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Abstract. The ability to accurately and automatically recognize and
count the repetitions of exercises using a single sensor is essential
for technology-assisted exercise-based rehabilitation. In this paper, we
present a single deep learning architecture to undertake both of these
tasks based on multi-channel time-series data. The models are con-
structed and tested using the INSIGHT-LME [1] exercise dataset which
consists of ten local muscular endurance (LME) exercises. For exercise
recognition, we achieved an overall F1-score measure of 96% and for
repetition counting, we were correct within an error of ±1 repetitions
in 88% of the observed exercise sets. To the best of our knowledge, our
approach of using the same deep learning model for both tasks using raw
time-series sensor data information is novel.

Keywords: INSIGHT-LME dataset · CNN · Wearable sensor ·
Exercise-based rehabilitation · Multi-channel time-series

1 Introduction

Community-based or home-based exercising are approaches commonly adopted
for rehabilitation. Exercise-based rehabilitation often needs to be long-term.
Unfortunately, for a variety of reasons (including travel distances, organized
classes not being schedule-friendly and some people not wanting to exercise in
front of others) adherence to organised programmes tend to be very low [2,3].
Alternatively, if people could exercise anywhere convenient to them, at any time,
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it may act to motivate the uptake and adherence to exercise-based rehabilitation.
Such an approach would be facilitated if information on the type and amount of
exercise was automatically detected for real-time and summary feedback, which
has been shown to be a motivating factor rehabilitating patients. Technology
advances in wearable sensors have resulted in cost-effective devices capable of
recording human movements effectively [4,5]. Human activity recognition (HAR)
is an increasingly important research topic where human movements and associ-
ated activities are studied using advanced artificial intelligence algorithms, e.g.
machine learning and deep learning models, applied to sensor data from wear-
ables. In recent years, the use of a single wearable sensor has gained prominence
in different areas of HAR such as: day-to-day activity(e.g. jogging, running, walk-
ing, drinking, sitting) [6–9], gym activity [10] and exercise [11–14] recognition
and in repetition counting [11,15,16]. Studies have shown that elderly rehabili-
tation patients (about 68%) have indicated their interest in using a single sensor
(inertial measurement unit) within exercise-based rehabilitation [2].

The increased interest in using deep learning models in the field of HAR and
especially exercise [1,11,17] has resulted in various models being used for exercise
recognition and repetition counting. However, it appears that no studies have
used a single deep CNN model architecture using multi-channel time-series data
for exercise recognition and repetition counting. Using a single model architec-
ture for both tasks simplifies implementation and training. This is an important
consideration if the AI-based technique were ultimately to be implemented as an
embedded function of the wearable sensing platform. As such, this study aims
to demonstrate how a single CNN model architecture can be used for automatic
exercise recognition and repetition counting using multi-channel time-series data
obtained from a single inertial measurement unit.

2 Proposed Framework

Figure 1 represents the end-to-end pipeline framework used for the exercise
recognition and repetition counting. This framework consists of a data processing
unit, two CNN models and an output processing component. The data process-
ing unit processes the INSIGHT-LME dataset [1] into 6D time-series arrays. Two
CNN models were constructed using a single architecture for both the exercise
recognition and the repetition counting tasks. The output processor consists of
two fully connected layers, the first one is used at the output of the CNN model
for exercise recognition and the second one is used at the output of the CNN
model for repetition counting.

3 Methodology

3.1 Data Set

We have used the INSIGHT-LME dataset, a data set recently made publicly
available (https://bit.ly/30UCsmR), consisting of eleven classes of movements
with first ten classes corresponding to ten LME exercises commonly used in

https://bit.ly/30UCsmR
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Fig. 1. End-to-End pipeline for exercise recognition and repetition counting.

exercise-based cardiovascular disease (CVD) rehabilitation and the eleventh class
corresponding to movements commonly observed between exercises. The ten
LME exercises consists of six upper-body LMEs (Bicep Curls (BC), Frontal Raise
(FR), Lateral Raise (LR), Triceps Extension Right arm (TER), Pec Dec (PD)
and Trunk Twist (TT)), and four lower-body LMEs (Squats (SQ), Lunges (L),
Leg Lateral Raise (LLR) and Standing Bicycle Crunches (SBC)). The dataset
consists of raw time-series data from a 3D accelerometer and a 3D gyroscope
using a single inertial measurement unit (IMU) mounted on the right-wrist and
was collected from 76 healthy and able bodied participants. The IMUa used in
the dataset was Shimmer3 IMUs which were light-weight wearable sensor units
from Shimmer1. Each IMU used in the data collection process was calibrated
using Shimmer’s 9DoF calibration application2 and a sampling rate 512 Hz was
used. Exercise data were collected in two sets from the participants under con-
strained and unconstrained environments. 6D time-series data (3D accelerometer
and 3D gyroscope) were further used in the data processing. As an illustrative
example, Fig. 2 represents 25 s segmented time-series sensor signal plots of 3D
accelerometer and 3D gyroscope for the Frontal Raise exercise.

(a) 3D Accelerometer plot (b) 3D Gyroscope plot

Fig. 2. 25 s segmented plots of Frontal Raise exercise

1 http://www.shimmersensing.com/products/shimmer3.
2 https://www.shimmersensing.com/products/shimmer-9dof-calibration.

http://www.shimmersensing.com/products/shimmer3
https://www.shimmersensing.com/products/shimmer-9dof-calibration
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3.2 Data Processing

Data processing was performed on the INSIGHT-LME dataset to have 6D time-
series array information with two target labels. The new 6D time-series infor-
mation was generated from data segmentation process using a sliding window
method. A window-length of 4 s and an overlap of 0.5 s was used in data segmen-
tation process. From every 4 s segment of exercise data, a 6D time-series data
array was formed and was computed for all exercise data. The processed data,
from 76 participants, was divided into three subsets. A training set was formed
with data from 46 participants. Additionally, from the remaining participants a
test set and a validation set were formed with data from 15 participants each.

The two class labels were generated for the new 6D time-series information.
First target labels were used for the exercise recognition task and the second
target labels were used in the repetition counting task. The first target labels
were for the exercise recognition task and were the eleven class label information
of the exercise movements. However, for the repetition counting task, a new
binary class label was added on each 4 s segmented array data using a 50% grid
method. Ground truth with the newer binary class information was generated
using dominant signal information for each exercise [1,16,18]. If the dominant
signal peak lay at the left half of the grid then a label information “Peak” (or
“1”) was added, otherwise “No Peak” (or “0”) label information was added.

3.3 A Deep CNN Architecture for Recognition and Repetition
Counting

HAR recognition, especially in the field of exercise recognition and repetition
counting, few recent studies [1,11,17] have used different deep CNN structures.
A single CNN architecture was used by [11] which uses one model for exercise
recognition but uses ten different models for repetition counting. However, in our
previous study [1] we have successfully demonstrated building two models using
the state of the art AlexNET architecture, one for all the exercise recognition
and the other for repetition counting from all the exercises in contrast to Soro
et al. [11]. However, it appears that no studies have used a single deep CNN
model architecture using multi-channel time-series data for exercise recognition
and repetition counting.

We designed and built deep CNN models from scratch using the same base
structure (Fig. 3), one for the exercise recognition and other for the repetition
counting. The architecture consists of seven 2D convolutional layers (ConvLayer)
in addition to an input layer, two fully connected layers and a dropout layer.
The number of filters used in seven convolution layers were 16, 16, 32, 32, 64, 64
and 96 respectively. The selection of the number of convolutional layers and the
number of filters in each layer of the CNN Model2 architecture were arrived after
the initial few trials with different configurations. Output of each ConvLayer
was batch normalized [19] and rectified linear units (ReLU) [20] were used along
with MaxPooling. The output of the seventh ConvLayer was flattened and a
fully connected layer was used. A drop out rate of 0.5 was used in the fully
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Fig. 3. CNN Model Architecture for exercise recognition

connected layer to prevent overfitting of the data. The LME exercise recognition
task was an 11 class classification problem and hence we used a fully-connected
output layer with a softmax activation function capable of classifying output
into 11 classes. Table 1 lists the complete list of the parameters of the CNN
architecture.

The same single CNN architecture 1 was used as a binary classifier for the
repetition counting task. We used a fully-connected output layer with a sigmoid
activation function capable of classifying binary class. The binary class label
information associated with the input was used for output prediction in the fully
connected output layer. This single CNN model for repetition counting works
parallel to the exercise recognition task and the predicted output are used along
with exercise-type information from the exercise recognition model. Finally, a
counting function was used to count the total number of repetitions using the
transition information associated with the binary predicted output (Fig. 4).

Fig. 4. Repetition Counter

The optimum model was evaluated for individual class performance based
on statistical measures such as precision, recall and F1-score using Eqs. (1)–
(3) respectively, where TP represents the number of times the model correctly
predicts the given exercise class, FP represents the number of times the model
incorrectly predicts the given exercise class and FN represents the number of
times the model incorrectly predicts other than the given exercise class.

Precision =
TP

TP + FP
(1)
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Table 1. All architecture parameters for CNN Model2. CL: Convolution Layer and
DL: Dense Layer

Layer Value Parameters

Input layer 2048 × 1 × 6 0

Convolution filters CL1 16 304

Kernel size CL1 (3, 1) –

Strides CL1 (1, 1) –

Convolution filters CL2 16 784

Kernel size CL2 (3, 1) –

Strides CL2 (1, 1) –

Convolution filters CL3 32 1568

Kernel size CL3 (3, 1) –

Strides CL3 (1, 1) –

Convolution filters CL4 32 3104

Kernel size CL4 (3, 1) –

Strides CL4 (1, 1) –

Convolution filters CL5 64 6208

Kernel size CL5 (3, 1) –

Strides CL5 (1, 1) –

Convolution filters CL6 64 12352

Kernel size CL6 (3, 1) –

Strides CL6 (1, 1) –

Convolution filters CL7 96 18528

Kernel size CL7 (3, 1) –

Strides CL7 (1, 1) –

Batch normalization CL1, CL2, CL3,

CL4, CL5, CL6, CL7

Yes 64 + 64 + 128 + 128 +

256 + 256 + 384

Activation function CL1, CL2, CL3,

CL4, CL5, CL6, CL7

ReLU 0

Dense Layer DL1 128 25165952

Dropout DL1 0.25 0

Dense Layer DL2 11 1419

Activation function DL2 softmax 0

Total parameters : 25,211,499

Trainable parameters : 25,210,859

Non-trainable parameters : 640

Recall =
TP

TP + FN
(2)

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
(3)

4 Experimental Results

The CNN models for both tasks were constructed using Keras API [21] with the
TensorFlow [22] back end with the choice of optimizer function among stochastic
gradient descent (SGD) [23], Adam [24], and RMSprop [25]. The best learning
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rate was selected by training the model over a range of 1e−03 to 1e−10 with a
decay of 1e−01. The multi-class classification model for exercise recognition was
optimized using the loss functions such as categorical cross-entropy (CCE) [26]
and Kullback–Leibler divergence (KLD) [27] to have lower losses. However, the
binary-class model for repetition counting was optimized using binary cross-
entropy loss function. We used early stopping during model building by moni-
toring the validation loss. A learning rate scheduler was used effectively using
the “ReduceOnPlateau” function from Keras. Data augmentations like shearing,
resizing, flipping, rotation were not performed on the time-series data. Models
were trained using the training set and validated using the validation set. A
model with a minimum validation loss and with the best validation accuracy
was selected as the optimum CNN model in both tasks and was further tested
using the test set.

4.1 Exercise Recognition Using CNN Model

A CNN model with an Adam optimizer having a learning rate 1e-7 and a KLD
loss function was found to be the best model. The model recorded an overall
training score of 96.89% and a validation score of 88.97%. For the test set,
the model recorded an overall test accuracy of 95.61% and an overall F1-score
measure of 96% and an overall loss of 0.1288. Figure 5(a) and Fig. 5(b) shows the
learning curves in terms of training and validation accuracies as well as training
and validation losses.

(a) Training and validation accuracies (b) Training and validation losses

Fig. 5. Learning curves

The performance of the CNN model, in terms of statistical parameter mea-
surements such as precision, recall and F1-score, for individual exercise are tab-
ulated in Table 2. The model recorded an overall precision of 96.52%, overall
recall rate of 97.13% and an overall F1-score of 96.80% for the upper-body LME
exercises. The overall performance for the lower body LME in terms of precision,
recall rate and F1-score measures were 95.99%, 97.08% and 96.5% respectively.
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Table 2. Performance evaluation measures of the CNN model

Exercise type Precision Recall F1-score Support

Upper-body LME exercises Bicep Curls 0.9952 0.9713 0.9831 1290

Frontal Raise 0.8917 0.9574 0.9234 1290

Lateral Raise 0.9389 0.9178 0.9283 1290

Triceps Extension 0.9985 1.0000 0.9992 1290

Pec Dec 0.9953 0.9837 0.9895 1290

Trunk Twist 0.9721 0.9977 0.9847 1290

Lower-body LME exercises Standing Bicycle 0.9834 0.9651 0.9742 1290

Squats 0.9874 0.9698 0.9785 1290

Leg Lateral Raise 0.9771 0.9907 0.9838 1290

Lunges 0.8917 0.9574 0.9234 1290

Common movements Others 0.8975 0.8389 0.8672 1440

Micro average 0.96 0.96 0.96 14340

Macro average 0.96 0.96 0.96 14340

Weighted average 0.96 0.96 0.96 14340

4.2 Repetition Counting Using the CNN Model

The optimum model was selected based on the validation score and incorporated
an Adam optimizer and had a learning rate of 1e-06. The optimum model was
further tested with the test data set to count the repetitions. The test data set
consisted of 30 exercise data from each exercise type corresponding to the fifteen
participants performing each exercise twice and 6 to 7 repetitions over 25 s of
data segment.

Table 3. Number of error counts in the repetition using CNN model

Exercise type Acronym Total subjects Error count

e|0| e|1| e|2| e > |2|
Upper-body LME exercises BC 30 28 1 0 1

FR 30 25 4 0 1

LR 30 30 0 0 0

TER 30 29 1 0 0

PD 30 29 1 0 0

TT 30 27 3 0 0

Lower-body LME exercises SBC 30 18 7 4 1

SQ 30 15 9 4 2

LLR 30 23 5 2 0

L 30 6 4 4 16

Table 3 shows the results of repetition counting for individual LME exercise
in terms of the number of absolute errors. The total number of subjects used in
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the test set for testing each exercise is also indicated in the table. The repetition
error counts are indicated by the columns “Error Count” or “e|X|”, where “e|X|”
indicates the number of exercise sets with ‘|X|’ repetition error count. ‘|X|’
represents the absolute error count in terms of 0, 1, 2, or more than 2 errors.
The repetition counting method performed better for upper-body exercises like
BC, FR, LR and TER in comparison to the repetition counting of the lower-body
exercises. For example, from Table 3, for the upper-body LME exercises, zero
errors in repetition counting were reported in 168 instances among 180 observed
sets.

Fig. 6. Number of errors of the repetition counting using the CNN model (Color figure
online)

A significant amount of error count for the upper-body LME exercises was
with one count error. We could achieve 100% correct counting only in the case
of LR exercise trials. Repetition counting performance for Lunges, a lower-body
exercise, was very poor. Performance of the model can be evaluated with a
tolerance of one repetition count error (i.e. blue + yellow, Fig. 6). The repetition
counting from the model was within an error of ±1 repetitions in 88% of the
observed exercise sets.

5 Discussion

In this paper, we studied a deep CNN model architecture on the INSIGHT-LME
dataset for automatic recognition and repetition counting in LME exercises. The
dataset used was based on the data from single wrist-worn inertial measurement
unit from the exercises used in CVD rehabilitation program. We found that the
deep CNN model constructed on the time-series data was an efficient model
for exercise recognition and repetition counting in terms of accuracy measure.
In addition, we demonstrated a novel method of using a single model based
on multi-channel time-series data for the repetition counting from all the ten
exercises.

We would like to discuss the outcome of our study with the findings of recent
relevant studies in the area of exercise-based rehabilitation using wearables.
First, this study of ours was an extension of findings from our work [1], where a
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comparative approach was adopted in LME exercise recognition and repetition
counting using different supervised machine learning models and a deep CNN
model using AlexNet architecture. In addition, using the earlier study [1] we
had made the INSIGHT-LME dataset publicly available. The CNN model using
AlexNet architecture was the best approach, however, requires the input data in
terms of 2D images. However, this study of exercise recognition and repetition
counting uses the multi-channel raw time-series data and achieves the overall
same result.

Second, Soro et al. [11], a recent work on exercise recognition and repetition
counting on ten Cross-Fit exercises using deep CNN models uses two sensors one
on a foot and one on hand. The study makes use of a single deep CNN model
for the exercise recognition task but uses ten different models for the repetition
counting. 9D data from accelerometer, gyroscope and orientation sensor was used
and reports an overall accuracy measure of 97% in exercise recognition with only
exercise data. In contrast, our model for the exercise recognition uses 6D data
and the recognition task considers an additional eleventh class (“Others”), with
non-exercise movement data along with the ten exercise class data. We built
a single CNN model for repetition counting in contrast to the ten individual
models.

While our studies and those of Soro et al. [11] were on different exercises and
different data-sets, the main aim was to address exercise-based rehabilitation
using deep learning models. The current study using multi-channel information
with a deep CNN appear also shows that it is possible to use a single model to
count exercise repetition, with very little loss in accuracy. This may be bene-
ficial in reducing the dependency on the total number of resources required in
repetition computation in the case of multiple exercise evaluation.

6 Conclusion

We studied a single deep CNN architecture based model on the exercises used
in an exercise-based CVD rehabilitation program. The automatic recognition
and repetition counting of the exercises was achieved using multi-channel (6D)
time-series data obtained from a single wearable sensor. We achieved an overall
F1-score measure of 96% in the exercise recognition task and the repetition
counting was within an error of ±1 count among 88% of the observed exercise
sets. Our study also showed that it is possible to use a single CNN model for
repetition count with very little loss in accuracy.
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