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Abstract. Recent developments in Brain-Computer Interfaces (BCI)—
technologies to collect brain imaging data—allow recording of Electroen-
cephalography (EEG) data outside of a laboratory setting by means of
mobile EEG systems. Brain imaging has been pivotal in understand-
ing the neurobiological correlates of human behavior in many complex
disorders. This is also the case for tinnitus, a disorder that causes phan-
tom noise sensations in the ears in absence of any sound source. As
studies have shown that tinnitus is also influenced by complexities in
non-auditory brain areas, mobile EEG can be a viable solution in bet-
ter understanding the influencing factors causing tinnitus. Mobile EEG
will become even more useful, if real-time EEG analysis in mobile experi-
mental environments is enabled, e.g., as an immediate feedback to physi-
cians and patients or in undeveloped areas where a laboratory setup is
unfeasible. The volume and complexity of brain imaging data have made
preprocessing a pertinent step in the process of analysis, e.g., for data
cleaning and artifact removal. We introduce the first smartphone-based
preprocessing pipeline for real-time EEG analysis. More specifically, we
present a mobile app with a rudimentary EEG preprocessing pipeline and
evaluate the app and its resource consumption underpinning the feasi-
bility of smartphones for EEG preprocessing. Our proposed approach
will allow researchers to collect brain imaging data of tinnitus and other
patients in real-world environments and everyday situations, thereby col-
lecting evidence for previously unknown facts about tinnitus and other
conditions.
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1 Introduction

Brain imaging techniques offer different opportunities to examine the neurobio-
logical correlates of human behavior. Among different brain-imaging techniques,
for instance, Magnetoencephalography (MEG), Functional Magnetic Resonance
Imaging (fMRI), and Positron Emission Tomography (PET), Electroencephalog-
raphy (EEG) is the most adaptable and multifaceted one. EEG is a non-invasive
tool that allows the investigation of the resting-state electrical activity of the
brain by means of electrodes positioned on the scalp [8]. This enables the inves-
tigation of human brain functions by recording the communication between neu-
rons in the brain network measured in volts. EEG offers high time resolution
(high number of snapshots of electrical activity from various electrodes) in com-
parison to fMRI and PET [25], and is an inexpensive and low maintenance
technique compared to MEG. Thus, EEG is not only an inexpensive but a ver-
satile, lightweight, and portable brain-imaging technique, and it is extensively
applied in tinnitus research [3,7,11].

Tinnitus is a common disorder responsible for causing the perception of a
ringing sound in the ears without presence of any external sound source. The
reasons pertaining to causing this phantom sound are yet to be fully discov-
ered, but it has been firmly established that tinnitus is caused by an underlying
anomaly in the ear such as damage and loss of cochlear hair cells [14]. Despite the
fact that tinnitus is traditionally considered a problem of the inner ear, recent
studies using brain imaging have shown that the complexity of tinnitus goes
beyond the auditory cortex into non-auditory brain areas [8,13]. Brain imag-
ing techniques like EEG can be pivotal in collecting evidences for further yet
unknown facts regarding the neuronal activity of tinnitus.

Current developments in EEG research have progressed significantly to
record EEG outside a laboratory setting by means of ambulatory or mobile
EEGs [16,17]. Mobile EEG devices are equipped with necessary hardware to be
communicated by a wired (USB) or a wireless connection (Bluetooth or WiFi).
Generally, an EEG session is primarily recorded and temporarily stored on the
mobile EEG device (either on the built-in flash memory or an external SD card).
Since brain imaging outside a controlled laboratory setting and in real-world
scenario can result in unnecessary noise in data and useless subject-generated
artifacts [12], the EEG recordings are therefore transferred to a computer for pre-
processing steps like data cleansing, filtering and artifact removal using EEGLab
Scripts [6], MATLAB, or FieldTrip [23]. Alternatively, mobile EEG can also be
directly connected to a computer to transfer real-time EEG data and perform
on-the-run preprocessing [26].

Although the current paradigm of EEG recording and preprocessing is a
significant improvement over conventional EEG, including EEG analysis in real-
world settings, it is still limited in terms of offering real-time analysis with free-
dom of movement or mobility. A major shortcoming of the current EEG analysis
paradigm is the requirement of additional hardware for EEG data acquisition,
preprocessing, and visualization. For example, currently, the overall process of
EEG analysis and visualization requires additional steps of transferring EEG
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data to a computer, thereby hindering the mobility and introduction of requiring
specialized software for EEG data preprocessing. A possible alternative solution
to this problem can be Mobile Sensing—the process of acquiring sensory data of
an individual using a smartphone or mobile device while allowing mobility [20].
Smartphones are capable to be used, and some scientific literature has already
reported their successful usage [19,30].

Modern smartphones are ubiquitous devices that provide sophisticated com-
munication hardware, exceptional computing power, and reasonable battery.
Additionally, smartphones offer APIs for programming new apps. These charac-
teristics plus the fact that smartphones are literally mobile devices make smart-
phones an ideal candidate for real-time analysis and recording of EEG data in
non-conventional, exceptional, and atypical real-world settings such as swim-
ming, running, or hiking etc. However, it is also notable that the smartphones
are manufactured as general purpose devices and are not specialized for real-
time EEG recording and analysis, therefore, their feasibility and behavior in
such cases require efforts. For instance, continuous sampling of the EEG data
might result in excessive battery consumption problems [33], or might introduce
scarcity of computational power for general user experience [2]. Furthermore,
a continuous Bluetooth connection with the mobile EEG device might cause
data transmission problems [10], as well as its associated energy consumption
problem [32].

Therefore, for addressing the aforementioned challenges, this article proposes
a mobile-based preprocessing pipeline for EEG analysis, more specifically (i) the
development and design of a smartphone app with a rudimentary EEG prepro-
cessing pipeline, and (ii) an evaluation of the proposed app to show the feasibility
of smartphones to perform EEG preprocessing. The proposed work is motivated
and driven by the needs of tinnitus research within the context of the European
School for Interdisciplinary Tinnitus Research (ESIT) [29]. One core goal of the
ESIT project is the development of a generic, robust and flexible middleware
for mobile crowdsensing to monitor real-time measurements of tinnitus-related
parameters as well as electroencephalographic and physical activities. The pro-
posed approach will improve mobility for EEG data acquisition and analysis
using smartphones and enable preprocessing of EEG data without the need
of specialized software and hardware. The proposed smartphone app will also
allow researchers to collect brain-imaging data of tinnitus patients in a vari-
ety of experimental conditions in real-world environment, thereby, to collect
evidence for unknown facts regarding tinnitus in brain regions. In particular,
the proposed smartphone app will assist researchers in designing and gathering
EEG data for large scale longitudinal studies, for example, to investigate oscilla-
tory brain activity of tinnitus patients in a longitudinal design by investigating
patients that have moments with high and low tinnitus intensity. Furthermore,
the ability to collect and analyze real-time EEG data in real-world experimental
situations as well as in places where a laboratory EEG setup is impossible—
for instance, in underdeveloped or undeveloped rural areas—will be a significant
asset for brain-imaging and neuro-imaging research. The application possibilities
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are not limited to tinnitus research, but the proposed solution will also support
a variety of application domains where brain-imaging is vital.

Section 2 of this paper gives insights into previously reported related work in
this field and briefly discusses the existing preprocessing approaches. Section 3
details the overall design and implementation of the proposed work. The subse-
quent Sect. 4 evaluates the proposed approach by presenting results and data on
the feasibility of smartphones for preprocessing EEG data. Finally, we conclude
and present brief insights into future work in Sect. 5.

2 Related Work

In terms of specialized software packages for offline and online preprocessing and
analysis of EEG data, EEGLAB [6] and FieldTrip [23] are among the most promi-
nent. EEGLAB is an open source (GNU license) toolbox for MATLAB. It is used
for processing EEG data, including data filtering and artifact removal, as well as
analysis of EEG data using Independent Component Analysis (ICA). Similarly,
FieldTrip is also an open source (GNU license) toolbox for MATLAB for ana-
lyzing EEG data. In terms of developing BCI applications, OpenViBE (frame-
work for developing BCI applications for neurofeedback and biofeedback) [27],
BCILAB (EEGLAB plugin to develop EEG predictive models) [15], and BCI2000
(a C++ framework for developing real-time BCI applications) [28] are some of
the popular frameworks. Furthermore, Esch et al. [9] present the MNE software
project, which comprises tools required for EEG and MEG data acquisition,
preprocessing, analysis, and visualization. Similarly, Tadel et al. [31] present an
open-source platform for EEG and MEG data analysis and visualization.

With reference to existing preprocessing pipelines, it is pertinent to notice
that there exists no standard method. Usually, the preprocessing of EEG sig-
nals is supervised by EEG experts. However, there has been some existing lit-
erature reporting on automated preprocessing of EEG data. Usually, most of
the pre-existing preprocessing pipelines perform filtering, removal of line noise,
and detection of bad channels including interpolation. Among the preexisting
preprocessing pipelines, the PREP Pipeline [4] claims to standardize the prepro-
cessing of EEG data. The main idea of PREP is to distinguish externally gen-
erated noise, such as electrical interference and patient-generated artifacts via
muscular activation. For instance, the line-noise detection and removal is done
using a modified implementation of the CleanLine plugin from EEGLAB [1,22].
The PREP Pipeline has been reused in other preprocessing implementations,
Automagic [24] and the Batch Electroencephalography Automated Processing
Platform (BEAPP) [18]. In [5], da Cruz et al. propose a MATLAB-based auto-
mated preprocessing pipeline for EEG data called APP. APP uses the CleanLine
plugin from EEGLAB for line-noise removal like the PREP pipeline. Further-
more, APP applies a 3rd Order Butterworth filter 1 Hz in both forward and
reverse direction to correct the direct-current (DC) drift caused by changes in the
DC value. After removing the line noises, the channel data is re-referenced. Both
PREP and the APP preprocessing pipelines extensively use the EEGLAB pre-
processing library. Instructions on how to preprocess EEG data using EEGLAB



Towards Mobile-Based Preprocessing Pipeline for EEG Analyses 71

Table 1. Overview of the preprocessing pipelines

PREP [4] APP [5] Makoto [21] Result

– 3rd order
Butter-worth
filter

Highpass filter 3rd order
Butter-worth
filter

Cleanline CleanLine CleanLine Band-stop filter

Signal true mean
estimation with
bad channels
interpolated

Signal true mean
estimation with
weighted mean

– Estimate signal
true mean with
bad channels
interpolated

Detect bad
channels relative
to mean and
interpolate

Detect bad
channels relative
to neighbors and
with high
dis-persion to
mean

– Detect bad
channels relative
to mean and
interpolate

Detecting noisy
or outlier
channels

– – –

– Detecting and
remove bad
epochs

Reject epochs for
cleaning

–

– ICA ICA –

– Detection,
removal and
interpolation of
bad channels in
epochs

– –

– Outlier detection – –

and development of preprocessing pipelines are given by Makoto Miyakoshi from
Swartz Center for Computational Neuroscience [21].

The three foremost and commonly used preprocessing pipelines (PREP, APP,
Makoto) are delineated in Table 1, along-with a comparison to our proposed
approach. We first apply a 3rd Order Butterworth filter in both forward and
reverse directions for signal filtering like the APP preprocessing pipeline. Next,
we use a Band-stop Filter (also called notch filter) as an alternative to the
Cleanline to remove power line interference between 50 and 60 Hz or 50 and
70 Hz. Despite that this can cause significant signal distortion around the band-
stop frequency and phase distortion [4], however, our choice of implementing
band-stop filter is due to resource scarcity on the smartphones. Currently, we
are working on implementing and optimizing the CleanLine algorithm for the
Android platform. Finally, in order to detect bad channels, we have implemented
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and modified both phases of the PREP’s ‘Referencing Procedure’ for the Android
platform.

In general, there exists a plethora of literature reporting on software packages
and toolboxes for online and offline analysis of EEG data. Similarly, there exist
plenty of literature reporting on automated preprocessing pipelines and stan-
dardizing the preprocessing of EEG data. Our literature review did not yield
any study that reports on any application of preprocessing EEG data using
smartphones. Specifically, we did not find any article that benchmarks the pre-
processing of EEG data using smartphones. To the best of our knowledge, the
proposed work is the first of its type towards mobile-based preprocessing pipeline
for EEG analysis, including visualization of EEG data, as well as to present
evidence regarding feasibility of smartphones to perform preprocessing of EEG
data.

3 Implementation

The proposed work aims at preprocessing of EEG data for analysis purposes
using a smartphone. Therefore, we have developed an Android application. The
overall architecture of the proposed app is presented in Fig. 1. The data from elec-
trodes of the EEG cap are transmitted to the EEG Amplifier. In our implemen-
tation, we have used the EEG Amplifier by Brain Products called LiveAmp 161.
The EEG Amplifier can be coupled with the smartphone using Bluetooth.

Preprocessing Pipeline

Graphical User Interface

EEG Data Receiver

Buetooth Connec on Manager

Highpass Filter Bandstop Filter

Rereferencing

EEG Visualiza onAndroid Device

EEG Cap

EEG Amplifier
LiveAmp 16 by Brain Products

Fig. 1. Architecture

To acquire live EEG data, an EEG cap is connected to LiveAmp 16 using
a wired connection. The Bluetooth Connection Manager module is responsi-
ble for establishing the first connection with LiveAmp 16, and maintaining the

1 https://www.brainproducts.com/productdetails.php?id=63 Accessed: 15/06/2020.

https://www.brainproducts.com/productdetails.php?id=63
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Bluetooth connection for the duration of EEG. The EEG Data Receiver mod-
ule is implemented in Java and included as an external library to the Android
application. The EEG data-receiver module is responsible for communicating
with the LiveAmp 16 based on the LiveAmp-16’s communication protocol, and
is assisted by the Bluetooth-connection manager module. All communications
between LiveAmp 16 and the Android application are done in a proprietary
binary data format using request-response method. Some examples of requests
sent to LiveAmp 16 are ‘Get Device Information’ and ‘Get Device Status’. In
order to start EEG data acquisition, the EEG data receiver sends a request of
type ‘Start Data Acquisition’ and starts receiving EEG data in binary responses
from LiveAmp 16. The data transformation is also managed by the EEG data-
receiver module. Once the data has been transformed into an internal Java for-
mat, the EEG data is forwarded to the Preprocessing-Pipeline module.

3.1 Preprocessing Pipeline

Our current implementation of the preprocessing pipeline offers filtering, removal
of line noise, and detection of bad channels including interpolation. As these
steps are usually part of any preprocessing pipeline, we identify these steps to be
principle components, and therefore we have limited our current implementation
to these. Herein, the filtering is offered by HighPassFilter with a 3rd Order
Butterworth filter. The line noise removal is carried out by BandStopFilter.
Finally, the bad-channel detection is done by adopting and implementing both
phases of the PREP’s ‘Referencing Procedure’ for Android platform, we refer
to as Rereferencer. The overall design of our current implementation of the
preprocessing pipeline is illustrated in Fig. 2, using a Class Diagram, and the
sequential object interactions of the Java classes is given in Fig. 3. The individual
classes as well as their relations are briefly discussed below:

Pipeline. The abstract Pipeline class defines all the necessary properties and
methods, such as the frequencies of filters, and the sampling rate. The Pipeline
class implements the Filter interface, where the Filter interface declares the
method called filter(). To ensure a flexible class design and a uniform filter
structure, all filter classes extend the abstract Pipeline class (HighPassFilter,
Rereferencer, and BandStopFilter). The filter-specific logic is implemented in
the overridden filter() method of each extending filter class. In addition to
other properties, the Pipeline class also defines an instance of EpochBuffer
class. During the filtering process, the Pipeline class initializes the buffer with
the EEG data values.

EpochBuffer. To work with continuously incoming data, an EpochBuffer
with a default length of 64 values is used. The EpochBuffer implements a
CircularBuffer and stores the incoming EEG data values. All filters are sequen-
tially applied on the values stored in buffer, thus modifying the EEG data one
after the other.
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<<abstract>>
Pipeline

+bufferLength:int

+nbChannels:int

+epochBuffer:EpochBuffer

+highPassOrder:int

+highPassSampleRate:int

+highPassCutOffFrequency:int

+bandStopSampleRate:int

+bandStopOrder:int

+bandStopCenterFrequency:int

+bandStopFrequencyWidth:int

+noiseFilterThreshold:int

initBuffer(int):void

addValues(doube[]):void

updateValues(doube[]):void

getLastValues():doube[]

<<interface>>
Filter

filter():void

HighPassFilter RereferencerBandStopFilter

Extends

Extends

Extends

CircularBuffer

+bufferLength:int

+nbChannels:int

+index:int

+pts:int

+buffer:double[][]

update(double[]):void

clear():void

EpochBuffer

+updateValues(doubel[]):void

+getChannelMean(int):double

+getLastValues():double[]

+bufferLength:int

Use

Fig. 2. Class diagram of preprocessing pipeline-related Java classes

HighPassFilter. Class HighPassFilter is implemented with the help of an
Infinite Impulse Response (IIR) filter library for digital signal processing2. The
library is integrated into the project using Maven. The library allows application
of 3rd Order Butterworth Filter with a default value 1 Hz and a sampling rate
250 Hz to the signal.

Rereferencer. For this filter, both phases of the PREP’s re-referencing algo-
rithm presented in [4] was implemented in Java for the Android platform. The
NoiseDetector from NeuroTechX3 used in EEG-101 was used to detect noisy
channels. The noise detector uses variance thresholding on the data available in
EpochBuffer to detect and mark noisy channels.

BandStopFilter. The aforementioned IIR library comes with an implementa-
tion of the band-stop filter. To remove line noise from the signal, our implemen-
tation re-uses the band-stop filter from the IIR library.

2 https://github.com/berndporr/iirj Accessed: 15/06/2020.
3 https://github.com/NeuroTechX/eeg-101 Accessed: 15/06/2020.

https://github.com/berndporr/iirj
https://github.com/NeuroTechX/eeg-101
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:NotifyQueue

onFixRate(values)

:App :Visualize
Activity

setupPipeline()
create()

:HighPass
Filter

:BandStop
Filter

:Re-
referencer

filter
(values)

:Acquisition
DataHandler

handle(data)

setVisualize
Handler(handler)

create(handler)

put(values) :Epoch
Buffer

create()
init()

add(values)
filter()

get()

values

update(v)

filter()
getValues()

values

update(values)

filter()

values

getValues()

update(values)

:List
Adapter

notifyHandler(values)

addValues()

Loop

filter(values)

filter(values)

data
packets

Fig. 3. Sequence diagram of data preprocessing

To better examine the results and behavior of the individual filters, as well
as the entire pipeline (all filters applied), a comparison of filter application to
the raw EEG data is shown in Fig. 4. In all represented graphs in Fig. 4(a–d),
the blue signal represents the raw EEG data without application of any filter,
while the blue signal represents the EEG data after application of individual
filter. Herein, Fig. 4a shows the comparison of raw EEG data and the high-pass
filter, Fig. 4b shows a comparison of the band-stop filter with raw EEG data,
and Fig. 4c shows a comparison of raw EEG data and the application of the re-
referencer filter. Similarly, Fig. 4d shows a comparison between raw EEG data
with all filters applied (high pass, band-stop, re-referencer).

From Fig. 4a, we can observe very minor difference between the two signals,
suggesting very little impact on changing the signal. Figure 4b gives a good
example of influence of the band-stop filter on the EEG data. Although the
signal looks quite similar to the original, but at some points the peaks become
more smoother. With the re-referencer filter results shown in Fig. 4c, it can be
noticed that the signal peaks remain in their amplitude, but in some places there
is a slight upward and downward shift in amplitude of the signal, particularly in
the signal comparison of Channel 1. The result of the entire pipeline, depicted
in Fig. 4d, shows a mixture of what we experienced at each individual filter.

The exact accuracy of application of individual filters can be questioned,
therefore, domain experts can be helpful in validating and improving the filter
implementation. Furthermore, please also note that the amount of influence of
applying individual filters as well as the entire pipeline on the EEG data is
dependent and subjective of the type of raw EEG data used. For instance, a
cleaner input EEG signal with minimum noise and noisy artifacts will present
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minimum change in the output EEG signal after application of the pipeline
filters.

It is also pertinent to note here that, even if the filters are cleaning the EEG
data, the inclusion of experts is necessary to clarify whether the resulting EEG
data after application of the pipeline filters does not contain any noisy artifacts.
Similarly, domain experts can also advise in case if the filters are responsible
for removing any significant information from the input EEG data, which is
critical for the domain-specific analysis. In both of these cases, respective filter
parameters can be modified and adjusted to find an optimal filter setting.

(a) Highpass Filter (b) Band-stop Filter

(c) Re-referencer (d) Pipeline

Fig. 4. Comparison between raw simulator data (red) and the filters applied (blue)
(Color figure online)

3.2 Graphical User Interface (GUI)

Workspace and Filter Settings

Before running an EEG recording session, the EEG device must be config-
ured properly. The proposed Android application uses workspaces for this task.



Towards Mobile-Based Preprocessing Pipeline for EEG Analyses 77

(a) EEG workspace creation (b) Preprocessing filter set-
tings

Fig. 5. EEG application screenshots

Workspaces are stored and can be edited later. This allows the flexibility to exe-
cute multiple EEG sessions with the same workspace configuration. Additionally,
changing a single parameter of an existing workspace is also possible. Figure 5a
shows the screenshot from the app for the workspace creation. Each workspace
consists of several parameter settings like name, recording mode, and sampling
rate. Furthermore, the workspace screen also allows enabling and disabling of
EEG channels. The workspace configuration can be stored on the Android device
and are sent to the EEG amplifier before an EEG session via EEG Data Receiver
module.

In addition to the workspace configuration, the proposed Android applica-
tion also allows configuration of filters through a Pipeline Settings screen. The
pipeline-settings screen allows enabling and disabling of individual pipeline filters
as well as configuration of filter parameters. This allows the behavior of individ-
ual filters, or different combination of filters on the EEG data to be observed and
evaluated. Additionally, changing configuration parameters of individual filters
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allows optimization of filter application on the EEG signal. A screenshot from
the Android app for pipeline settings is depicted in Fig. 5b.

Visualization
In order to visualize EEG data (prior or post-preprocessing), we implemented
an Android-specific ListAdapter. This ListAdapter in an integral part of the
aforementioned EEG data receiver module, and is responsible for establishing
and managing data communication between the data model and visualization.
The overall structure of ListAdapter is depicted in Fig. 6. The Data Model com-
ponent is implemented as Java POJO Classes to hold specific data of EEG chan-
nels. As there is a lack of native Android chart libraries, the MPAndroidChart
library by Philipp Jahoda4 is used for creation of line charts to show EEG data.
Since not all channels should be displayed in a single chart, the ListAdapter
provides a ViewHolder for each and individual EEG channel using a line chart.
Once an EEG data packet of all channels has been preprocessed through the
pipeline, it is forwarded to the list of channels in the ListAdapter. The adapter
is then informed by the Notifier component (Java listener component trig-
gered on changes in EEG data packet values) that its list of channels has new
data values and can therefore update the ViewHolder. The ViewHolder holds
the line charts and updates them with each new EEG data packet. Since data
outside the Android viewport is invisible and is irrelevant for display, therefore,
the number of data values in individual line chart is limited to the viewport,
this allows conservation of the working memory of the smartphone. In order to
further conserve the smartphone resource, the RecyclerView component ensures
refreshing of ViewHolder based on last used EEG data packets in case the EEG
data packet values have not changed.

ListAdapter

ViewHolder

Data Model RecyclerViewNo fier

Fig. 6. Structure of the ListAdapter for visualization of EEG data

Figure 7a shows an example visualization of the test signal generated by the
EEG amplifier device for Channels 1 to 8. Furthermore, please note the control
buttons on the bottom right corner of the screen. The control buttons are divided
into three types: 1) The Record button starts recording (storage of EEG data
on smartphone and amplifier) of the EEG along with visualization of the EEG

4 https://github.com/PhilJay/MPAndroidChart Accessed: 15/06/2020.

https://github.com/PhilJay/MPAndroidChart


Towards Mobile-Based Preprocessing Pipeline for EEG Analyses 79

signal on the smartphone, 2) the Monitor button starts visualizing the EEG data
without recording, and 3) Start/Stop testing starts respectively stops receiving
test signal (sinusoidal wave) generated by the amplifier to test connectivity and
data transmission. Figure 7b shows an example visualization of a real EEG data.
The pipeline latency on the top of the screen shows the time delay between the
preprocessing of two consecutive EEG data packet values. In this example, the
latency is shown for all three pipeline filters.

(a) Test Signal Visualization (b) EEG Data Visualization

Fig. 7. EEG application screenshots

4 Results and Discussions

Since one of the core goals of our proposed work was to test and evaluate the
feasibility of smartphones for EEG data preprocessing, in this section we detail
the experiments and results examining the performance of the proposed prepro-
cessing pipeline on a mobile device. We have exhaustively tested our proposed
approach and run experiments to provide a detailed comparison of resource con-
sumption on the mobile device for acquiring raw EEG data (non-processed EEG
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data), application of individual filters on the EEG data, and application of all
filters on the EEG data. Our experiments focus specifically on mobile resource
consumption in terms of CPU usage, working memory usage, and battery
consumption.

4.1 Experimental Setup

To measure the performance data of the proposed pipeline and its filters, the
Huawei P20 Lite with 4 GB RAM, with an Octacore processor Kirin 659 (4× 2.36
GHz + 4 × 1.7 GHz), and non-removable Li-Po 3000 mAh battery was used5.
The Android Profiler built into Android Studio was used to measure the app
performance. The workload and resource consumption of raw data, individual
filters and entire preprocessing pipeline were captured by running them for a
duration of 5 min. The entire process was repeated 3 times, the performance
data was recorded, and the arithmetic mean of 3 separate runs was computed.
The EEG amplifier configurations and filter settings used for the experiments
are given in Table 2.

Table 2. EEG amplifier and filter settings

Settings Type Values

Workspace EEG channels 1–8

Data type Test

Sampling rate 250

HighPass filter Order 3

Cut-off frequency 1

BandStop filter Order 3

Center frequency 60

Width frequency 10

Rereferencing Variance threshold 4000

4.2 Results

The comparative performance results of the proposed EEG preprocessing
pipeline are given in Fig. 8, where Fig. 8a gives performance in terms of CPU
usage in percentage, and Fig. 8b shows the amount of working memory used in
MB. The battery related results are shown in Fig. 9, where Fig. 9a shows the
energy consumption in percentage. Herein, please note that the Android Studio
Profiler only distinguishes between three energy levels namely light, medium,
and heavy. We divided each of those levels into three equal parts which results
5 https://consumer.huawei.com/de/support/phones/p20-lite/ Accessed: 15/06/2020.

https://consumer.huawei.com/de/support/phones/p20-lite/
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in nine same sized intervals. The introduced nine intervals were used for proper
quantization of the energy used by filters and allow better distinction of energy
consumption. Figure 9b shows the comparative results of over-all battery run-
time duration in hours (hh:mm format). For this purpose, the mobile device was
completely charged and the EEG data was continuously sampled, processed, and
visualized until the battery was exhausted.

4.3 Discussion

From Fig. 8, in general, we can see minimal usage of critical computing resources
of the smartphone. Note that this is suggestive as the regular user experience,
including the background services, can not be hindered by the preprocessing
and visualization of EEG data. Specifically, from Fig. 8a, the average CPU

(a) CPU load in percentage

(b) Memory consumption in MB

Fig. 8. Smartphone performance results
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(a) Energy Consumption

02:29

02:21

02:12

02:06

01:58

02:38

02:28

02:14

02:11

02:01

00:00 01:00 02:00 03:00 04:00 05:00

Raw

Highpass

Bandstop

Rereferencer

All Filters

Ba ery 100-50% Ba ery 50-0%

05:07

04:49

04:26

04:17

03:59

Total Time

Time in hh:mm format

(b) Battery run-time durations

Fig. 9. Smartphone battery results

usage ranges between 13%–17%, with highest usage by the entire preprocess-
ing pipeline. In case of maximum CPU usage, we see varying values between
28%–36% and highest consumption of 36% by the entire pipeline. In comparison
to acquiring and visualizing raw EEG data, the amount of extra CPU usage
(CPU overhead) by applying the entire pipeline is notably lower (average CPU
usage difference of 4% and maximum CPU usage difference of 8%). In case of
both average and maximum CPU usage, the values for each individual filters
remained on the same level with slight difference in comparison to the raw EEG
data CPU usage values.

From Fig. 8b, very nominal amounts of working memory or RAM usage
can be seen. The average memory usage ranges between 94–128 MB, with most
memory usage of 128 MB by the entire preprocessing pipeline. In case of max-
imum memory usage, a variation of values ranging between 102–135 MB were
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observed, where the highest memory usage of 135 MB was for the entire pipeline.
Comparatively, the amount of additional working memory required for applying
the entire pipeline as opposed to acquiring and visualizing raw EEG data is very
low (average memory usage difference of 34 MB and maximum memory usage
difference of 33 MB).

Apparently, the proposed preprocessing pipeline is resource-intensive in terms
of battery and energy consumption (see Fig. 9). A moderate to high require-
ment for energy consumption was already anticipated due to the involvement of
additional resources like Bluetooth and the smartphone screen usage. However,
from Fig. 9a, we can conclude an acceptable energy requirement by the app.
Specifically, since in case of average energy usage, all filters as well the entire
preprocessing pipeline consumed 33% of the smartphone energy, inline with the
battery usage for acquiring and visualizing raw EEG data. Conversely, in case
of maximum energy usage, we see values ranging from 56% (energy usage to
acquire, and visualize raw EEG data) to 78% (energy usage for acquiring, pre-
processing with entire pipeline, and visualizing raw EEG data). Herein, we see
a notable additional energy usage of 22% by the entire preprocessing pipeline.
For HighPass filter, the energy remains same as the raw EEG data acquisi-
tion and visualization, but an additional energy usage of 11% for band-stop and
referencing (Rereferencer) filters can be seen.

On the other hand, energy usage measure can be subjective in certain scenar-
ios, therefore, an objective measure in terms of overall battery run-time duration
is given in Fig. 9b. The overall battery run-time duration represents the amount
of time between a full battery charge and empty battery. From Fig. 9b, we
see a total of 5 h and 7 min alive time for continuous raw EEG data acquisi-
tion and visualization. The overall time duration varied for EEG data acquisi-
tion, visualization, and applying individual preprocessing filter. For instance, for
Highpass filter the battery lasted for 4 h 49 min, for bandstop filter the battery
run-time duration was 4 h 26 min, 4 h 17 min for the Rereferencer, and for the
entire pipeline (all filters) the battery lasted for 3 h and 59 min. Herein, we see
the lowest battery run-time duration of 3 h and 59 min, which is acceptable since
most conventional EEG sessions require maximum of 40 min.

5 Conclusion, Limitations, and Future Work

Portable, ambulatory, or mobile EEG devices allow monitoring of neuronal activ-
ities of human brain in real-life scenarios. The mobile EEG devices support
the wireless transmission of EEG data over Bluetooth, thus, enabling live EEG
data processing and visualization on standard smartphones. In this work, we
proposed an elementary mobile-based preprocessing pipeline for EEG analysis
and evaluated the feasibility of smartphones for EEG data preprocessing. Our
experiments and results show that contemporary smartphones have satisfactory
computational capabilities in terms of CPU and working memory to perform
EEG data acquisition, preprocessing, and visualization without hindering the
user-experience in relation to general smartphone use. Further, our experiments
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with battery consumption while preprocessing and visualizing EEG data show
moderate energy consumption and suggest that the smartphones hold ample
battery capacity to allow recording of multiple EEG sessions. The proposed app-
roach was realized within the context of tinnitus research to collect evidence for
unknown facts regarding tinnitus using brain imaging techniques. The significant
contributions of the proposed approach are to, (i) improve EEG data acquisition,
preprocessing, visualization, and analysis, (ii) enable preprocessing of EEG data
using smartphones and without the need of specialized software or hardware, (iii)
allow researchers the flexibility to gather brain imaging data of tinnitus patients
in a variety of experimental conditions in real-world environments. Furthermore,
the proposed app serves as an initial step towards smartphone-based automated
mobile neurofeedback and biofeedback for tinnitus patients. Nevertheless, our
approach can be applied for other domains needing mobile and real-time EEG
observations.

Two notable shortcomings of our proposed work are, 1) the number of fil-
ters included in the preprocessing pipeline, and 2) our choice of band-stop filter
for removal of line noise. For inclusion of additional filters in the preprocess-
ing pipeline, we have ensured the current design is flexible and extendable, and
therefore, the pipeline can be easily extended with additional artifact-removing
filters. For instance, we are currently implementing the Independent Component
Analysis (ICA) algorithm for Android platform. For line interference and noise
removal, although, we justify our use of band-stop filter, for future work, we are
currently working on an optimized and Android-specific implementation of the
CleanLine algorithm. Furthermore, we are running the aforementioned experi-
ments on additional smartphone devices (including old models as well relevantly
new models) to observe the behavior of proposed EEG preprocessing pipeline
in terms of resource consumption. Finally, for further future work, we intend to
apply the proposed smartphone app in the field to acquire and analyze EEG
data in real-world experimental settings. This will be specifically done within
the context of tinnitus research to gather EEG-related data of tinnitus patients.
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