nodes and k = 2.
Considering a file F of size |F| bytes (or |F|/ log2 q = KL symbols), which is
parsed into L = 1 blocks of K = 4 symbols then we get

NReg
γ =

βd

K
=

3
4

bytes, (31)

NReg
α =

αn

K
= 2 bytes. (32)

4.2 Repetition Code

Following Example 2 the repetition code has parameters defined as, an amount of
downloaded data to repair a failed node γ = βd = 3, where d = k = 1 and β = 3
symbols and storage-per-node α = β = 3 symbol, where n = 3. Considering a
file of size |F| = LK log2 q bytes, where L is parsed into blocks of q-ary symbols
and each block is with size of K = 1, we get

Nrep
γ =

βd

K
= 3 bytes, (33)

Nrep
α =

αn

K
= 9 bytes. (34)
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4.3 RS Based DSS Code

By Example 3 the scheme bandwidth is given by γ = βd = 3, k = 3, K = k = 3,
d = k = 3 and n = 7. The storage-per-node is α = 1 symbol and the download
bandwidth is β = 1.

With both measured in bytes, we get

NRS
γ =

βd

K
= 1byte, (35)

NRS
α =

αn

K
=

7
2

bytes. (36)

4.4 Clay Code

Using Example 4 the bandwidth is γ = βd = 6, k = 2, K = 8, d = 3 and n = 4.
The storage-per-node is α = 4 symbol and β = 2.

With both measured in bytes, we get

NClay
γ =

βd

K
=

3
4

bytes, (37)

NClay
α =

αn

K
= 2bytes. (38)

4.5 Comparison

In this section four codes Regeneration, RS based DSS, Repetition and Clay
given in Examples 1, 2, 3 and 4 are compared. The set of values for each code
are chosen to be different to show that the new proposed method does not depend
on them to give real picture. Unlike the other, if we not care which parameters
we compare, then the results might be unreliable. Three comparison methods
Dimakis, Total and Normalized are applied on the same codes. All codes follows
its unique code construction using various parameters, and most important all
of them uses different file size |F|. Dimakis comparison method compares the
codes using only two parameters, α and γ, and the results from Fig. 4 shows that
RS DSS is the best code and Clay worse. Total method adds two more values, n
and L, providing a wider picture. According this method, RS DSS is the best,
but the worst one now is the Repetition code. Normalized method normalize the
values form the Total with respect of the code file size. With this approach now,
the figure depicts that Clay and Regenerating code are the best. Analysing Fig. 4
we can see the difference among the various comparison methods and we can
conclude that the Normalized method is the best choice for having an adequate
result.

Figure 5 compares the same codes, just a little bit adjusted to have same file
sizes. It is noticeable that all three comparison methods gives different outcomes.
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Fig. 4. Dimakis, Total and Normalized comparison methods for codes with different
file size |F| bytes. Regeneration code (square) (n = 4, k = 2, d = 3, α = 2, β = 1, K =
4, L = 4), Repetition-DS-code (triangle) (n = 3, k = 1, d = 1, α = 3, β = 3, K = 1, L =
10), RS DSS-code (circle) (n = 7, k = 3, d = 3, α = 1, β = 1, K = 3, L = 4), and, Clay
code (asterisk) (n = 4, k = 2, d = 3, α = 4, β = 2, K = 8, L = 3).

Fig. 5. Dimakis, Total and Normalized comparison methods for codes with same file
size |F| bytes. Regeneration code (square) (n = 4, k = 2, d = 3, α = 2, β = 1, K =
4, L = 4), Repetition-DS-code (triangle) (n = 3, k = 1, d = 1, α = 3, β = 3, K = 1, L =
16), RS DSS-code (circle) (n = 7, k = 4, d = 4, α = 1, β = 1, K = 4, L = 4), and, Clay
code (asterisk) (n = 4, k = 2, d = 3, α = 4, β = 2, K = 8, L = 2).
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Dimakis says RS-DSS is best, and Clay worst code. Total method agrees with
the best code, but in contrast says repetition is the one with poorest results.
Normalization comparison claims that Regeneration and Clay code are better
than the others, and Repetition is the worst.

Observing Figs. 4 and 5 we can see that changing the file size parameter in the
codes affect the comparison methods Dimakis and Total by obtaining different
results, unlike Normalized that doesn’t change the final outcome.

5 Conclusion

A crucial challenge for distributed storage systems is the vast data generation,
their processing and managing. Many researcher’s work focuses to discover an
efficient data management way to produce functional distributed storage net-
works. Various solutions in a form of data code constructions are proposed till
now to deal this problem. Each newly developed code outperforms in some par-
ticular aspect of the DSS functioning, either it is the storage overhead, repair
bandwidth, data distribution process or some other characteristic. Thus, in a
general sense its very hard to say which code performs the best. Therefore,
in this paper we are proposing a new comparison method, called Normalized,
which allows more convenient approach for picking the best data code construc-
tion, despite the differently chosen codes parameters. The new approach produce
more realistic results compare to the Dimakis and Total methods, while achieving
good DSS efficiency. The comparison experiments are done using four different
type of codes: Dimakis DSS, Repetition, Reed-Solomon based DSS and Clay
code.
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