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Abstract. The severity of COVID-19 varies dramatically, ranging from
asymptomatic infection to severe respiratory failure and death. Cur-
rently, few prognostic markers for disease outcomes exist, impairing
patient triaging and treatment. Here, we train feed-forward neural net-
works on electronic health records of 819 confirmed SARS-CoV-2 positive
patients admitted to a two-site NHS Trust hospital in London, England.
To allow early risk assessment, the models ingest data collected in the
emergency department (ED) to predict subsequent admission to inten-
sive care, need for mechanical ventilation and in-hospital mortality. We
apply univariate selection and recursive feature elimination to find the
minimal subset of clinical variables needed for accurate prediction. Our
models achieve AUC-ROC scores of 0.78 to 0.87, outperforming stan-
dard clinical risk scores. This accuracy is reached with as few as 13% of
clinical variables routinely collected within the ED, which increases the
practical applicability of such algorithms. Hence, state-of-the-art neural
networks can predict severe COVID-19 accurately and early from a small
subset of clinical variables.
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1 Introduction

The novel severe acute respiratory syndrome virus 2 (SARS-CoV-2) has caused
a pandemic outbreak of COVID-19 and a worldwide public health emergency.
As of November 2020, the pandemic has led to more than 60 million confirmed
cases and 1.5 million deaths [2]. While most COVID-19 patients have an asymp-
tomatic infection or only suffer mild upper respiratory tract illness, the disease
can progress to severe viral pneumonia with acute respiratory distress, respi-
ratory failure and thromboembolic events that can lead to death [17,25,29].
Currently, few predictors for the transition to severe disease are known. How-
ever, an early identification of patients at-risk of severe outcomes may allow for
faster intervention, improving treatment and therapy success.

The combination of state-of-the-art machine learning (ML) methods with
electronic health records (EHRs) promises to predict patient deterioration with
high precision [11,26]. Due to the scarcity of COVID-19 EHR data in the pub-
lic domain, the majority of previous work has focused on statistical analyses
or classical ML algorithms. Initial reports noted that factors such as age and
underlying comorbidities can have an adverse effect on disease progression [7].
Zhou et al. used logistic regression on data of 191 COVID-19 positive patients
to explore the risk factors for acute respiratory distress syndrome [31]. Simi-
larly, Xie et al. applied logistic regression to the data of 299 COVID-19 positive
patients to predict mortality [27]. Yan et al. [28] utilised XGBoost and EHR
data of 375 COVID-19 patients in Wuhan, China to predict deterioration to a
critical condition. While such studies provide insights into potential risk factors
for severe COVID-19, most were conducted with limited patient numbers and
data taken from both the patient’s historical record and from throughout the
current hospital admission [16,20,31]. The latter impairs an application to early
patient triaging since, at the time of hospital presentation, the full EHR is rarely
available. This problem is addressed by Jiang et al. [15] who applied ML methods
to data available at the point of admission to hospital. However, with a sample
size of just 53 patients the power of this study was limited.

Already prior to the COVID-19 pandemic, traditional risk scores were widely
used in clinical practise to assess patient deterioration. Jones et al. explored
the use of the sequential organ failure assessment (SOFA) score in combination
with ML methods to forecast poor patient outcomes [16]. Using data collected
from 248 patients over 2 years, they were able to predict in-hospital mortal-
ity by applying logistic regression to SOFA scores. Similarly, Scott et al. [21]
have adopted the national early warning score (NEWS2) to predict the clinical
outcome of patients. Yet, it remains unclear whether SOFA, NEWS2 or other
similar clinical risk scores can be applied to COVID-19 patients.

A major obstacle to early patient triaging is the minimum number of clinical
variables and, hence physiological tests, required to assess whether a patient is at
risk. Feature selection methods, routinely applied in ML model development [4],
can provide such a reduced feature set, retaining only the most informative clini-
cal variables. Guyon and Elisseeff [12] introduce a number of methods which can
be used to retain relevant information in a data set while reducing the number
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of features. These methods can be split into filter, wrapper and embedded meth-
ods. Both filter and wrapper methods were previously used by Pourhomayoun
and Shakibi [20] when predicting mortality in COVID-19 patients. In addition,
Yan et al. used simple feature importance metrics to perform feature selection
for predicting deterioration to a critical condition in COVID-19 patients [28].

We propose to use feed-forward neural networks to extract non-linear inter-
actions between clinical variables and predict whether patients will deteriorate
to severe COVID-19. We define deterioration to severe COVID-19 by three end-
points: admission to an adult intensive care unit (AICU), a need for mechanical
ventilation, and in-hospital mortality. We perform feature selection to identify
a minimal subset of clinical features that allows patient stratification and com-
pare these subsets between endpoints. To facilitate early risk assessment, we
focus our analysis on data available during a patient’s emergency department
(ED) visit at a hospital. Hence, the main contributions of this work are three–
fold: 1. Early prediction of COVID-19 patients’ risk to deteriorate to one of three
clinical endpoints using neural networks; 2. evaluation of prediction performance
over classical clinical risk scores; and 3. exploration of the minimal set of clinical
features required for accurate patient stratification.

2 Methods

2.1 Data

Anonymised patient EHRs have been collected from a two-site NHS Trust hospi-
tal in London between January 1st and April 23rd 2020. All data were supplied
according to internal information governance review, NHS Trust information
governance approval, and General Data Protection Regulation (GDPR) proce-
dures outlined under the Strategic Research Agreement (SRA) and relative Data
Sharing Agreements (DSAs) signed by the NHS Trust and ourselves on 25th July
2018.

We analysed data from adult patients aged 18 to 100 and confirmed SARS-
CoV-2 positive, as determined by quantitative reverse-transcription PCR (qRT-
PCR). A total of 96 clinical features have been collected in the study, including
patient demographics, vital signs, laboratory measurements and clinical obser-
vations. Of these 96 features, those with a coverage of at least 5% were retained.
These 64 features are listed in the appendix in Table 3. Observations with multi-
ple values were aggregated using the minimum, maximum, mean and last obser-
vation values to avoid biasing models on the number of test results. However, for
blood test results typically only a single measurement is available within the ED
stay of a patient, such that there is no distinction between the four aggregated
values.

2.2 Cohort Definition

Study parameters included EHRs of 3229 patients. The data were filtered to
include patients with confirmed SARS-CoV-2 infection (1158 patients), recorded
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emergency department admission and subsequent ward stay, and their latest
hospital admission being in 2020.

The patients were assigned in three cohorts (see Table 1): Cohort A was used
to predict AICU admission. This cohort was divided into target patients who
were admitted to an AICU at any time during their hospital stay, and control
patients who were not. In the mechanical ventilation Cohort B, patients with-
out clear information on oxygen supply were excluded; target patients required
invasive mechanical ventilation, while control patients are those who required
no or only minimal breathing assistance. For the mortality Cohort C, patients
deceased during hospitalisation were considered target and discharged patients
are included in the control group. Patients still hospitalised at the moment of
study or deceased after hospitalisation were not considered.

Table 1. Patient numbers in study cohorts.

Cohort A (AICU) Cohort B (ventilation) Cohort C (mortality)

Patients 819 818 508

Target 126 (15%) 62 (8%) 170 (33%)

Control 693 (85%) 756 (92%) 338 (67%)

2.3 Prediction Algorithms

EHR data from ED visits were used as inputs to a feed-forward neural network to
predict patient outcomes. Hyper-parameter optimisation was carried out using
Bayesian optimisation with Gaussian process as surrogate model using Keras
Tuner [19]. Optimisation parameters included the number of fully connected
hidden layers (nlayers ∈ [0, 5]) with ReLU activation functions containing a
number of neurons per layer (nneurons ∈ [2, 96]), before a single-neuron out-
put layer with sigmoid activation. Batch normalisation with a batch size of six
and dropout rate (d ∈ [0, 0.5]) were used after each hidden layer. Training used
an Adam optimiser with binary cross-entropy loss and optimised learning rate
(nlr ∈ [1e−4, 1e−2]), for 100 epochs with early stopping. Optimisation was per-
formed using the loss on the validation set from a nested stratified 80%/20%
training/validation split derived from the training set of a 3-fold cross validation
and the mean configuration was chosen (Table 4).

Prior to model training, features with less than 5% coverage were removed,
missing values were imputed with a fixed value of −1 and the data were nor-
malised using standard normalisation. Due to the large class imbalance, the
minority class was oversampled using SMOTE [5].

The performance of ML algorithms was measured against the performance
of the SOFA [18,23] and NEWS2 [1] scores, which are commonly used in clinical
practice. The SOFA score was developed to evaluate morbidity in relation to
organ dysfunction in critically ill patients [18,22]. Successive analyses have shown
that SOFA scores are good indicators of prognosis [9,23]. The NEWS2 score
aims to be a valid indicator of the patient’s well-being at an early stage of their
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hospitalisation. Less frequently it is used as predictor of patient outcome [8].
In our analysis we use the maximum SOFA and NEWS2 score for each patient
while in the Emergency Department. Where data are missing, zero points are
added to each score.

2.4 Model Validation

Stratified 3-fold cross validation was used in the training and evaluation of the
neural network models. Performance of the models is reported as area under
the curve (AUC) of the receiver operating characteristic (ROC). The variability
across folds provides a measure of model stability. Since the SOFA and NEWS2
scores are deterministic, 3-fold cross validation was not carried out. For these
models we measure performance by the AUC-ROC.

2.5 Feature Selection

Due to the large number of features, such as laboratory results, we expect a
large amount of redundant information. We therefore apply feature selection
methods to find the minimal subset of clinical features that reliably predicts
each endpoint. This feature subset allows accurate predictions and easy applica-
tion in real-world settings where data may be sparse. Dimensionality reduction
techniques similar to Principal Components Analysis were not implemented.
Although these methods would create a smaller set of features, measurements
from all parameters would still be required and therefore these techniques are
not beneficial in practice.

Two feature selection methods were considered [12]. First, we applied uni-
variate selection, a filter method in which the number of features to keep is
specified. The dependency between each feature and the target output was cal-
culated using mutual information [3]. The most important features according to
mutual information were retained. We also considered recursive feature elimina-
tion (RFE), a wrapper method which starts with all of the features and repeats
a process of eliminating the least informative features until only a set number of
features remains [13]. A neural network was trained on each data set and per-
mutation feature importances were used to determine which features to discard
in each round [10].

Feature selection was performed on the training set of each of the cross
validation folds in order to obtain a feature list containing a specified number
of features. For each feature selection method a grid-search was carried out to
determine the optimal number of features to keep within the folds. The feature
list was then used to train a model and make predictions. The feature lists
presented in the appendix in Table 5 contain the union of the three feature lists
obtained from each cross validation fold. Optimality was determined by AUC of
ROC curve of the models obtained from the three cross validation folds for each
endpoint.
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3 Results

In the following, we first present baseline model performance when predicting
three clinical endpoints for COVID-19 patients. The minimal subset of features
for each endpoint is shown in the appendix (Table 5).

3.1 Neural Network Performance

Figure 1 and Table 2 show that the neural network with no feature selection out-
performs both the SOFA and NEWS2 scores by a large margin when predicting
AICU admission and mechanical ventilation. This is expected as the network is
able to model complex relationships between multiple features and non-linear
interactions. The difference in performance between our neural network and
traditional scores is most pronounced when predicting a need for mechanical
ventilation. In predicting mortality, the SOFA score performance shows a sig-
nificant increase, while that of the neural network does not. Since the SOFA
score was developed to evaluate morbidity this is to be expected [23]. The neu-
ral network model reaches an AUC of 0.73 when predicting mortality. While the
model outperforms the NEWS2 score, it is not able to achieve a better result
than prediction based on SOFA, which has an AUC of 0.75.

(a) AICU Admission (b) Mechanical Ventilation (c) Mortality

Fig. 1. Prediction performance for clinical endpoints. ROC curves of the neural
network without (NN) and with feature elimination (NN RFE/NN US) and for SOFA
and NEWS2. Solid lines and shaded areas indicate the mean and standard deviation
across cross-validation folds, respectively. Dashed line indicates a random classifier.

3.2 Performance with Feature Selection

Next, we use feature selection to identify the minimal subset of clinical variables
required for accurate predictions. Overall, univariate feature selection performs
best for predicting AICU admission, while RFE is best for predicting a need for
mechanical ventilation and in-hospital mortality (see Table 2). Figure 2 shows
the model performance over successively reduced feature sets, using univariate
selection for AICU admission and RFE for the other two endpoints.

When predicting AICU admission the optimal number of features to keep is
10 in each cross validation fold (see Fig. 2a); the list of retained features across
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Table 2. Predictive performance (AUC) for all endpoints. NN, neural network; US, uni-
variate selection; RFE, recursive feature elimination. Standard deviation across cross
validation folds is shown in brackets for NN models.

Cohort A (AICU) Cohort B (ventilation) Cohort C (mortality)

SOFA 0.50 0.50 0.75

NEWS2 0.68 0.64 0.66

NN 0.77 (0.060) 0.86 (0.056) 0.73 (0.057)

NN + US 0.82 (0.032) 0.84 (0.047) 0.77 (0.035)

NN + RFE 0.78 (0.053) 0.87 (0.054) 0.78 (0.035)

(a) AICU Admission (b) Mechanical Ventilation (c) Mortality

Fig. 2. Prediction performance for feature sets of varying size. Boxes indicate
AUC-ROC over cross-validation folds using univariate selection (a) and RFE (b, c),
with the median marked by the orange lines and interquartile range by box edges.

all folds is included in the appendix in Table 5. By using univariate selection we
achieve a significant increase in AUC of 5%.

As can be seen in Fig. 2b, for Cohort B the best performance is achieved by
RFE using 15 features in each cross validation fold. The features used across all
folds are listed in Table 5. This model achieves an AUC of 0.87, an improvement
of just 1% over the neural network with no feature selection, potentially due to
the baseline performance without feature selection already being high for this
endpoint.

For prediction of in-hospital mortality, predictive performance of 0.78 AUC
is attained using RFE with 5 features in each fold. The features used across all
folds for predicting in-hospital mortality are shown in Table 5. The ROC curve
for this model (Fig. 1c) shows an improvement in the AUC of 5%. This increase
in performance allows the neural network with RFE to outperform the SOFA
score by 3%.

The number of features in the optimal feature subset varies across the end-
points. When predicting AICU admission a large improvement in performance
is gained by using a small feature list of just 10 features in each cross validation
fold (25 unique features across all folds). Using 15 features per fold (36 over-
all) when predicting a need for mechanical ventilation leads to an improvement
in predictive performance of just 1%. An improvement of 5% is also achieved
through the retention of just 5 features per fold (10 overall) for predicting
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in-hospital mortality. This improvement is especially significant as it enables
the neural network model to outperform the SOFA score.

For all endpoints the overall feature list includes age and respiratory rate
(Table 5). Markers of ethnicity are present for the prediction of a need for
mechanical ventilation and in-hospital mortality. Vital sign measurements con-
cerning temperature and fraction of inspired oxygen (FiO2) are present for
prediction of AICU admission and mechanical ventilation, while heart rate is
retained for mechanical ventilation and in-hospital mortality. Although most
of these features have very high coverage (both temperature and heart rate are
above 99%), they are not consistently retained for all endpoints. A feature which
has 100% coverage but is surprisingly discarded for prediction of AICU admission
is sex.

As well as demographic and vital features, all overall feature lists include
laboratory test results (Table 5). For the prediction of in-hospital mortality just
30% of features are laboratory tests, while for AICU admission and mechanical
ventilation this figure is 72% and 61% respectively. We therefore see that the
prediction of in-hospital mortality relies less on laboratory test results than the
other two endpoints. While all overall feature lists contain a number of labora-
tory tests, there is a high degree of variability and only one test is present in
all three feature lists - blood amylase. Various other laboratory tests are present
for prediction of both AICU admission and mechanical ventilation; bicarbonate,
creatinine, blood lactate, oxygen partial pressure, blood potassium and differ-
ent forms of haemoglobin. Some of these laboratory tests, such as bicarbonate,
oxygen partial pressure and blood lactate, have coverage of around 27%, but are
retained over tests such as blood white cells or blood monocyte count, which
have coverage of 84% but are not included in any of the three overall feature
lists.

4 Discussion

This work was motivated by the need to predict whether patients deteriorate to
severe COVID-19 early during their hospital stay and to provide clinicians with
a minimal subset of clinical features which allow risk prediction. To address these
points, we trained neural network models which use EHR data from COVID-19
patients’ ED admissions to predict one of three endpoints: admission to AICU,
need for mechanical ventilation, and in-hospital mortality. We have shown that
feed-forward neural networks can achieve better predictive performance on the
first two endpoints than traditional risk scores. Neural networks without feature
selection were not able to outperform the SOFA score for predicting in-hospital
mortality, possibly due to the SOFA score being developed to predict morbidity.
Implementing feature selection using univariate selection and RFE enabled us to
identify the minimal subset of clinical features required for early risk assessment
of COVID-19 patients. For AICU admission, need for mechanical ventilation and
in-hospital mortality, performance was improved by 5%, 1% and 5% respectively.
For predicting in-hospital mortality, feature selection allowed us to achieve a
predictive performance 3% higher than that of the SOFA score.
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Aside from an improvement in predictive performance, a model requiring
fewer features is extremely beneficial in its applicability to real-world scenarios.
A significantly reduced set of required inputs means that the model can be
applied in settings where data may be sparse and not all of the original features
are available. Having to collect fewer data points in order to make a prediction
increases the accessibility of the model and allows clinicians to prioritise testing.

The predictive performance achieved by our neural network models is compa-
rable to previous work using an XGBoost model [14]. Feature selection methods
are employed by Pourhomayoun and Shakibi [20] to reduce their feature set from
112 to 42 features, although they do not also present results for models trained
using the entire feature set. Our findings that age and indicators of oxygenation
status always remain in the final feature set are consistent with this work. Age
in particular is consistently found to be an important feature in previous works
[27,31]. Conversely, our finding that sex is not retained for prediction of AICU
admission differs from previous works [24,30].

While laboratory test results are included in the feature list for all endpoints,
there is not a large degree of consensus regarding which tests are most informa-
tive. Our finding that features relating to haemoglobin are retained for two out
of three endpoints are consistent with those of Jiang et al. [15]. A surprising
finding of this work which may invite further analysis is the absence of heart
rate in the overall feature list for prediction of AICU admission, and of FiO2

and temperature for predicting in-hospital mortality. Temperature in particular
is a common indicator for severe viral infection [6].

Taken together, our analysis and previous studies suggest that patient age,
demographic information and measures of oxygenation status, such as respira-
tory rate and FiO2 level, are primary indicators of poor outcomes in COVID-19
patients. Prioritising the measurement and clinical assessment of these variables
may improve early patient triaging.

This work uses EHR data captured during a patient’s ED visit. While this
more accurately reflects the data available in practice, it may well limit the
performance of our models. Augmenting the data set with patients’ medical
history may be beneficial, particularly in predicting mortality where a patient’s
chance of survival may be heavily influenced by their comorbidities and other
medical history. While our data set is comparatively large in relation to previous
COVID-19 studies [27,29], further improvements could be made with access to
more data. Longitudinal data from other hospitals in different locations could
improve the generalisability of our models. A significantly larger data set would
also make it feasible to train more complex, deeper neural networks which may
achieve higher prediction performance. One future approach to overcome data
availability issues is the use of transfer learning on other respiratory diseases or
multi-task learning on several clinical endpoints simultaneously.

In conclusion, our models show that state-of-the-art neural networks can
predict severe COVID-19 accurately from sparse, clinical data. Importantly, we
are able to produce a minimal subset of clinical variables required for early risk
assessment of COVID-19 patients. Models trained on this minimal subset of
features can be used by clinicians with limited data available to them to stratify
patients into risk groups.
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A Clinical Features

Table 3 contains all clinical features with over 5% coverage.

Table 3. All clinical features with at least 5% coverage

Age Blood Glucose

Ethnicity Blood Haematocrit

Sex Blood Haemoglobin

FiO2 level POC Blood Lactate

Heart Rate Blood Lactate Dehydrogenase Level

Respiratory Rate Blood Lymphocyte Count

Temperature Blood Magnesium

Blood Activated Partial Thromboplastin Time Blood Mean Corpuscular Haemoglobin Concentration

Blood Adjusted Calcium Blood Mean Corpuscular Haemoglobin

Blood Alanine Aminotransferase Blood Mean Corpuscular Volume

Blood Albumin Blood Mean Platelet Volume

Blood Alkaline Phosphatase Blood Methaemoglobin

Blood Amylase Blood Monocyte Count

Blood Anion Gap Blood Neutrophil Count

Blood Base Excess Blood Nucleated Red Blood Cell Count

Blood Basophil Count Blood Oxygen PO2 Partial Pressure

Blood Bicarbonate Blood Oxyhaemoglobin

Blood Bilirubin Total Blood pH

Blood C Reactive Protein Blood Phosphate

Blood Calcium Blood Platelet Count

Blood Calcium Ionised Blood Potassium

Blood Carboxyhaemoglobin Blood Prothrombin Time

Blood Chloride Blood Red Blood Cell Count

Blood Cortisol Blood Red Cell Distribution Width

Blood Creatine Kinase Blood Sodium

Blood Creatinine Blood Thyroid Stimulating Hormone

Blood D Dimer Blood Thyroxine T4

Blood Deoxyhaemoglobin Blood Total Protein

Blood Eosinophil Count Blood Troponin T

Blood Ferritin Blood Urea

Blood Fibrinogen Blood White Cells

Blood Globulin Brain Natriuretic Peptide

B Model Hyper-parameters

Table 4 contains the optimal model hyper-parameters for each endpoint.
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Table 4. Optimal model hyper-parameters for each endpoint.

Cohort A (AICU) Cohort B (ventilation) Cohort C (mortality)

Hidden layers 2 3 2

Neurons per layer 31 35 28

Dropout rate 0.12 0.30 0.26

Learning rate 0.002 0.005 0.002

C Feature Lists

Table 5 contains the features retained in the final trained models for predicting
each endpoint. This list is the union of the features retained over the three cross
validation folds for each endpoint.

Table 5. Overall features retained for each endpoint

AICU admission Mechanical ventilation Mortality

Age Age Age

Last alanine aminotransferase Eth black african Eth asian indian

Last amylase Eth black caribbean Eth asian pakistani

Last bicarbonate Eth other chinese Eth black other

Last blood ldh level Eth unknown Max amylase

Last nucleated red blood cell countEth white other Max heart rate

Last oxyhaemoglobin Last amylase Mean blood ferritin

Last respiratory rate Last blood lactate Mean respiratory rate

Max anion gap Last blood potassium Min blood bilirubin total

Max blood ldh level Last blood mean corpuscular haemoglobin mchSex

Max blood phosphate Last deoxyhaemoglobin

Max creatinine Last FiO2 level

Max FiO2 level Last haemoglobin

Max oxygen partial pressure Last MCHC

Max red blood cell width Last mean platelet volume

Max respiratory rate Last respiratory rate

Max temperature Max amylase

Mean alanine aminotransferase Max carboxyhaemoglobin

Mean blood lactate Max FiO2 level

Mean blood ldh level Max mean platelet volume

Mean blood potassium Max respiratory rate

Mean fibrinogen Max temperature

Mean FiO2 level Mean blood magnesium

Mean respiratory rate Mean blood urea

Min blood ldh level Mean blood total protein

Mean FiO2 level

Mean lymphocyte count

Mean MCHC

Min bicarbonate

Min creatinine

Min deoxyhaemoglobin

Min haemoglobin

Min heart rate

Min mean platelet volume

Min oxygen partial pressure

Sex
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21. Scott, L.J., Redmond, N.M., Tavaré, A., Little, H., Srivastava, S., Pullyblank, A.:
Association between national early warning scores in primary care and clinical
outcomes: an observational study in UK primary and secondary care. Br. J. Gen.
Pract. 70(695), e374–e380 (2020)

22. Soo, A., et al.: Describing organ dysfunction in the intensive care unit: a cohort
study of 20,000 patients. Crit. Care 23(1), 186 (2019)

23. Vincent, J.L., et al.: The SOFA (Sepsis-related Organ Failure Assessment) score to
describe organ dysfunction/failure. Intensive Care Med. 22(7), 707–710 (1996). On
behalf of the Working Group on Sepsis-Related Problems of the European Society
of Intensive Care Medicine

24. Wang, D., et al.: Clinical characteristics of 138 hospitalized patients with 2019
novel coronavirus-infected pneumonia in Wuhan, China. JAMA 323(11), 1061–
1069 (2020)

25. Wu, Z., McGoogan, J.M.: Characteristics of and important lessons from the coron-
avirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314
cases from the Chinese center for disease control and prevention. JAMA 323(13),
1239–1242 (2020)

26. Wynants, L., et al.: Prediction models for diagnosis and prognosis of COVID-19
infection: systematic review and critical appraisal. BMJ 369, m1328 (2020)

27. Xie, J., et al.: Development and external validation of a prognostic multivariable
model on admission for hospitalized patients with COVID-19 (2020)

28. Yan, L., et al.: Prediction of criticality in patients with severe COVID-19 infec-
tion using three clinical features: a machine learning-based prognostic model with
clinical data in Wuhan. MedRxiv (2020)

29. Yang, X., et al.: Clinical course and outcomes of critically ill patients with SARS-
CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational
study. Lancet Respir. Med. 8(5), 475–481 (2020)

30. Zheng, Z., et al.: Risk factors of critical & mortal COVID-19 cases: a systematic
literature review and meta-analysis. J. Infect. 81(2), e16–e25 (2020)

31. Zhou, F., et al.: Clinical course and risk factors for mortality of adult inpatients
with COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet 395,
1054–1062 (2020)


	COVID-19 Patient Outcome Prediction Using Selected Features from Emergency Department Data and Feed-Forward Neural Networks
	1 Introduction
	2 Methods
	2.1 Data
	2.2 Cohort Definition
	2.3 Prediction Algorithms
	2.4 Model Validation
	2.5 Feature Selection

	3 Results
	3.1 Neural Network Performance
	3.2 Performance with Feature Selection

	4 Discussion
	A  Clinical Features
	B  Model Hyper-parameters
	C  Feature Lists
	References




