
An Enhanced Flow-Based QoS
Management Within Edge Layer
for SDN-Based IoT Networking

Avewe Bassene(B) and Bamba Gueye

Université Cheikh Anta Diop, Dakar, Senegal
{avewe.bassene,bamba.gueye}@ucad.edu.sn

Abstract. IoT infrastructure makes great demands on network control
methods for an efficient management of massive amounts of nodes and
data. This network requires fine traffic control management to ensure
an adequate QoS for data transmission process, especially in a low-cost
network that covers smart territories deployed in so-called “technolog-
ical lag” areas. Software-Defined Networking (SDN) enables to handle
dynamically network traffic as well as flexible traffic control on real-time.
However, SDN technology exhibits several issues with regard to addi-
tional processing time or loss that are associated to control plan. These
factors can lead to performance degradation of the SDN control traffic
flows within data plane which is not tolerated in medium/low capacity
IoT environment.

This paper proposes an Enhanced Flow-based QoS Management app-
roach, called EFQM , that reduces spent time within control plane as well
as uses SDN controller either to reduce loss or to optimize bandwidth
according to flows latency and bandwidth requirement. Our experimen-
tal results show that EFQM outperforms AQRA in terms of response
time and packet loss rate. Furthermore, by considering a default routing
and delay as metrics, EFQM improves the average end-to-end flow per-
formance by 7.92% compared to AQRA. In addition, EFQM enhances
end-to-end flow performance by 21.23% and 23.52% compared to AQRA
respectively according to delay and packet loss rate. The measured
EFQM runtime is 23.29% shorter than AQRA.

Keywords: Edge computing · Internet of Things · Quality of Service ·
Software-Defined Networking · Performance

1 Introduction

Recent years, Africa has registered many IoT environment projects that plane to
develop by rapidly reducing the technological divide that affects the continent.
This environment is well known according to the huge and various volumes of

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2021

Published by Springer Nature Switzerland AG 2021. All Rights Reserved

R. Zitouni et al. (Eds.): AFRICOMM 2020, LNICST 361, pp. 151–167, 2021.

https://doi.org/10.1007/978-3-030-70572-5_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-70572-5_10&domain=pdf
https://doi.org/10.1007/978-3-030-70572-5_10

152 A. Bassene and B. Gueye

generated traffic. IoT networks are equipped by a large number of sensors, and
thus, they should be managed efficiently by network operators [1,2].

Software Defined Networking (SDN) is a constantly progressive technology
that offers more flexible programmability support for network control functions
and protocols [3]. SDN provides logical central control model for implemen-
tation and maintenance of programmable networks. SDN decouples data and
control plane over a well-marked and comprehensible controlling protocol like
“OpenF low” [4]. OpenF low acts as de facto signaling protocol between control
and data planes that are used to program SDN switches. By decoupling con-
trol and data planes, SDN technology enable to monitor network conditions
and network resource allocation on the fly. Therefore, SDN is amongst the key
enabling technology for new generation networks.

Congestion is often the most used criterion to improve network performance
in IoT environments. Indeed, from SDN control plane, congestion management
makes it possible to improve the network Quality of Service (QoS) by optimiz-
ing traffic important factors such as delay, loss, bandwidth, etc. In addition,
IoT networks are reputed for their non-compliance according to fixed standards
(for instance, protocols and ports used). As consequence, it is not just suffi-
cient to give a good QoS-aware approach by just reading such an instable traffic
characteristics. Furthermore, with respect to a real-time QoS-aware study that
incorporating SDN technology, it is mandatory to take into account traffic char-
acteristics. In fact, selected parameters include both information coming from
external entity to which device is connected (IoT server) and current traffic data
QoS requirements in terms of delay, bandwidth and loss recorded from different
architecture layers.

Previous work like AQRA [5] aims to guarantee adaptive multiple QoS
requirements of high-priority IoT applications by dropping low/medium priority
flows that seize the network resource of high-priority flows until the QoS require-
ments can be guaranteed. However, this removing operation is not trivial since it
leads to longer transmission delay and processing overhead at the SDN switches.
Furthermore, the end-to-end traffic QoS management as described in [5] can be
improved by reducing packets disruption at the edge layer and transposing the
optimization factors lower in network architecture. Indeed, this improvement
can decrease loss rate, avoid congestion and consequently increase the network
scalability to adapt it to different environment devices ability.

Therefore, this paper aims to reduce processing latency due to SDN switches
transmission disruption, which leads to packets lost and a delay extension. In
fact, the obtained network degradation is caused by “Flow mod” rules sent from
the SDN controller [6] and can lead to mighty waste time (up to 64 ms in normal
operation, when changing paths occurs). Starvation problem is considered.

In addition, according to 3GPP Long Term Evolution (LTE), each bearer has
a corresponding QoS class identifier (QCI), and each QoS is categorized by ser-
vice type, priority, packet error rate (PER) and packet delay budget (PDB) [7].
Some flows have QCIs vector that allow a low PDB values. Avoiding the transfer
of such packets to the control layer could considerably reduce latency or otherwise
(allowing them) can be effective for bandwidth and loss sensitive flows.

An EFQM Within Edge Layer for SDN-Based IoT Networking 153

The rest of the paper is organized as follows. Section 2 reviews related works.
Processing delays, bandwidth and loss impact in SDN switches and the multi-
layer traffic flow operations are discussed in Sect. 3. Our EFQM SDN-based
framework from perception to network layers is described in Sect. 4. Section 5
evaluates EFQM overall performance. Finally, Sect. 6 concludes this paper.

2 Related Work

Various motivations have led to numerous proposals on IoT networking QoS
improvements in SDN-based network architecture. Most of related work partic-
ularly focus on algorithmic optimization which can give an effective approach to
overcome QoS problem in IoT environment.

Deng et al. [5] propose AQRA for SDN-based IoT network to fulfill a multi-
QoS requirement of high-priority IoT application. The key idea is to remove low
or medium priority flows in favor of high priority flows until QoS requirements
can be guaranteed. However, frequent deletion of flow causes traffic loss in current
SDN hardware switches when currently active traffic flow is modified during
ongoing traffic transmission. The deletion operation adversely impacts in the
end-to-end transmission delay performance and packet loss rate. This action
requires processing overhead at the hardware switch (i.e. TCAM reordering [8])
and it is new type of traffic disruption that is not currently handled by SDN
switches [6].

X. Guo et al. [9] present DQSP an efficient QoS-aware routing protocol with
low latency and high security. DQSP is one of the widely-used deep reinforce-
ment learning method that combines DDPG algorithm and centralized control
characteristics of SDN-based IoT network. DQSP outperforms the traditional
OSPF routing protocol in term of delay especially when network is under attack.

Authors in [10] propose SDN-based framework to fulfill IoT service QoS
requirements. It consists of finding shortest path with minimum-delay and maxi-
mum-bandwidth for delay/bandwidth-centric traffic. It decomposed problems
into server selection problem and path selection problem which are implemented
in controller as QoS-aware route and least-load IoT server modules. The pro-
posed framework achieves high throughput and low delay. Nevertheless, the
authors just considered two metrics which are not discriminator.

According to PFIM [7], the authors proposed a pre-emptive flow installation
mechanism for IoT devices. It can learn the transmission intervals of periodic
network flows and install the suited flow entry into SDN switches before packets
arrival. However, they considered only delay metric.

The authors of [11] describes an admission control approach called REAC
which can control traffic flows. Indeed, the edge router monitors the delay per-
formance to admit flows to the network that guarantees good quality for high-
priority flows. However, we only considered a single QoS requirement based on
delay. In addition, the same authors do not consider the starvation problem of
low priority flows.

Deep packet Inspection (DPI) is use in [12] to improve QoS for certain
network traffic. DPI-based traffic classification is used with current port and

154 A. Bassene and B. Gueye

queue capacity from utilization monitor for a network flow routing decision based
on DiffServ for QoS and multi-path for load balancing. However, the proposed
model increases runtime delay due several initial packets traffic duplication from
the ingress port. In addition, it needs additional data plane entities and only
treat two metrics (delay and throughput).

Finally, a fog computing with heuristic algorithm of lower complexity is pro-
posed in [13] in order to provide a low cost and QoS-aware IoT infrastructure.
However, IoT end devices must support a specific functions, for instance, act as
gateway.

In contrast, to previous studies, EFQM promotes several metrics in order
to cover a wide performance of IoT traffic characteristics as well as limits flow
deletion process by fixing different sorting levels.

3 Brief Overview on Considered SDN-Based QoS
Problem

LTE is an end-to-end IP network that provides IP connections from the termi-
nal to the core network. QoS implies services to be differentiated based on the
QCI which determines the priority level of each service class and specifies the
maximum one way allowed values in terms of delay, jitter, and packet loss [14].
Nevertheless, complexity residing in such data leads to increased processing oper-
ation. This cause disruption in network traffic that directly affect bandwidth,
delay and loss sensitive services due to networks bottleneck.

According to hierarchical network, the backhaul portion of the network
comprises the intermediate links between the core network and the small sub-
networks at the edge of the network. Since LTE architecture is designed to
support high data traffic and a guaranteed QoS to end-to-end IP based service
[15], we believe that network degradation can be considerably limited with fine
grained low levels traffic managing, i.e. portion between network and perception
layer which is often subject to local control. In addition, a local performance
management adapted to the quality of the network, to the cost of equipment
and to local available resources would give more scalability and cost adaptabil-
ity to the proposed model. Thus, a fine grained QoS management at edge and
control layers is proposed to effectively improve end-to-end transmission perfor-
mance.

In Sect. 4, we describe SDN-based EFQM framework and its operation in
these specific network areas. Let’s first exploit the SDN-based IoT network archi-
tecture and explain the current state of addressed problem.

3.1 SDN-Based IoT Network Architecture

The SDN-based IoT network architecture is composed by five layers. Each
layer, according to specific embedded components, ensures communication with
adjacent levels components (highest, lowest and centralized control equipment).

An EFQM Within Edge Layer for SDN-Based IoT Networking 155

Fig. 1. Network architecture

Figure 1 presents our architecture where the network layer consists of a set of
programmable devices that perform packets forwarding towards data plane.

The control plane (Controller) is the component that caries communication
between other equipment via a dynamic routing protocol. The main goal of the
controller is to tell to the second major component (dataplane) of the network
how to process each incoming frame/packet/dataset using “OpenSwitches”.

The hierarchical network architecture as illustrated in Fig. 1 is formed by:

1. “(a)” Application layer: contains IoT applications or services;
2. “(b)” Network layer: consists of set of SDN OpenF low switches;
3. “(c)” Edge layer: consists of set of edge equipment (APs);
4. “(d)” Perception layer: IoT devices belong to this layer;
5. “(e)” Control layer: the control plane consists of the SDN controller which

communicates with “(a)” through Northbound API (Nb. API) and with
“(b)” and “(c)” through Southbound (Sb. API).

The edge equipment is OpenF low-enabled so they can be controlled by
the SDN controller using the OpenF low protocol. This layer connects to “(d)”
via wireless communication technologies. Devices in “(d)” forward/receive data
to/from “(a)” by accessing layers “(c)” and “(b)”.

156 A. Bassene and B. Gueye

The controller contains module named “topology discovery” which discovers
all network elements in the data plane and builds real time network topology.
Another module (“network status monitoring”) monitors and collects the net-
work condition periodically. The communication between the data plane and the
controller uses a standardized OpenF low protocol.

Furthermore, EFQM Framework is able to manage the behavior of both
Open − switches and IoT gateway via southbound API. It can also receives
messages from IoT servers via northbound API. However, a gateway has the
possibility to decide whether it must route traffic to control plane or not.

3.2 Problem Statement

When the IoT devices transfer the message from “Perception layer” to
“Application layer”, Packet In message undergo a set of processing in each
intermediate node before reaching their destination. These processes to ensure
the optimal management of traffic for high performance level. Indeed, with
advanced communication emergence devices, current networks should support
several services such as video streaming, web browsing, online gaming, etc. These
services that have different delay constraints, bandwidth and QoS requirements
can cause network processing problems.

These problems often create network performance degradation which results
in congestion at data plane equipment. Our aim is to overcome these constraints
by ensuring that each packet fulfills all its QoS requirements from source to
destination nodes. Therefore, a controller with a global and centralized net-
work programmability view can give dynamic control flows and flexible network
resource management which avoid IoT network contention and anomalies. In
fact, most transport protocols only consider network congestion as a factor of
traffic degradation, when adjusting end-to-end traffic behavior towards improv-
ing flow reliability.

However, it has been shown that traffic loss can occur in current SDN hard-
ware switches when the forwarding rule being applied to a current active traffic
flow is modified during ongoing traffic transmission [6]. It is attributed to the
processing latency, which is the amount time we need in order to modify forward-
ing rule within a hardware switch. The obtained latency can cause transmission
disruption that leads to packet loss for a transient period of time, as well as
congestion due to the frequent recovery caused by these losses.

Relative to this last case, authors in [5] propose an approach that consid-
ers SDN controller Flow mod message to remove low or medium priority flows
which use network resource of high priority flows up to that the QoS require-
ments can be guaranteed. We think that, avoiding intentional flow deletion and
reducing the controller computational overhead can improve existing approach.
Indeed, Sect. 3.3 highlights a couple of issues according to AQRA.

The use of SDN technology could lengthen the processing delay for latency-
sensitive packets or could be an improving factor for metrics such as loss or
bandwidth. Otherwise, these metrics also is related to the QCI vector param-
eters assigned to each flow. Therefore, a suitable QoS-aware proposal must be

An EFQM Within Edge Layer for SDN-Based IoT Networking 157

approached from two main point of view: technological adhesion and real time
traffic requirement. It is worth noticing that good performance could be achieved
both in terms of end-to-end delay and runtime when a QoS-aware decision
includes flow QCI vector parameters specification and overhead related to SDN
technology adhesion.

3.3 AQRA Drawbacks

The basic idea of AQRA [5] in QoS-aware admission control is to remove low
or medium priority flows which use network resources in favor of high prior-
ity flows until QoS requirements are guaranteed. This operation is not trivial
since it causes both processing overhead with respect to SDN switches and
delayed transmission. Indeed, when Flow Mod messages are sent from controller
to switches, a delete command for current flow rule Fc arrives to a switch. After-
wards, selected switch removes Fc and applies the next matching flow rule (Fnext)
to the current traffic. Subsequently, Fnext aims to replace Fc to serve the current
traffic after Fc deletion.

In fact, the operation consists of: (i) remove the current flow rule; (ii) replace
current flow rule with respect to the next flow rule that fulfills the same criteria
as the deleted one in order to preserve the current traffic which should not be
used otherwise. Therefore, during the time between the corresponding flow rule
searching and its application to current traffic, any other packet arriving at the
current switch will be lost since the previously matching flow rule has already
been deactivated.

In addition, the path change events are applied to all switches along dedi-
cated path. In fact, the total flow transmission time grows with increases in the
number of path change events which varies between 1 and 8. In regard to normal
operation, path change causes disruption time for approximately 64 ms [6]. This
leads to both a substantial transmission delay and congestion that overload the
network traffic. This phenomenon can be even worse during a repetitive flow
deletion as observed in [5]. The disruption time is also related to total transmis-
sion delay and runtime.

To overcome this problem, we directly send, according to the default algo-
rithm, the high priority, loss-sensitive (to avoid traffic jams in the edge gateway)
and delay-sensitive packets according to QCI values. Only medium and low pri-
ority packets will be transferred to EFQM to ensure traffic QoS requirements.
By so doing, we reduce network contention as much as possible for loss-sensitive
and delay-sensitive flows that were directly sent.

4 EFQM SDN-Based Framework

4.1 EFQM Background

In contrast to previous studies like [5,12,16], EFQM involves two major steps:
a simulated annealing (SA)-based QoS routing and Admission Control (AC).

158 A. Bassene and B. Gueye

The general idea is to compute a QoS-aware best routing paths for each flow and
then to control its admission by choosing path that fulfills traffic QoS require-
ment in a dynamic way at the controller. To reduce the controller workflow and
improving delay, traffic classification is performed at the edge layer.

In fact, the edge layer is the first level of sieving in relation to our model.
A classifier is used at IoT gateway. Therefore, a “(classScpt)” script, based on
QCI vector parameters of each flow, figures out whether data packets should be
rerouted under controller advices or not (i.e. default routing).

Table 1. Different classified classes in EFQM.

Classes QCI values

Prioritized 1, 2, 4, 5, 6

Non-prioritized 3, 7, 8, 9

It is worth noticing that the shortest path routing (default forwarding) is a
simple and fast packet forwarding protocol that always routes every traffic via
shortest path, but lacks the sense of load balancing [17]. However, our traffic
classification class takes into account this issue. Table 1 defines the classifica-
tion model used by classScpt for each incoming flow. Two classes are defined:
“prioritized” and “non-prioritized” classes.

The classScpt algorithm ensures that bandwidth sensitive flows does not
compete bandwidth utilization and buffer resources with the small flows (priori-
tized) which can lead to loss. It ensures faster completion times and lower latency
for time sensitive traffic while minimally impacting throughput. It is worth notic-
ing that classScpt algorithm will be explained in Sect. 4.3.

Note that the scheduling scheme presented here is a bearer class QoS control
scheme. A bearer is a logical channel which establishes a connection between
IoT server and enodeB. IoT devices may request many services having diverse
QoS requirements according to a given time. Therefore, to distinguish between
these different services, 3GPP defined the set of characteristics for 9 QCIs as
presented in [18].

Table 1 is specifically based on this standard. QoS requirements vector con-
sists of different flow specification like QCI value (integer), priority, service type,
PDB (ms), PER (between 10(−2) to 10(−6)). QCI vector can be obtained from
the sF low protocol [19] which provides the consumable resources statistics of
IoT servers for the controller using the sF low Agent and the sF low Collector.

Unlike [5,19], Table 1 is performed by taking into account values mentioned
above since few applications can be delay-sensitive while having non-bandwidth
guaranteed (service type = non-GBR). Previous works present acceptable loss
rates (PER = 10(−2)) and guaranteed bandwidth (service type = non-GBR).
Since the default routing is moderately sensitive to load balancing, then the later
type of traffic, in case of low PDB value, can be directly sent in order to avoid
delay.

An EFQM Within Edge Layer for SDN-Based IoT Networking 159

With respect to controller, we consider the following classifier classes accord-
ing to a fine QoS-aware control admission. Therefore, IoT traffic can be grouped
into 3 classes:

1. Delay-centric (D-centric): mission-critical or event-driven applications.
2. Bandwidth-centric (B-centric): associated with continuous traffic, (query-

driven and real-time monitoring).
3. Best-effort (Be-centric): which consists of general applications such as non-

real time monitoring.

According to this second class values and packets specification, chosen path,
from all recorded ones must satisfy the traffic needs. Thus, this fine grained path
selection also reduces harmful congestion within switches for flows directly sent
(default route) from the IoT gateway. The overall system design and proposed
controller architecture are illustrated respectively in Figs. 2 and 3.

Figure 2 depicts 3 separate components distributed on two layers (edge and
control layers). A heuristic algorithm called “Simulated Annealing” (SA) is
used to find the approximate optimal solutions. According to edge layer, an IoT
gateway is used to perform classScpt classification algorithm based on Table 1
entries. In regard to control plane, a SA-based QoS routing algorithm performs
candidate paths selection with QoS constraints such as delay, bandwidth and
packet loss rate. The appropriate path is finally chosen by an admission control
algorithm according to current traffic load. In fact, path selection with multiple
constraints in an IoT network communication is an NP -complete problem [10].

Fig. 2. EFQM at a nutshell.

160 A. Bassene and B. Gueye

Fig. 3. EFQM controller architecture.

4.2 EFQM Architecture

The proposed controller architecture in Fig. 3 shows the different components in
detail with traffic flows processing from Perception layer to Application layer.
The classScpt script gives the classification level allowing to ensure both, a good
completion time for high latency packets and prevent controller overloading. The
classScpt can send packets directly to the network layer (white arrows) or ask
the controller for adequate QoS fulfillment (black arrows). It should be noted
that when candidate paths are obtained from SA-based QoS routing algorithm,
the best path is selected by an admission control component. Afterwards, the
suited Flow mod message (rule) is sent by controller to switches for processing
packets of concerned flows.

Therefore, we avoid intentional flows deletion in order to limit unnecessary
losses while respecting the flows deadlines. A detailed classScpt algorithm pro-
cessing is proposed in the next section. This algorithm gives a basic flows classifi-
cation in edge layer, according to Table 1 class model. For instance, Algorithm 1
depicted in Fig. 4 illustrates packets dispatching steps from the time they attempt
IoT gateway in edge layer.

Note that IoT gateway is SDN -enable therefore it can communicate with the
controller via southbound API. Once the traffic reaches this level, two choices are
possible: either route the traffic directly to the OpenF low switches, or, contact
the controller for adequate routing rules (Flow mod message).

An EFQM Within Edge Layer for SDN-Based IoT Networking 161

Fig. 4. Traffic classification algorithm

4.3 Traffic Classification

Upon receiving message from perception layer, whatever the traffic class, the
IoT gateway, with classScpt, looks for the traffic corresponding class QCI val-
ues (“prioritized” or “non-prioritized”). The timestamp is used to ensure dis-
similarity between flows. If the flow is prioritized (QCI value belong to 1, 2, 4,
5, 6) then the message is sent to next corresponding switch through the short-
est path (default route algorithm), else, the message is encapsulates within a
Packet In message and sent to the controller (send to ctrl) for appropriate path
computation.

A controller by having a global view of network statistics information (topol-
ogy and measurement), SA-based QoS routing algorithm and EFQM module,
computes and selects the path that is most suited with respect to packet require-
ment. Afterwards, EFQM installs the response with the Flow mod message on
track switches along choosing path. Finally, effective traffic routing is performed
without any intentional flow deletion.

A couple of functions that are used by SA-based routing algorithm and
EFQM QoS-aware admission control are illustrated from Eqs. 1 to 5. Further-
more, Table 2 describes the meanings of different parameters that are used in
Eqs. 1, 2, 3, 4, and 5.

162 A. Bassene and B. Gueye

Table 2. Key nomenclatures.

Cp Cost of path P

Wx Weight for x QoS requirement

MRp Miss Rate for metric x

p(Cp, Cx, t) Probability to accept new path x

ABWp Available bandwidth according to fixed routing path P

ei ith link in the routing path P

ci ei link capacity

bi Current bandwidth load on ei

ai Available bandwidth on ei

CP = Wd
(Pd − Rd)

Rd
+ Wj

(Pj − Rj)
Rj

+ Wl
(Pl − Rl)

Rl
. (1)

Wx =
MRx

MRd + RMj + RMl
. (2)

MRx =
(flows that can not meet requirement x)

(flows in pList)
(3)

p(CP , CX , t) =

{
1 CX < Cp

e
−c|CX−CP |

t CX ≥ Cp

(4)

ABWP = min
ei∈P

ai ; ai = ci − bi (5)

EFQM QoS-aware routing flowchart is illustrated in Fig. 5. It combines SA-
based QoS routing algorithm and an admission control function. According to
flow QoS requirement and source/destination IP addresses, EFQM uses Dijk-
stra’s algorithm to compute the shortest path Ps then the cost of Ps named Cps

using Eq. 1.
The used metrics are delay (d), jitter (j) and loss rate (l). Path Ps is stored

in a list named pList. Ps consists of an initial solution of SA. An iteration value
t is set and decreases whenever t is not null. The cost function computing needs
the weights Wx of each metric x (Eq. 2). If t is canceled and no path is accepted,
a new neighbor N is determined and the process is repeated. Path acceptance
probability is determined by Eq. 4. If it exists a path X which cost improves the
cost of Ps, then X replaces Ps. This process is the basis of this algorithm and
it is repeated until t is equal to 0. So each time an improved path is found, it is
appended to pList.

Finally, pList is built based on potential candidate paths. In fact, SA algo-
rithm avoids being trapped in local optima but does not eliminate the possibility
of oscillating indefinitely by returning to previous visited paths. The list pList
is consequently defined to avoid this paths revisited. SA can be replaced by the
tabu search algorithm if the state space was larger. tabu search can also mini-
mize the size of pList with an automatic memory-based reaction mechanism.

An EFQM Within Edge Layer for SDN-Based IoT Networking 163

Fig. 5. Flowchart of proposed EFQM

In fact, a suitable path is chosen among candidate paths within pList. This
choice is crucial since all paths are improving paths. Therefore, the best one that
meets the needs of the current centric traffic will be the selected path.

Therefore, according to EFQM , each packet is optimally forwarded in order
either to minimize end-to-end delay, or increase bandwidth, or reduce contention
to satisfy resource limits of IoT server. This is suitable specifically for network
with limited resources.

The implementation setup and EFQM performance evaluation is presented
in the Sect. 5. EFQM is compared to AQRA [5] according to overall flow end-
to-end performance and system runtime evaluation. MRx consists of miss rates
for metric x requirement, as shown in (Eq. 3). For any given link e in path P
with capacity c and available bandwidth a, the “Available Bandwidth” (ABW)
of a routing path P is computed by (Eq. 5).

5 EFQM Evaluation

Our experimental testbed is based on “Ryu” SDN controller [20] and “Mininet-
Wifi” [21]. Ryu is an OpenF low based controller which provides python lan-
guage based application development. According to topology discovery, we use a
Ryu module/library called topology. A python graph library networkX is used
for network view. The proposed system is simulated within Ubuntu 18.04.1 LTS.

164 A. Bassene and B. Gueye

The deployed testbed network consists of three OpenF low core switches, two
OpenF low edge switches, 15 OpenF low-enabled access points connected to 20
end devices accessing the network via WiFi (IEEE 802.11n). Three stations
included in network act as application servers with different services require-
ments. We used iPerf an active measurement tool [22] in order to generate test
traffic and measure the performance of the network. iPerf enables to get, for
each test, the reports of loss, bandwidth and other parameters.

The performance evaluation is done in two steps: the overall end-to-end per-
formance in terms of delay and loss rate and total system runtime. Firstly, we
evaluate the transmission time for prioritized and non-prioritized traffic. For
prioritized traffic, the measurement is the total transmission delay for packets
sent with default route function of classScpt. In contrast, for non-prioritized
flow delay consists of time required to route a flow using the controller specifi-
cations. Secondly, we assessed the runtime estimation in EFQM process from
source to servers.

EFQM is compared with AQRA [5] in relation to overall end-to-end flow
performance and system runtime. Table 3 shows the experimental result. The
end-to-end flow performance of EFQM by considering the default route is 7.92%
better than AQRA in terms of delay. Nevertheless, AQRA gives an enhanced
packet loss rate (reduced by 8%) than EFQM .

The end-to-end flow performance of EFQM with history reduces that of
AQRA with history by 21.23% and 23.52% in terms of delay and packet loss
rate, respectively. This is due to the fact that, in AQRA [5], sending packets with
very high priority is affected not only by the waiting time for routing decision
coming from the controller but also by the network degradation comes from
frequent low priority packets deletion.

Regarding to default route, even if it does not guarantee all QoS require-
ments, it fulfills delay and better escapes bottlenecks given the limited size of
low-priority data. In addition, elephant flows that are more suitable to overload
the network are optimally managed in terms of QoS by EFQM , therefore less
interference by sending priority flows are noticed. This situation explains losses
reduction as illustrated in Table 3 by EFQM with history.

Table 3. End-to-end flow performance.

Overall end-to-end performance Delay (ms) Packet loss rate (%)

AQRA (with history) 89.10 0.051

EFQM (default route) 82.04 0.056

EFQM (with history) 70.18 0.039

The total runtime of EFQM is computed by subtracting from the end-to-end
delay, the time between the gateway and the controller (Tgc) plus time between
controller and the servers (Tcs) as described in equation (Eq. (6)).

Truntime = Tend to end − (Tgc + Tcs) (6)

An EFQM Within Edge Layer for SDN-Based IoT Networking 165

Fig. 6. Runtime comparison

Figure 6 illustrates the runtime comparison of proposed EFQM and AQRA
[5] according to use or not of pList (history), of admission control algorithm (AC)
or none of them. Compared to EFQM , AQRA [5] proposes best runtime in two
scenarios: reduce runtime by 0.96% with history and 1.38% without history.
This is due to classScpt processing time which exists in any of these scenarios.
However, EFQM decrease AQRA [5] runtime by 23.29% when we consider
history and AC. Indeed, time used by the AQRA controller model to drop
packets at edge level increases it processing time due to the waiting of next flow
receive for applying the new control rules and path change processing.

In addition, The AC processing latency increases this runtime delay due to
packets deletion in edge layer. This situation occurs when there are multiple
successive low-priority flows or multiple flows with the same priority coming
at the same time to edge equipment. It should be noted that EFQM does not
control incoming flow as long as it arrives at the controller. Note that by sending
directly packets, EFQM avoids overloading the controller as well as considerably
reduces local buffer (gateway) utilization rate.

To the best of our knowledge, EFQM gives a good QoS-aware approach that
outperforms previous studies. Indeed, it takes into account 3 metrics to cover
a wide performance aspect of IoT traffic, in contrast to former works such as
[7,9,11] that consider just 1 metric like delay; or 2 metrics like [10].

6 Conclusion

This paper illustrates a new flow QoS management mechanism for SDN -based
IoT network. EFQM proposes a framework which aims to reduce flow process-
ing delay and congestion caused by frequent packets deletion. Therefore, it limits
flow deletion process by fixing two sorting levels for better performance.

Firstly, EFQM separates vulnerable latency, loss sensitive and very high
priority flows to others. These flows are sent directly to avoid delay constraints.

166 A. Bassene and B. Gueye

The remaining traffic flows are sent to a fixed controller. A second level of sort-
ing based on flows specific requirements is applied after the computation of
the overall enhanced paths. Our evaluation results have shown that, EFQM
(default route) outperforms AQRA with history in terms of end-to-end delay
performance.

Furthermore, the end-to-end flow performance of EFQM with history
reduces AQRA with history by 21.23% and 23.52% according to delay and
packet loss rate, respectively. Finally, by considering history approach and AC,
EFQM runtime decreases by 23.29% compared to AQRA runtime. However,
AQRA gives best packet loss rate (reduced by 8%) than EFQM (default route)
and decreases EFQM runtime in two scenarios: 0.96% with history and 1.38%
without history.

We plan to compare EFQM and AQRA under different conditions and sce-
narios, for instance, when the topology is highly dynamic with more or less
switches in the data plane.

References

1. Pham, C., Rahim, A., Cousin, P.: Low-cost, long-range open IoT for smarter rural
African villages. In: Proceedings of IEEE ISC2, Trento, pp. 1–6 (2016)

2. Seye, M.R., Diallo, M., Gueye, B., Cambier, C.: COWShED: communication within
white spots for breeders. In: Proceedings of IEEE ICIN, France, pp. 236–238 (2019)

3. Haleplidis, E., Pentikousis, K., Denazis, S., Salim, J.H., Meyer, D., Koufopavlou,
O.: Software-defined networking (SDN): layers and architecture terminology. IRTF,
ISSN 2070–1721, RFC 7426, pp. 1–35, January 2015

4. McKeown, N., et al.: OpenFlow: enabling innovation in campus networks. SIG-
COMM Comput. Commun. Rev. 38(2), 69–74 (2008)

5. Deng, G., Wang, K.: An application-aware QoS routing algorithm for SDN-based
IoT networking. In: Proceedings of 2018 IEEE ISCC, Natal, pp. 186–191 (2018)

6. Oh, B., Vural, S., Wang, N., Tafazolli, R.: Priority-based flow control for dynamic
and reliable flow management in SDN. IEEE Trans. Netw. Serv. Manag. 15(4),
1720–1732 (2018)

7. Sulthana, S.F., Nakkeeran, R.: Performance analysis of service based scheduler in
LTE OFDMA system. Wireless Pers. Commun. 83(2), 841–854 (2015)

8. He, K., et al.: Measuring control plane latency in SDN-enabled switches. In: Pro-
ceedings of ACM SIGCOMM SOSR, USA, pp. 1–25 (2015)

9. Guo, X., Lin, H., Li, Z., Peng, M.: Deep reinforcement learning based QoS-aware
secure routing for SDN-IoT. IEEE Internet Things J. 7, 6242–6251 (2019)

10. Montazerolghaem, A., Yaghmaee, M.H.: Load-balanced and QoS-aware software-
defined internet of things. IEEE Internet Things J. 7(4), 3323–3337 (2020)

11. Jutila, M.: An adaptive edge router enabling internet of things. IEEE Internet
Things J. 3(6), 1061–1069 (2016)

12. Jeong, S., Lee, D., Hyun, J., Li, J., Hong, J.W.: Application-aware traffic engineer-
ing in software-defined network. In: 19th APNOMS, Seoul, pp. 315–318 (2017)

13. Gravalos, I., Makris, P., Christodoulopoulos, K., Varvarigos, E.A.: Efficient network
planning for internet of things with QoS constraints. IEEE Internet Things J. 5(5),
3823–3836 (2018)

An EFQM Within Edge Layer for SDN-Based IoT Networking 167

14. 3GPP: Quality of service (QoS) concept and architecture. TS 23.107. Accessed 29
May 2020

15. Mesbahi, N., Dahmouni, H.: Delay and jitter analysis in LTE networks. In: Pro-
ceedings of WINCOM, Fev, pp. 122–126 (2016)

16. Qin, Z., Denker, G., Giannelli, C., Bellavista, P., Venkatasubramanian, N.: A soft-
ware defined networking architecture for the internet-of-things. In: Proceedings of
IEEE NOMS, Krakow, pp. 1–9 (2014)

17. Amira, H., Mahmoud, B., Hesham, A.: Towards internet QoS provisioning based on
generic distributed QoS adaptive routing engine. Sci. World J. 2014, 1–29 (2014)

18. Maharazu, M., Hanapi, Z.M., Abdullah, A., Muhammed, A.: Quality of service
class identifier (QCI) radio resource allocation algorithm for LTE downlink. PLOS
ONE J. 14(1), 1–22 (2019)

19. sFlow.org: www.sflow.org
20. Ryu: Component-based software defined networking framework. https://github.

com/faucetsdn/ryu
21. Mininet-wifi: Emulator for software-defined wireless networks. https://github.com/

intrig-unicamp/mininet-wifi
22. iPerf: The ultimate speed test tool for TCP, UDP and SCTP. www.iperf.fr

www.sflow.org
https://github.com/faucetsdn/ryu
https://github.com/faucetsdn/ryu
https://github.com/intrig-unicamp/mininet-wifi
https://github.com/intrig-unicamp/mininet-wifi
www.iperf.fr

	An Enhanced Flow-Based QoS Management Within Edge Layer for SDN-Based IoT Networking
	1 Introduction
	2 Related Work
	3 Brief Overview on Considered SDN-Based QoS Problem
	3.1 SDN-Based IoT Network Architecture
	3.2 Problem Statement
	3.3 AQRA Drawbacks

	4 EFQM SDN-Based Framework
	4.1 EFQM Background
	4.2 EFQM Architecture
	4.3 Traffic Classification

	5 EFQM Evaluation
	6 Conclusion
	References

