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Abstract. The use of contrast agents in CT angiography examinations
holds a potential health risk for the patient. Despite this, often unin-
tentionally an excessive contrast agent dose is administered. Our goal is
to provide a support system for the medical practitioner that advises to
adjust an individually adapted dose. We propose a comparison between
different means of feature encoding techniques to gain a higher accu-
racy when recommending the dose adjustment. We apply advanced deep
learning approaches and standard methods like principle component
analysis to encode high dimensional parameter vectors in a low dimen-
sional feature space. Our experiments showed that features encoded by
a regression neural network provided the best results. Especially with a
focus on the 90% precision for the “excessive dose” class meaning that if
our system classified a case as “excessive dose” the ground truth is most
likely accordingly. With that in mind a recommendation for a lower dose
could be administered without the risk of insufficient contrast and there-
fore a repetition of the CT angiography examination. In conclusion we
showed that Deep-Learning-based feature encoding on clinical param-
eters is advantageous for our aim to prevent excessive contrast agent
doses.

Keywords: Feature encoding · Deep Learning · Case-based
reasoning · Contrast agent

1 Introduction

Feature encoding is a preprocessing step used in many machine learning applica-
tions to reduce the dimension of the input feature vectors. The process of feature
encoding removes redundant data so more meaningful or relevant features can
be derived from the raw inputs. This can yield a higher accuracy of the given
task.
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A well-known feature encoding technique is the principle component analysis
(PCA) which represents the data as a linear combination of features with the
greatest variance. In [14] the PCA is used to encode high dimensional genome
expressions to predict the clinical outcome of breast cancer. Advancing to non-
linear encoding techniques Deep Learning methods came in to focus. In [11] the
authors implemented an autoencoder to encode surface meshes of segmented hip-
pocampi to subsequently classify whether the patient suffers from Alzheimer’s
disease. This area of non-linear feature encoding also includes the variational
autoencoder. The authors of [12] used this approach to extract features for the
detection of pathologies while the authors of [10] trained a variational autoen-
coder to reduce the dimension of single tumor cells for differentiating between
tumor subpopulations.

In this paper we propose a comparison between different means of feature
encoding applied to clinical parameters for a classification task (Fig. 1). In this
way a recommendation to reduce the standard dose can be made which is a
part of the primary objective to adjust the dose of contrast agent (CA) used in
CT angiographies (CTA) for each patient individually. This is based on the fact
that CAs often contain in iodine that can cause harmful side effects including
anaphylactic reactions and thyrotoxicosis [1,2]. It poses a risk especially to the
renal system with contrast-induced renal nephropathy being the third leading
cause of hospital acquired acute renal failure [9]. Unnecessarily high CA doses
should therefore be avoided in order to minimize the health risk of the patient as
well as saving expenses for CA. However, often a standard dose is administered
in clinical practice. A previous method uses the body weight and a weight factor
to compute an individualized CA dose [5]. Another approach tested a weight-
based protocol incorporated with the tube potential selection to lower the CA
dose [13].

In contrast, we considered a greater set of clinical parameters in addition
to the body weight with the goal to give the medical practitioner an improved
dose adjustment recommendation with respect to a standard dose. We compared
different methods of Deep-Learning-based feature encoding including amongst
others a variational autoencoder (VAE) and a regression neural network (RNN).
As an already established feature encoding method we implemented a principal
component analysis (PCA) to compare with the advanced techniques. For the
evaluation of the influence of the encoded features on the dose prediction quality
we used a k-Nearest-Neighbour (kNN) classification on the raw input features.
Each method is used as a preprocessing step for kNN-based classification in one
of two classes: 1) Non-excessive image contrast, 2) Excessive image contrast.

The determination of the classes and therefore the image contrast were pre-
viously executed. Based on Regions of Interest (ROI) set in CTA volumes a
rule-based assessment was implemented. This assessment acts as the ground
truth for the feature encoding classification.
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Fig. 1. Clinical parameters were encoded using the following methods: principle com-
ponent analysis (PCA), regression neural network (RNN), autoencoder (AE) and
variational autoencoder (VAE). The classification was implemented with k-Nearest-
Neighbour (kNN). As a base comparison the kNN was used on the raw features.

2 Data

The clinical parameters and the corresponding CTA volumes were sourced from
the radiology department of the UKSH Lübeck. All 76 CTA examinations were
limited to the aorta area. The patients received a CA dose of 100 mL of the CA
Imeron 300. Additionally, 20 clinical parameters were collected including body
weight, height and blood pressure at rest among others.

To build the ground truth for the classification through feature encoding
a quality assessment of the image contrast was executed. An overview of the
assessment is displayed in Fig. 2. Experts placed three ROIs at predefined loca-
tions in axial CTA slices. The ROIs were defined to lie equally spaced across
the CTA volume in order to encompass the entire contrast-enhanced area. Tak-
ing the mean HU values of each ROIs rules were applied resulting in the two
aforementioned contrast classes.

Fig. 2. ROIs are placed in axial slices of a CTA volume. Through a rule-based classi-
fication the image contrast class is determined.
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3 Methods

3.1 Autoencoders

Autoencoders (AEs) [7] are neural networks, that consist of two parts: an encoder
Q(X), which maps the input X to a latent vector z ∈ Rm and a decoder P (z)
that tries to reconstruct the input X given only z. To ensure X ≈ P (Q(X))
a reconstruction loss is applied, e.g. L1-loss. The latent space mapping makes
autoencoders suitable for feature encoding, since the latent representation z is
assumed to contain all the important information about the input. The feature
encoding can be established by directly inputting an unseen vector in the trained
encoder and considering its latent encoding.

3.2 Variational Autoencoders

Variational autoencoders (VAEs) [7] are an extension of conventional autoen-
coders assuming a prior distribution of the latent space. Typically a normal
distribution z ∼ N (0, 1) is enforced by using an additional loss function DKL

(Kullback-Leibler Divergence), which measures the distance between the pre-
dicted latent space distribution and the chosen a-priori distribution. To assure
a normal distribution, the encoder predicts a mean μ and a standard deviation
σ and the latent vector is calculated z = μ + εσ, where ε ∼ N (0, 1).

3.3 Regression Neural Network

Regression or classification neural networks are frequently used as feature extrac-
tors by considering the outputs of intermediate layers [8]. While AEs and prin-
ciple component analysis generate rather general features describing the most
important properties of an input, the intermediate outputs of networks solving
particular tasks rather concentrate on features that are problem-specific. In order
to generate features that describe the probability of a particular set of clinical
parameters to fit in a certain class, in this work, we consider regression to the
mean values of the three ROIs (Fig. 2) [6]. The last hidden layer is then used as
feature extractor.

3.4 Implementation Details

The neural networks are implemented using PyTorch in a fully-connected man-
ner. The autoencoders contain three encoding and two decoding layers and map
the input vectors of length 20 to a latent vector of length 5. In our experiments
this length turned out to be optimal, while choosing lengths between 12 (number
of modes in PCA) and 5 delivered worse results. The regression neural network
features 4 fully-connected layers, whereas the last hidden layer maps the input
to a feature length of 5 in a similar manner. An important detail is the aug-
mentation of the inputs and regressed values by adding noise sampled from a
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normal distribution with standard deviation 0.3. Also, the input parameter vec-
tors were standardized for all experiments. For linear feature encoding principle
component analysis is also applied as reference method and to compare it with
Deep-Learning-based feature encoding methods (Fig. 3).

Fig. 3. Architectures of the neural networks. From left to right: VAE, AE, regression
network. z denotes the feature encoding layer. For details see the legend on the bottom.

3.5 PCA

In this work, inspired by statistical shape models (SSMs) [3], principal compo-
nent analysis (PCA) is used for dimensionality reduction and feature encoding
of the clinical parameters. PCA is typically applied on discrete shape represen-
tations X1 . . . Xn of a training dataset, where each representation consists of
landmark positions. However, here every Xi is represented by a vector of clin-
ical parameters. The main steps for the feature encoding are the following: 1)
Compute the mean vector over all shapes Xµ = 1/n

∑n
i=1 Xi. 2) Apply PCA:

Build a covariance matrix C = 1/n
∑n

i=1(Xi − Xµ)(Xi − Xµ)T and compute
its eigenvectors up and corresponding eigenvalues λp: Xup = λpup. Since the
eigenvectors corresponding to the largest eigenvalues describe the main varia-
tion in the data, only the first m eigenvectors are used in the following and the
rest is omitted. Here, m is chosen to cover 95% of the variability of the training
dataset resulting in 12 modes. New forms can now be described using this model
as follows Xnew = Xµ + Uc, where U = [u1 . . . um], c = [c1 . . . cm]T and cj are
coefficients for each eigenvector that can be varied. However, to reconstruct an
unseen form X ′ using X ′ = Xµ + Uc′, a coefficient vector c′ = UT (X ′ − Xµ)
needs to be found. Since those coefficients describe the input vector in an unam-
biguous dimensionality-reduced manner, they can be used as feature encodings
of the clinical parameters.
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3.6 KNN Contrast Classification

For the classification of the individual contrast class for CA dose adjustment
recommendations the kNN classification was used. The k-Nearest-Neighbour
method [4] is an intuitive way to classify previously unseen data. kNN is con-
sidered as an instance-based learning algorithm as its learning consist of storing
the training data in the feature space. The algorithm assumes that samples of
the same classes lie in close proximity of each other. To classify an unseen sam-
ple a distance to all stored data is computed. Different distance measures are
applicable for example the Euclidean distance. The class of the new instance is
determined as the most frequent class among the k nearest data. k should be
neither too low or too high as the algorithm becomes susceptible to outliers or
neglects classes with a small number of data points respectively. In this work,
kNN is used for the classification of the following computed features and also
directly on the input data. In our experience, for the feature encoding scenario
kNN with k = 5 and an Euclidean distance delivered best classification results,
however for using the kNN on the raw features k = 3 with a correlation distance
measure was chosen.

4 Results

The results for the classification are shown in Table 1. All experiments are con-
ducted in a leave-one-out manner and the values are averaged over the different
training sets. For evaluation different values are calculated, that take into account
the number of true positive (TP), false positive (FP), false negative (FN) and
true negative (TN) classifications per class (excessive vs. non-excessive contrast
agent).

Precision = TP
TP +FP

Recall = TP
TP +FN

Accuracy = TP +TN
TP +TN +FP +FN

F1-Score = 2Precision×Recall
Precision+Recall

Note that the accuracy measure is the only one considering true negative
values (patients are correctly classified as not class-related). For this reason the
values for the accuracy might be high even if the precision and recall are con-
siderably poor, e.g. PCA, AE and VAE feature encoding (Table 1). The best
feature-encoding results are achieved with the regression method, since this
method is more task-related, compared to the autoencoding methods. Interest-
ingly, when using the regression-based features for classification better accuracy
and F1-score are achieved compared to applying the rule-based classification to
the regressed values. This is due to the fact, that features contain more abstract
information and are less affected by noise or other small artifacts and errors.
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Overall, the regression-based feature encoding delivers high accuracy and recall
with an accent especially on the precision for class 2 (excessive contrast). With a
precision of 0.9 the system is in a large proportion of cases capable to rightfully
assign class 2, meaning that a recommendation to lower the CA dose can be
given without risking a repeated scan due to insufficient image contrast.

Table 1. Comparison of classification results using different feature encoding tech-
niques. From top to bottom: raw data - kNN directly on the raw input data vectors;
PCA - kNN on PCA-extracted features; Reg-Features - kNN on features extracted
with a regression network; Reg-Class - classification of HU values predicted by a
regression network; AE -kNN on features extracted from the z-space of an autoen-
coder; VAE - kNN on features extracted from the z-space if a variational autoencoder.
The measurements are calculated per class (class 1: non-excessive contrast; class 2:
excessive contrast).

Method Accuracy Precision Recall F1-score

Class 1 Class 2 Class 1 Class 2 Class 1 Class 2 Class 1 Class 2

Raw data 0.78 0.78 1 0.77 0.15 1 0.26 0.86

PCA 0.73 0.73 0 0.73 0 1 0 0.84

Reg-Features 0.89 0.89 0.87 0.90 0.72 0.96 0.79 0.93

Reg-Class 0.88 0.88 0.92 0.87 0.61 0.98 0.73 0.92

AE 0.73 0.73 0.5 0.75 0.17 0.94 0.30 0.82

VAE 0.70 0.70 0 0.72 0 0.96 0 0.84

5 Discussion and Conclusion

In this work, we aim to establish a case-based reasoning for CTA contrast agent
dose based on sets of clinical parameters. We presented different machine learn-
ing methods for feature encoding from clinical parameters. Encoded features are
used in a kNN-based classification for determining whether a recommendation
for using less contrast agent than the standard dose should be made. The feature
encoding methods feature (variational) autoencoders a regression neural network
and a PCA compared to directly classifying the raw data. Since the regression-
based feature encoding is task-based, it delivers the best accuracy (0.89). Autoen-
coding and PCA-based methods deliver more general features, that cannot be
classified with such high accuracy. Even though the used approaches are rather
naive, a reliable recommendation can be made based on the regression method.
However, the methods of this work will be adapted and improved in future work
to enhance the result even more. We will consider a variety of architectural deci-
sions and also a more sophisticated classification method as well as experiments
with subsequent feature selection techniques. Future work will also include the
exact dose determination based on this first recommendation to adapt the CA
dose.
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